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Abstract: Dredging engineering projects are complex because they involve greater uncertainty from
the natural environment, social needs, government policy and many stakeholders. Engineering
companies submit tenders that draw on similar cases undertaken in recent years. However, weather,
earthquakes, typhoons and other disasters often change landforms. Therefore, evaluating the duration
of dredging projects with reference to only a few previous cases is inadequate, often leading to an
unnecessarily long construction duration if the scope of the project is not clearly defined at the early
phase. The goal of this investigation aimed to estimate project duration at the beginning of construction
and the probability of risk. Evolutionary machine learning was used to build a deterministic model
of dredging project duration. Monte Carlo simulation was then utilized to establish the probabilistic
distribution of the project duration based on historical patterns. The analytical outputs are displayed
through a graphical user interface that provides project coordinators with a means of assessing the
uncertainty of project duration in the initial phase of the project. This study will provide a practical
reference for contractors and the Water Resources Agency.

Keywords: dredging engineering project; project planning and management; duration estimation;
machine learning; metaheuristic optimization; Monte Carlo simulation

1. Introduction

The Central Mountain Range in Eastern Taiwan has a high altitude and steep slopes. Thus,
most rivers in Taiwan are short, torrential, have strong scouring forces and flow in the east–west and
west–east directions. The non-uniform distribution of rainfall across seasons has led to disparate
river water volumes between rainy seasons and dry seasons. Increasing public awareness of relevant
safety issues and increasing governmental attention to dredging engineering projects has led the
Water Resources Agency (WRA) of the Ministry of Economic Affairs to dedicate resources to control
the implementation status and effectiveness in various engineering projects. For example, the WRA
has separated dredging from the selling of soil and gravel and developed a cloud-based dredging
management system. This strategy enables the split dredging and selling which works more clearly
than conventional bids. By doing so, the WRA only needs to focus on the working quantities of soils
and gravels the contractors dredge in a river and the settled amounts the buyers pick up from the
dredged materials that should be paid to the WRA.

Since dredging operations involve a high degree of uncertainty and various stakeholders,
performance has frequently proved unsatisfactory. In this investigation, the researchers visited
the ten river management offices in Taiwan, interviewed experienced engineers who worked there,
and identified that most problems were associated with dredging durations and costs. One of its goals
was to help the relevant authorities to reduce the uncertainties in dredging operations. According to the
interviews with the WRA, before the dredging project officers execute the project, they tend to estimate
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the project’s duration based on a few projects they have carried out in the past. However, weather and
frequent natural disasters have been repeatedly changing the terrain. Therefore, estimates that are
based only on previous cases may not satisfy the practical requirements for future dredging projects.

The WRA thus requires a comprehensive database to construct a risk-informed prediction
model of project duration for early planning. In this sense, a model for estimating project duration
was established by combining evolutionary machine learning with Monte Carlo simulation (MCS);
a cumulative distribution function (CDF) graph was thus generated. Visual interfaces were created to
enable users to estimate the project duration by simply entering variables pertinent to their project.
A graphical user interface that provides project coordinators with a means of assessing uncertainty
factors that must be faced by project management agencies and contractors in the initial phase of a
project was developed in this study. The demonstrated systematic procedure provides a modeling
template for project duration as well as cost estimation for continuous updates of risk-informed models
in water resources management.

The rest of this paper is organized as follows. Section 2 reviews the literature on the use of
artificial intelligence and MCS in engineering during the initial phase. Section 3 describes the research
methods that were used to develop and evaluate the stochastic machine-learning model. Section 4
demonstrates the modeling process and discusses the analytical results. Section 5 develops the risk
quantification system prediction system embedded with artificial intelligence and verifies the system
results. Finally, Section 6 draws conclusions and offers suggestions for water resources managers in
river-dredging projects.

2. Literature Review

Literature on the topic of this investigation was reviewed and organized. A goal of this work was
to establish a data analysis technique for the duration of a project in its initial phase. Little relevant
research has addressed dredging operations. Because such operations are public works, the literature
on public works was reviewed.

Public works are construction projects that are initiated by a government for the benefit of the
public. In response to increasingly severe and complicated environmental changes, artificial intelligence
(AI) has been used to develop reliable models that effectively reduce the uncertainties in construction
projects, enable effective decision making and thereby prevent major losses. AI can also be used to
increase an enterprise’s productivity and competitive advantage [1].

AI is a technology for developing machine learning and models with intelligence that is similar to
that of humans [2]. AI can more rapidly solve complex and uncertain problems than can conventional
calculation methods; it is more time efficient, more effective for processing nonlinear data [3] and
exhibits a higher model accuracy [4,5]. For example, artificial neural network (ANN)-based ensemble
models (Bagging and AdaBoost) and support vector machines (SVMs) have been employed to estimate
the progress and costs of construction projects in Taiwan in their planning stages [3].

MCS, a risk analysis technique in the AI discipline, can effectively evaluate nonlinear and uncertain
problems and is not restricted by the number of factors involved. It can simulate random events
for realistic risk assessment and therefore has a unique advantage over the other risk assessment
methods [6,7]. MCS involves the use of repeated random sampling and statistical analysis to generate
simulation results [8]. When data are limited, variables can be input based on historical data or
the judgments of experts, based on experience. Obtaining relevant data through discussions with
experienced personnel yields useful information for determining the input model variables [9].

Estimates of variables associated with construction tasks are typically estimated through
probabilistic and deterministic methods. Because of the high levels of uncertainty for a construction
task, the duration of such a task is highly unpredictable. Therefore, estimating said duration using
a deterministic method may fail to account for potential risks. Probabilistic methods that account
for uncertainty are more informative for engineering practice [7]. MCS can be applied to effectively
analyze the risk factors that affect the duration of a construction project and is therefore a favorable
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method in the context of construction risk management [10]. Based on the literature reviews, MCS was
adopted in the present investigation to assess the risks associated with critical parameters that affect
the duration of a dredging project.

Researchers and industry operators have recognized the importance of comprehensive project
planning in the initial phase of determining the outcome of the project [11,12] owing to the increasing
scale and complexity of construction projects. As revealed by the influence curve of a project throughout
its life cycle, the initial phase is the least costly but the most influential phase; subsequent phases
involve progressively higher costs but they influence the outcomes of the project less. This fact reflects
the importance of comprehensive planning in the initial phase [13].

Generally, the goal of a construction project is to perform all the required tasks within a
predetermined budget while meeting quality requirements; doing so requires sufficient planning and
cost control. Cost and time management are thus essential to the success of a construction project [14].

3. Methods

3.1. Stochastic Optimized Machine-Learning Framework

For the purposes of this study, four baseline models were constructed and default values of
their parameters were set. To prevent the models from exhibiting biases toward certain training or
test data that may cause the overfitting situation, the model robustness was evaluated using 10-fold
cross-validation. Collected data from the Dredging Management System and river management offices
were input into the models; a method for evaluating statistical error was employed to evaluate the
applicability of the data to the four models and the most applicable to the prediction model was selected.
The primary parameters of this model were then optimized by particle swarm optimization (PSO) and
its stability was verified using 10-fold cross-validation. Subsequently, the model parameters were
established, and the machine-learning model with the best parameters was completed for simulation.

MCS involves the use of random numbers in a massive simulation. According to the central limit
theory, picking the numbers randomly more times yields simulated results that more closely capture
actual situations [15]. The steps in an MCS-based machine learning framework are as follows.

• Define the goal and collect the data accordingly.
• Identify the input variables of the model.
• Determine the distributions of the input variables.
• Realize random numbers from the finalized distributions for the machine learning.
• Establish the model and analyze the results of the simulations.

3.2. AI-Based Prediction Model

Machine learning, which is a major branch of AI, is more versatile than other predictive methods.
It involves training a model by enabling it to acquire knowledge from a data set and making predictions
accordingly [5,16]. Because humans can process a limited amount of information and knowledge
for decision making, machines have been created to assist humans in calculating and analyzing data
more effectively and accurately [17]. In data analytics, machine learning enables a predictive model
to rapidly and accurately analyze complex data, and it provides multiple algorithms to substantially
enhance the performance of the AI model, generating accurate predictions for decision makers. In the
present study, Python 3.6 with an Anaconda module was employed to build a deterministic model by
machine learning.

Machine learning can involve single models and a heuristic ensemble model, but only single
models were discussed in this paper. Such a model applies four types of regression methods, which
are linear regression (LR), support vector regression (SVR), classification and regression tree (CART),
and ANN. These four methods are discussed in detail below.

• Linear Regression
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LRs are divided into simple and multiple regressions, depending on the number of independent
variables involved. A multiple regression refers to model-based prediction by the analysis of the
correlation between at least two independent variables and dependent variables [18], consistently with
the following equation:

Y = β0 + β1X1 + β2X2 + β3X3 + . . .+ βnXn + ei (1)

where Y is a dependent variable; β0 is a constant term; βi (i = 1, 2, . . . n) are regression coefficients; Xi
are independent variables, and ei are error values.

• Support Vector Machine

Support vector machines (SVMs) were developed by Vapnik, using the project data of various
categories in a hyperplane for classification or regression [19,20]. SVMs are primarily used for data
classification; they involve identifying a plane that divides a data set into two subsets. On the other
hand, SVR involves processing continuous data to identify a mapping function that can be used to
accurately predict data.

The principle of SVR is to transfer raw data into a high dimensional eigenspace by applying a
nonlinear mapping function (ϕ) and then to perform LR in that eigenspace [21]. In the following
equation, w denotes the weight vector; ϕ(x) is the nonlinear mapping of x into the eigenspace and b is
an offset value:

f (x) = wTϕ(x) + b (2)

The Euclidean metric length ‖w‖2 of the weight vector w is obtained to quantify the flatness of f (x)
and the model complexity. A smaller ‖w‖2 indicates a flatter f (x) and simpler model [22].

Because ϕ is a constant, ‖w‖2 must be reduced to flatten f (x). According to the principle of
structural risk minimization, to acquire an Rreg(C) value that balances the model complexity against
empirical errors, the penalty function that is given by Equation (3) must be defined, and w and b must
be calculated to minimize said equation [22–24]:

Rreg(C) =
1
2
‖w‖2 + C

1
n

n∑
i=1

Lε(yi, fi) (3)

Lε(y, f (x, w))

{
0 i f | y− f (x, w) |≤ ε
| y− f (x, w) | otherwise

(4)

where Rreg(C) represents the regression error; 1
2‖w‖

2 is the penalty term, and C 1
n
∑n

i=1 Lε(yi, fi)
represents the empirical error in the model. C is a penalty constant, which quantifies the tolerance
for error: a higher C indicates a lower error tolerance. ε is an insensitive loss function, which enables
Equation (2) to only need few data for decision making. To evaluate the deviation of the training
samples outside the area of the sensitivity of ε, the relaxation variable ξ is used to calculate w and b.
Equation (3) is converted to the following equation:

Rreg
(
w, ξ(∗)

)
=

1
2
‖w‖2 + C

n∑
i=1

(
ξi + ξ∗1

)
(5)

Subject to


yi − f (xi, w) ≤ ε+ ξi
f (xi, w) − yi ≤ ε+ ξ∗1
ξi, ξ∗1 ≥ 0, i = 1, . . . , n

(6)

SVR can be used to process data for a small number of samples [25]. Studies have confirmed that
radial basis function (RBF) can be used to assess SVR because they are more flexible than other kernel
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functions [26,27]. Moreover, RBF can be used to solve nonlinear problems and perform calculations
that involve high dimensional spaces [3]. Therefore, RBF was selected as the kernel function in this
study. After multiple tests and error estimations, the optimal values of parameters C and γ (RBF kernel
parameter) were obtained for the SVR [28,29].

• Classification and Regression Tree

CART is a multifunctional machine-learning algorithm that can be used to classify data and
perform regression analyses. CART consists of nodes and branches. The top node, which is called the
root node, marks the beginning of the decision-making process; the internal nodes represent the test
conditions of the classification; the branches represent the test results and the leaf nodes represent the
final decisions [30].

Notably, the classification tree differs from the regression tree in the assessment tools that are
employed in its branches. The classification tree uses a Gini coefficient for the assessment: a higher
Gini coefficient indicates the less favorable classification performance of a node [31]. The regression
tree uses the least-squared deviation for assessment: a higher least-squared deviation indicates the
poorer predictive performance of a node [15].

• Artificial Neural Network

ANN is a mathematical model that was developed to mimic the neural network structures and
functions in human brains; it consists of multiple interrelated neurons or nodes. Information is
generated at the nodes or through external stimulation and processed through activation; the processed
signals are transmitted to other nodes or are output [32]. ANN comprises three basic types of
layers—input, hidden, and output layers.

Several types of ANN have been introduced—many with a multilayer perceptron structure [33].
The values that are output from the hidden neurons are then input to the subsequent layer to the
output of neurons. This process is expressed as follows:

ai = σ(
∑

j
wi jo j), σ(x) =

1
1− e−x (7)

where ai denotes the neuron activity; wi j is the weight of the connection between two neurons; o j is the
output value of neuron i, and σ(x) is an activation function.

The accuracy of an ANN model can be enhanced by optimizing the critical ANN parameters, such
as the number of hidden layers, the number of nodes in a hidden layer, the activation function used
and the weights [34]. The activation function is particularly critical because it is a nonlinear function
and can map a linear function in an alternative space to map the value to improve the overall model
performance and the ability of the data to capture real situations [35].

3.3. Swarm Optimization

Particle swarm optimization (PSO) is a computational method that was proposed by Kennedy
and Eberhart in 1995 [36] for simulating social behavior. The method converges rapidly; it has fewer
parameters than other optimization methods; it can be used jointly with other algorithms, and can be
used to solve complex nonlinear problems that traditional search methods fail to solve. Therefore, it has
been applied in numerous fields, such as operational research, engineering applications, computer
science and mathematics [37].

At the beginning of PSO, a group of random particles that have memory functions are iterated
moving to obtain optimal solutions. During the iterations, each particle updates its position and
velocity by tracing the individual (pbest) and global (gbest) extremum of a particle until the default
maximal number of iterations is reached or until its position and velocity cease to change (Figure 1).
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Figure 1. Particle movement.

An individual extremum (pbest) is a particle’s optimal position in the iterative process, whereas a
global extremum (gbest) is the optimal solution that comprises the optimal positions of all the particles
of the particle swarm.

The particle position and velocity are updated as follows:

⇀
vi(t + 1) = w×

⇀
vi(t) + c1r1(

⇀
x pbest −

⇀
xi(t)) + c2r2(

⇀
x gbest −

⇀
xi(t)) (8)

⇀
xi(t + 1) =

⇀
xi(t) +

⇀
vi(t + 1) (9)

where
⇀
vi and

⇀
xi represents the ith particle velocity and location, respectively; w represents the inertia

weight; c1 and c2 are the learning factors, where usually c1 = c2 = 2.0 [38]; r1 and r2 are random numbers
between 0 and 1, preventing the data from becoming stuck in local optimal solutions; p represents pbest;
g represents gbest; and x indicates the current position of a particle.

3.4. Model Performance Evaluation

After the models are established, their accuracies must be evaluated and compared using various
performance indicators, such as the correlation coefficient (R), the mean absolute error (MAE), the mean
absolute percentage error (MAPE) and the root mean square error (RMSE). The evaluations of these
indices are summarized as follows.

• Correlation Coefficient

R ranges between −1 and 1 and represents the level of association between pi and yi. An absolute
value of R closer to 1 denotes a greater linear relationship between the predicted and actual variables:

R =
n
∑n

i=1 yi × pi −
∑n

i=1 yi ×
∑n

i=1 pi√
n
∑n

i=1 yi2 −
(∑n

i=1 yi
)2
×

√
n
∑n

i=1 p2
i −

(∑n
i=1 pi

)2
(10)

where n is the number of predicted values; pi represents a value that is predicted from the
machine-learning model and yi is the corresponding actual value.

• Mean Absolute Error
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MAE refers to the absolute residual error between the predicted and actual values; errors do not
cancel each other out so MAE accurately reflects of the range of errors:

MAE =
1
n

n∑
i=1

| yi − pi | (11)

• Mean Absolute Percentage Error

MAPE is the most commonly used indicator for assessing the quality of a predictive model.
Because MAPE is a relative value and is not affected by units or numerical values, it captures differences
between the predicted and actual values more objectively than other indicators do [31]. A MAPE value
closer to 0 indicates more accurate model predictions:

MAPE (%) =
1
n

n∑
i=1

|
yi − pi

yi
| × 100% (12)

Table 1 presents the MAPE evaluation criteria [39].

Table 1. Mean absolute percentage error (MAPE) evaluation criteria.

MAPE (%) Prediction Performance

<10 High Accuracy
10~20 Excellent
20~50 Reasonable
>50 Inaccuracy

• Root Mean Square Error

RMSE refers to the root mean of the sum of the squares of the residual values and captures the
degree of dispersion of a sample. A smaller RMSE value indicates the higher reliability of a model:

RMSE =

√√
1
n

n∑
i=1

(yi − pi)
2 (13)

The applicability of a classifier to a set of data can be determined by assessing its predictive
performance. Most of the time, model errors cannot be accurately obtained but can only be estimated.
Cross-validation is a statistical method that can be used to evaluate the robustness of a model.

When the number of available data is relatively small, the generalizability of a model is normally
obtained through a 10-fold cross-validation [40]. Generally, the data are randomly grouped into a
training and test data set. The data are evenly divided into ten groups, nine of which are for training
and one for testing. This process is carried out ten times and the results are averaged to evaluate the
applicability of the classifier.

4. Risk-Informed Simulation for Dredging Project

4.1. Collection and Preprocessing of Data

The research data that were used herein were mostly taken from documents that were obtained
from the dredging management system and paper files in river management offices. Originally
hundreds of projects were collected. However, only the data on 53 dredging projects were valid for
subsequent analysis. During the processing of the data, extreme values and errors were identified.
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The abnormal cases were excluded since this investigation focused on normal conditions rather than
unusual and extreme events. A total of 48 projects was thus used to establish the model in this study.

4.1.1. Data Preprocessing

During the data preprocessing, significant variability in the data was noted. The examined
dredging projects differed significantly in the amounts dredged, and the related data were widely
dispersed. Consequently, the data on project durations were also widely dispersed, so the direct
application of the machine learning might have disfavored the stability of the prediction model.
Therefore, the data were standardized to lower the variability of the variables before machine learning
began and the MCS model was established.

The data were processed differently according to their characteristics. A total of five models,
hereafter referred to as Duration Models 1–5, were created. Table 2 lists the preprocessing of the
variables. Logarithmic transformation (Log) or min–max normalization (Min_Max) was carried out for
the conversion of raw data for model experiments. The normalization function is as follows:

x′ =
x−min(x)

max(x) −min(x)
(14)

where x′ denotes the numerical value after standardization; x denotes the original variable in the
model, and min(x), max(x) are the minimum and maximum values of x in the data, respectively.

Table 2. Model descriptions and variable settings.

Variable Model_1 Model_2 Model_3 Model_4 Model_5

Sand (%) Original Original Original Original Original
Gravel (%) Original Original Original Original Original

Soil (%) Original Original Original Original Original
Average soil and gravel price

(NTD/ton) Original Min_Max Log Original Original

Total dredging volume (ton) Original Min_Max Log Min_Max Min_Max
Transport road cost (NTD) Original Min_Max Log Original Original

Rainfall day (day) Original Min_Max Log Original Original
Project cost (NTD) Original Min_Max Log Original Min_Max

Project duration (day) Original Min_Max Log Original Original

4.1.2. Feature Selection

Interviews were conducted with project coordinators in the ten river management offices in Taiwan
to identify the project management situation before the model parameters were set. The interviews
established that numerous risk events involved typhoons and flood seasons. Some of the regions in
which dredging projects have been conducted have poor geological conditions and suffer changes in
geological materials that are caused by typhoons. These incidents have prevented dredging operations
from being carried out as scheduled.

Project conditions affect the bidding for the sale of dredged soil and gravel and the eligibility
criteria for bidders. It discourages sellers from accepting the dredged materials and thus delays
subsequent operations and inspections. Case studies and interviews with experts revealed the critical
roles of the texture of soil, sand and gravel materials in dredging operations. Therefore, the proportions
of sand, gravel and soil of the river in the project were selected as the variables in a quantified risk
assessment model to determine their effects on the duration of a dredging project.

During the planning stage of a construction project, most project coordinators determine the price
of soil and gravel materials with reference to the average prices that were applied in previous projects.
Market conditions and prices that are specified in tenders affect the willingness of companies to bid,
and in some regions, the market for particular materials may be saturated. Therefore, bidding using
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original average prices may result in a lack of bids or a tender winner. Accordingly, variables that are
related to market conditions and pricing were also selected as model variables. The average price of
soil and gravel was calculated by dividing the selling total prices by selling weight. The records can be
found in the document of the project.

In the event of heavy rainfall during construction, the project will stop, affecting the project
schedule. Therefore, the average number of rainy days per month in each basin (the number of rainfall
days during the project) is obtained from the “Average Monthly Estimated Rainfall Statistics of the
Central Watersheds of the Ministry of Economic Affairs” for use in the duration model.

Damage to a required road by a natural disaster during a dredging project will affect its duration.
Such factors as the construction material and location of a road were used to reflect this possibility
in the unit price of the road. Therefore, the estimated length of river dredging at the beginning of
the project and the construction cost of roads based on the regional marketing price are taken into
consideration. The river bureau uses different file formats. Therefore, the total setting and maintenance
cost of the river transport road was used as another factor in the construction duration model.

After numerous discussions with experts, eight quantifiable factors concerning which historical
data are available were selected for the modeling project duration. These factors used were the
amounts of sand, gravel and soil as the proportions of the river, the average price of soil and gravel,
the total dredging volume, the total tender cost, the number of rainfall days and the total setting and
maintenance cost of transport roads.

4.1.3. Sensitivity Analysis on Influential Factors

After selecting the factors of the dredging project, an open-source machine-learning software
(Weka 3.9) was utilized to perform a preliminary sensitivity analysis. Three performance indexes—MAE,
RMSE, and MAPE—were adopted to evaluate the influence of distinct factors on the project duration
using a linear regression model. The most influential factors on the project duration were rainfall day
and total dredging volume. Considering the compositions of the dredged materials, gravel percentage
was more critical than soil and sand proportions in the dredging river. Owing to the limitation of the
data accessibility, only eight available factors were analyzed here. The further investigation of the
influential factors, such as market condition and policy changes, should be conducted in the future.
With the increased factors and amount of historical data, the proposed estimation model should be
enhanced in its accuracy and reliability.

4.2. Establishment of Deterministic Project Duration Model

4.2.1. Model with Default Parameter Settings

After the data were processed, a deterministic model was established. The data, normalized using
various methods, were applied to four single models (LR, SVR, CART, and ANN) with default parameter
settings as shown in Table 3. After the default parameter values were set, 10-fold cross-validation
was used to prevent the model from being biased toward certain training or test data, which could
potentially yield erroneous simulation results. The data were evenly divided into ten groups, of which
nine were used for training and one was used for testing. This process was carried out ten times.
The means of R, MAE, RMSE, and MAPE were obtained.

R, MAE, RMSE, and MAPE are statistical indicators that are frequently used to estimate errors and
assess the accuracy of models. The models were finally compared to identify the best model and the
optimal one was identified. Table 4 lists the performance measures of the project duration models that
were developed in this study. Analytical models with poor or unreasonable performance measures
were not considered, and labeled as N/A.
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Table 3. Models with default parameter settings.

Model Parameter Value Model Parameter Value

LR

copy_x
fit_intercept
n_jobs
normalize

TRUE
TRUE
1
#######

SVR

C 1
cache_size 200
coef0 0
degree 3
epsilon 0.1
gamma auto
kernel RBF
max_iter −1
shinking TRUE
tol 0.001
verbose #######

CART

criterion
max_depth
max_features
max_leaf_nodes
min_impurity_decrease
min_impurity_split
min_samples_leaf
min_sampls_split
min_weight_fraction_leaf
presort
random_state
splitter

mse
None
None
None
0
None
1
2
0
#######
None
best

ANN

activation relu
alpha 0.0001
batch_size auto
beta_1/ beta_2 0.9/0.999
early_stopping #######
epsilon #######
hidden_layer_size (100,)
learning_rate constant
learning_rate_init 0.001
max_iter/momentum 200/0.9
nesterovs_momentum TRUE
power_t 0.5
random_state None
shuffle TRUE
solver adam
tol 0.0001
validation_fraction 0.1
verbose/ warm_start #######

Table 4. Model performance measures.

Numerical Experiment R MAE (Day) RMSE (Day) MAPE (%)

Model_1

LR 0.381 80.626 98.286 29.98
SVR N/A 80.508 103.362 32.05

CART 0.317 90.313 113.536 33.59
ANN N/A N/A N/A N/A

Model_2

LR 0.363 80.169 98.527 29.91
SVR 0.348 76.607 97.249 28.50

CART 0.304 93.292 125.434 34.96
ANN 0.136 90.099 111.084 34.35

Model_3

LR 0.334 80.986 102.554 28.70
SVR 0.318 77.415 100.234 27.55

CART 0.056 93.417 122.531 34.25
ANN N/A N/A N/A N/A

Model_4

LR 0.336 84.291 102.482 31.45
SVR N/A 81.647 103.888 32.43

CART 0.227 111.000 139.179 41.03
ANN N/A N/A N/A N/A

Model_5

LR 0.337 81.113 100.844 30.04
SVR 0.198 80.209 102.836 31.89

CART 0.339 83.417 111.400 30.42
ANN N/A 182.968 226.733 56.85
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4.2.2. Model Parameter Optimization and Stability Test

MAPE is a dimensionless measure, and it provides a more objective assessment than other
performance indicators of the differences between the predicted and actual values of numbers.
Therefore, MAPE was adopted as the primary indicator for the assessment of the appropriateness
of models in this investigation, and the other performance indicators were treated as secondary.
The results revealed that SVR (Model 3) exhibited the most satisfactory performance. Therefore, PSO
was carried out to optimize parameters C and γ in this model.

Before the PSO was performed, the basic parameters were set as the number of particles = 50,
inertia weight (w) = 0.9, learning factor (c1, c2) = 2.0 [41–43] and the number of iterations = 3000.
The number of iterations was set at a relatively high value because of the need for the data convergence in
a Python program. Insufficient iterations produce an output value that corresponds to a locally optimal
solution. Notably, the complexity of the model stability assessment increased after Duration Model 3
combined with PSO. Figure 2 presents the framework for the development of an optimized model.
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The dredging project data were randomly divided into ten groups; the ranges of parameters
were established using the PSO initial number of particles and the iterative process was run until the
RMSE was minimized, yielding the optimal parameters for the model. The ranges of parameters C
and γ were set at (1E-8, 1E15) and (1E-20, 1E2), respectively. They were relatively large because of the
dispersion of the data. An excessively small range limits the value to the local optimal solutions rather
than global optimal solutions. The parameter ranges were determined by performing several tests
and assessments.

The optimized parameters were input into each group of data. Table 5 lists the results of the
tests of the stability of the project duration model, which were generally found be stable even though
overfitting occurred with the fourth and ninth data groups. The MAPE standard deviation for the ten
data groups was calculated to be 11.09%, which was acceptable.

Table 5. Model stability test after parameter optimization using PSO.

Data R MAE (Day) RMSE (Day) MAPE (%)

Duration_Fold_1_Result

Learning Data 0.882 48.92 57.497 17.008

Test Data 0.418 37.009 46.173 15.234

Duration _Fold_2_Result

Learning Data 0.862 46.704 55.709 16.796

Test Data 0.894 64.051 75.907 17.889

Duration _Fold_3_Result

Learning Data 0.904 55.194 66.466 18.823

Test Data 0.41 41.913 48.998 17.906

Duration _Fold_4_Result

Learning Data 0.808 45.891 53.819 15.692

Test Data 0.72 96.681 131.325 31.481

Duration _Fold_5_Result

Learning Data 0.854 49.255 57.43 17.177

Test Data 0.605 45.471 52.602 16.592

Duration _Fold_6_Result

Learning Data 0.822 50.369 57.888 17.829

Test Data 0.89 44.073 53.312 16.29

Duration _Fold_7_Result

Learning Data 0.869 45.331 52.041 16.265

Test Data 0.768 90.926 100.692 23.166

Duration _Fold_8_Result

Learning Data 0.614 66.896 84.349 24.811

Test Data 0.61 67.015 74.528 22.089

Duration _Fold_9_Result

Learning Data 0.804 50.268 59.369 16.91

Test Data 0.483 82.018 100.144 51.364

Duration _Fold_10_Result

Learning Data 0.777 58.51 70.391 21.06

Test Data 0.669 62.044 81.869 17.333
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The output results that were obtained using the training and test data were averaged and organized
in Table 6 to reveal the model performance after parameter optimization, which was compared with
that using the default parameter settings. Optimizing the parameters increased R significantly (from
0.318 to 0.647), and reduced the error rate significantly, as MAE fell from 77.415 to 63.020 (days), RMSE
fell from 100.234 to 76.555 (days), and MAPE declined from 27.55 to 22.93 (%). Accordingly, PSO is
suitable to be used to optimize the parameters in project duration prediction model.

Table 6. Average results of the model learning and test.

Data R MAE (Day) RMSE (Day) MAPE (%)

Learning Data 0.820 51.734 61.532 18.237

Test Data 0.647 63.020 76.555 22.934

After the model stability test was completed, PSO was used to optimize the parameters of
the project duration prediction model. Doing so involved firstly setting the parameter ranges.
The optimized parameter ranges from the aforementioned model stability test were used in the data
optimization process and the values of C and γ were optimized as 1.418530612 and 0.549995652,
respectively, completing the model optimization.

4.3. Project Duration Risk Simulation

MCS is based on the law of large numbers so as to present the risk information of provided
data. It was combined herein with machine learning. The factors that cause uncertainty in the project
duration model were incorporated into the simulation process and a massive simulation was performed
on the historical data to yield a CDF graph that represented real situations. Figure 3 shows a flow chart
of this process.

4.3.1. Risk Probability Density Function of Model Variables

According to the literature review, Crystal Ball, a frequently employed statistical analysis program,
was used in the MCS [44]. Crystal Ball can be jointly used with Microsoft Excel to evaluate the
applicability to the distributions of the values of input variables. The program calculates and displays
the applicable distributions based on the data characteristics, which are then evaluated to choose the
best distribution by the users according to their needs.

After the values of the parameters were acquired, many random numbers were generated using
the Scipy library in Python to call out the distribution function of every factor. The random number
acquisition result was then examined using the equations for “count,” “bins,” and “ignored.” Table 7
presents the parameters of the risk probability density functions for the project duration model.

Table 7. Probability density functions of the model variables.

Model Variable Variable Description Probability Density Function

X1 Sand (%) Logistic distribution

X2 Gravel (%) Weibull distribution

X3 Soil (%) Lognormal distribution

X4 Average soil and gravel price
normalization Minimum extreme value distribution

X5 Total dredging volume
normalization Weibull distribution

X6 Project total cost Weibull distribution

X7 Rainfall day Weibull distribution

X8 Transport road cost Logistic distribution
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4.3.2. Risk-Informed Curve

After the probability density function parameters for each variable were acquired, 500, 1000, 3000,
5000, 7500, and 10,000 pieces of data were acquired from each variable distribution (Table 7) by setting
the sampled data to be non-negative values to meet the actual engineering situation. The groups of
random numbers were then input into the optimized deterministic model to predict the number of
days that are required to complete the dredging project. Based on the risk-informed curve that was
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output using the project duration model with MCS, the curve converged after the simulation was run
within 10,000 times.

In the graph, the horizontal axis represents the duration for a project and the vertical axis represents
the empirical probability (%). The specific values of model variables can be input to calculate the
project duration (such as 350 days), based on the historical data of dredging projects that were collected
from the ten river management offices. When the model suggests that a dredging project can be
completed in an approximate number of days, the risk-informed curve will show the probability of the
historic projects that were completed in this duration under the same conditions.

5. Development and Design of Risk Quantification System

After the project duration risk assessment model was established, a system interface was created
and validated with reference to historical cases.

5.1. Background and Tools for Interface Creation

Programming is the primary task in creating the interface. Python is free, easier to use and
more widely used than other high-level programming languages. It features numerous modules that
programmers can apply and develop. In this investigation, Python 3.6 was used in conjunction with
the Tkinter module to program the interface.

5.2. Interface Creation Process

The interface was named “Dredging Project Quantitative Risk Assessment 123.” The term “123”
indicates that only three steps are required to provide the quantitative risk. The primary task of the
interface was to integrate the tasks that are specified in Section 4. The Tk module was subsequently
used to complete the design of the interface (Figure 4).Water 2020, 12, x FOR PEER REVIEW 16 of 20 
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5.3. System Verification

Data from two historical dredging projects, provided by the river management offices, were used
to verify “Dredging Project Quantitative Risk Assessment 123.” These projects were “Dredging Project
at Sections 58 to 61-1 of Dajia River: Separation of Dredging and Selling of Soil and Gravel” in 2018
(hereafter referred to as Case 1)” and “Dredging Project at the Upper Streams of Maoluo River from
Zushi Bridge to Nangang Bridge and Lumei Bridge: Separation of Dredging and Selling of Soil and
Gravel” in 2015 (hereafter referred to as Case 2). Notably, in Case 1 the average price of soil and gravel
was sixteen times higher than Case 2 and the gravel proportion was also much higher than in Case 2.
However, the planned dredging volume of both cases were almost the same.
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After the two cases were used for verification, the model parameters were input into the model
(PSO–SVR). The model determined that Case 1 was completed in 264 days with an empirical probability
of 35.90%. In fact, Case 1 was completed in 359 days. The prediction error was therefore 26.46%.
The model also determined that Case 2 was completed in 387 days with an empirical probability of
64.03%. In fact, Case 2 was completed in 465 days, so the error was 16.67%.

Two cases were used to validate the project duration model, revealing that improvements are
required even though the accuracy of the model in predicting project durations and calculating the
empirical probability were acceptable. This result followed from the fact that a limited number of
cases were considered, so insufficient references were available for the model. Moreover, the different
river management offices faced different engineering problems and carried out construction projects of
various scales. Therefore, the proposed system was not applicable to all the dredging projects.

5.4. System Application

Since the WRA officers make the dredging plan at the project initiation, they must estimate the
project duration for tender preparation. A computing system provides the project managers with rapid
and early risk information. If a newcomer who just joins the unit does not know the project background,
the system introduced in this study facilitates the engineer’s quick startup. When one estimates the
risk based on one’s experience, it lacks a fair evaluation of the risk. Engineers only need basic computer
skills to operate the “Dredging Project Quantitative Risk Assessment 123” system with fingertips.
Based on the users’ feedback, this system is considered helpful to the dredging project officers to make
the appropriate reaction at the early phase by offering an additional probabilistic estimation.

6. Conclusions and Suggestions

This study established a risk-informed modeling framework for assessing risk associated with the
duration of dredging projects. The primary data concerned completed dredging projects that involved
the separate dredging and selling of soil and gravel. Selected factors that relate to the duration of such
projects were identified by discussions with river management office personnel and experts. In this
investigation, a deterministic model was first constructed through machine learning. Then, uncertainty
factors were incorporated by Monte Carlo simulation. A massive simulation was then conducted with
historical data to acquire a cumulative risk probability distribution of the predicted outcomes.

After the project duration risk-informed model was established, a graphical user interface was
developed to facilitate its use by project coordinators in three steps. First step, choose the duration
model. The second step, enter the early information of a project. The final step, make the risk
assessment. The interface can be used to rapidly evaluate the quantitative risk associated with a project
by anyone without programming knowledge but with a dredging engineering background. When the
interface was completed, to test the applicability of the model, newly collected dredging projects were
adopted to verify the system.

The primary findings and contributions of this study are as follows.

• The database that was used herein comprised a total of 48 cases and eight factors, which were the
amounts of sand, gravel and soil as proportions of the river, the average price of soil and gravel,
the total dredging volume, the total tender price, the number of days with rainfall, and the cost of
road transport. Relatively few data were obtained because this study, to the best of our knowledge,
represents the first attempt for dredging projects in Taiwan. Data integrity is inadequate because
no comprehensive database exists for analysis. Future studies should involve collaboration with
the WRA to ensure that each river management office uploads relevant data.

• Combining machine learning with the optimization algorithm (PSO–SVR) improved the model
performance: R increased from 0.318 to 0.647; MAE decreased from 77.415 to 63.020 (days); RMSE
decreased from 100.234 to 76.555 (days); and MAPE decreased from 27.55% to 22.93%. Accordingly,
PSO is suitable for use with the project duration model. After PSO was conducted to optimize the
model parameters, ten-fold cross-validation was performed to test the stability of the model.
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• Overfitting was detected because the applicable data were insufficient; the problems that were
encountered by the river management office personnel in relation to dredging differed and the
considered dredging projects had different scales. Consequently, available empirical references for
the model were lacking, and the model was not applicable to all the construction projects. Adding
the number of days with rainfall and the cost of road transport to the already used six factors
yielded an error rate of 16.36%. The two added factors strongly influenced accuracy. Accordingly,
the error could be improved by adding the highly influential factors.

• The machine-learning model, combined with the MCS, was used through a graphical user interface,
which presents the predictions and risk assessment to the user. To test the applicability of the
model, two newly collected dredging projects were considered. The prediction errors of the model
were 26.46% and 16.77% for Cases 1 and 2, respectively. Hence, the stability of the model required
improvement, although the predictive accuracy was acceptable.

• The thus obtained early predicted duration can be used as a reference basis for evaluating the
appropriateness of construction planning, equipment access and environmental and social issues.
If the project was delayed, the continuous siltation of the river may cause overflows and floods,
which affect the safety of people’s lives and properties around the riversides.

The results of this study provide a practical reference for contractors and the Water Resources
Agency. Future investigations of the duration of dredging projects may refer to the procedural structure
of this study and expand it by applying heuristic learning algorithms or deep learning, thereby
developing a more effective machine-learning method than the one identified in this study, further
improving the model in the risk assessment system. Moreover, the proposed system is suggested to
be evaluated by similar datasets and compared with computing tools so as to reshape the system
application in risk-informed analysis.
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