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Bias correction, statistical downscaling, WaSiM setup 

In order to carry out the bias correction for the period 1981-2010, a reference dataset of 

observational data is created. Therefore, a statistical method using a combination between multiple 

linear regression (MLR) considering additional variables and inverse distance weighting similar to 

the method in Rauthe et al. [72] is applied to interpolate measurements of meteorological stations in 

a spatial resolution of 500 m. For each parameter, which is to be interpolated, different additional 

variables are used for the MLR. Precipitation and wind speed are interpolated considering elevation, 

exposition, as well as geographical latitude and longitude. The interpolation of air temperature and 

of the dew point temperature includes the elevation as additional variable. In order to interpolate the 

global radiation, the exposition of each grid cell is used. 

The bias correction featuring the quantile mapping approach attempts to adjust the distribution 

functions of the respective CRCM5-LE parameter to match the distribution function of the parameter 

in the reference dataset [28]. For each monthly distribution of the RCM and reference dataset, the 1th 

to 99th percentiles are calculated. The 0th and the 100th percentiles would correspond to the minimal 

and maximal values of the dataset respectively, which is why for these values the percentiles are 

replaced by a piecewise cubic extrapolation of the 1th to 99th percentile [99]. After that, the ratio of 

the distribution of the reference dataset and of the distribution of the CRCM5-LE is used as scaling 

factor for the bias correction (for further details of this approach see [28]). 

The differences between the non-bias-corrected and the bias corrected seasonal averages of air 

temperature and precipitation are given in Figures S1 and S2 in 0.11° spatial resolution. In large parts 

of the study are, the climate model slightly overestimates the temperature. A horizontal border 

between positive and negative differences is given by the northern pre-Alps, as the spatial resolution 

of the climate model is not able to resolve the topography within the Alps. Hence, the climate model 

underestimates elevation and therefore overestimates temperatures. 

The largest differences in precipitation occur at the slopes of the Alps and other mountainous 

areas, as the CRCM5 shows high sensitivity to orographical precipitation. In addition, the undercatch 

of solid precipitation within the observational reference dataset amplifies the differences between 

BC0 and BC1, mainly during the winter season.  
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Figure S1. Median of the seasonal temperatures for the uncorrected (BC0) and bias corrected (BC1) 

climate model ensemble as well as their difference (BC0-BC1). 
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Figure S2. Median of the seasonal precipitation for the uncorrected (BC0) and bias corrected (BC1) 

climate model ensemble as well as their difference (BC0 – BC1). 
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This bias-corrected CRCM5-LE is then further downscaled. Treating the center points of each 

0.11° grid cell as virtual meteorological stations, the same interpolation method as for the creation of 

the reference dataset is applied to statistically downscale the 50 members to a spatial resolution of 

500 m. Afterwards, this interpolation is corrected in order to ensure conservation of mass for each 

downscaled 0.11° grid cell. 

The resulting bias-corrected climate dataset with a spatial resolution of 500 m is used to drive 

the hydrological model WaSiM with a temporal resolution of 3 h. The input data for the WaSiM setup 

as well as the implemented modules are presented in Tab. S1 and Tab. S2. 

Table S1. Data used for the WaSiM setup. All data were aggregated to the spatial resolution of 500 x 

500 m². 

Data 
Resolution / 

Scale 
Additional comments Source 

DEM 25 x 25 m²  EU-DEM [58] 

Soil 1 x 1 km²  ESDB 2.0 [100] 

Land cover 250 x 250 m²  
CORINE LC v0.18 

[101] 

Groundwater 

conductivity 

1:200000, 

1:1500000 

IMHE1500 further downscaled using slope as 

additional variable 

HÜK200 [102] 

IMHE1500 [103]  

Table S2. Modules applied in the WaSiM setup. 

Module Description 
Meteorology Module for processing meteorological input data (see [54]) 

Evapotranspiration, 

landuse table 
Calculation of potential and real evapotranspiration according to Penman-Monteith (see [54]) 

Snow 
Snowmelt using the approach of Warscher et al. [104]; extended energy balance method 

featuring lateral redistribution of snow and gravitational snow transport 

Glacier Dynamic glaciers with melting processes [104] 

Lakes Enables modelling lakes and reservoirs (see [54]) 

Groundwater 
Groundwater model calculating base flow using Gauss-Seidel-iteration; lateral groundwater 

flow enabled (see [54]) 

Unsaturated soil zone, soil 

table 

Richards-equation to model soil water fluxes;  

Application of identifier “MultipleHorizons” considering macropore runoff (see [54]) 

Cluster validity 

In order to evaluate the cluster validity (choice of number of clusters) we applied 27 indices 

provided by the R package NbClust [77]. The results of these indices are summarized in Table S3. 

Table S3. Optimal number of clusters for 4900 Pardé coefficients chosen by 27 different indices. The 

indices have been restricted to the range of four to ten cluster classes. 

Index Frey CH Silhouette Duda PseudoT2 Beale McClain Ratkowsky SDindex 

#clusters 3 4 4 4 4 4 4 4 4 

Value NA 3717 0.2975 0.9676 69.17 0.2494 0.9922 0.3464 5.454 

          

Index Gap PtBiSerial Hartigan KL Scott Marriott TrCovW TraceW Friedman 

#clusters 4 5 5 6 6 6 6 6 6 

Value 
-

0.2707 
0.5605 948.1 19.968 4385 8.9+e19 7764 144.9 10.57 

          

Index DB Ball Dunn DIndex Hubert Rubin CIndex CCC SDbw 

#clusters 6 6 6 6 9 9 9 9 10 

Value 1.0824 63.27 0.0477 graphical graphical -0.6681 0.3298 46.98 0.1771 

 


