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Abstract: This study aimed to understand the perception of drought among farmers, in order to support
decision-making in the water allocation process. This study was carried out in the Tabuleiro de Russas
irrigated perimeter, in northeast Brazil, over the drought period of 2012–2018. Two analyses were
conducted: (i) drought characterization, using the Standardized Precipitation Index (SPI) based on
drought duration and frequency criteria; and (ii) analysis of farmers’ perceptions of drought via
selection of explanatory variables using the Random Forest (RF) and the Decision Tree (DT) methods.
The 2012–2018 drought period was defined as a meteorological phenomenon by local farmers;
however, an SPI evaluation indicated that the drought was of a hydrological nature. According to
the RF analysis, four of the nine study variables were more statistically important than the others in
influencing farmers’ perception of drought: number of cultivated land plots, farmer’s age, years of
experience in the agriculture sector, and education level. These results were confirmed using DT
analysis. Understanding the relationship between these variables and farmers’ perception of drought
could aid in the development of an adaptation strategy to water deficit scenarios. Farmers’ perception
can be beneficial in reducing conflicts, adopting proactive management practices, and developing a
holistic and efficient early warning drought system.

Keywords: irrigated agriculture; Standardized Precipitation Index; machine learning; Random Forest;
Decision Tree; drought perception; water resource management

1. Introduction

Droughts, which are becoming increasingly prolonged and severe globally, have prompted
research on water security and prioritized water management issues on the international scale.
They are recognized as a slow, creeping natural hazard that occur in virtually all climatic zones [1,2].
Droughts result in a reduction in precipitation over an extended period of time and can eventually
translate into a runoff deficit, which is a major indicator of the propagation of a meteorological drought
into a hydrological drought [3].

The diversity of drought definitions and lack of consensus in the scientific community on the
establishment of universal drought indices makes it important to understand users’ perception, as that
will influence their acceptance of mitigation actions [4–6].

Irrigated agriculture is one of the most affected activities by water deficits, given its high
vulnerability to droughts. Thus, efficient irrigation measures that focus on arid and semi-arid regions
can increase resilience to droughts [7]. Such measures require efficient resource management and
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the adoption of a robust and reliable knowledge base with regards to planning and decision-making
concerning the efficient allocation of water.

When constructing this foundation, understanding user perception is necessary for developing
proactive drought adaptation mechanisms, creating drought management policies, and developing
holistic and efficient early warning drought risk systems.

Recent discussions show the need to advance the perception of water users in the face of various
water stress scenarios [8–11]. Studies point to the importance of understanding the relationship among
extreme events, beliefs about climate change, and risk perceptions of water use for the promotion of
adaptation policies to various drought events [10,11]. Thus, community-based water management
models should be attentive to the degree of approval of users, especially in highly vulnerable areas
facing recurrent droughts [10–14]. This concern gains emphasis in the irrigated agriculture scenario,
given its high vulnerability to droughts, coupled with the power of water management decisions to
mitigate or exacerbate such vulnerability [11,15]. In this way, the importance of management strategies
to be based on community values, as well as their perception and cultural norms, aiming at water
self-sufficiency and resilience in drought scenarios, is highlighted.

Analysis of the effect of the duration and frequency of hydrological events on the routines and
lives of farmers is necessary for understanding user perceptions. As such, the duration and frequency
of dry seasons can provide additional information to justify the behaviors and perceptions of the user
groups subjected to these conditions.

The scientific literature presents several accounts of farmers using drought perception and their
personal experiences to formulate coping strategies and adaptive policies. These discussions are mainly
directed by qualitative analysis without the support of technical information [6] or by frequency
analysis and statistical inferences [16–19] without considering the most important variables involved
in farmers’ perceptions of drought. Therefore, the application of a new generation of computational
tools that can extract the maximum amount of information from the datasets while adopting a more
impartial analysis has become a necessity.

This study aimed to identify and select variables that can explain farmers’ perceptions of drought
by using machine learning techniques. These techniques utilize highly robust algorithms with few
application restrictions and data pre-processing requirements [20].

A Random Forest (RF) algorithm and the Decision Tree (DT) technique were selected for this
work. A key advantage of applying RF and DT techniques is that they increase the decision-making
capacity and reduce the subjectivity of the obtained results. These techniques were used because of
their versatility in solving practical problems, including those in the water sector, as confirmed by
Tyralis et al. [21].

The Brazilian semi-arid region is a drought-prone area used to dealing with cyclical and persistent
droughts. However, from 2012 to 2018, the region faced the worst drought ever recorded, with an
estimated return period of 240 years [22]. The capacity to cope with drought developed during previous
events, such as hydraulic infrastructure and participatory water allocation process, were not enough
to mitigate the widespread impacts on water storage, agriculture, livestock, and industry [23–31].
Therefore, understanding drought’s perception of local farmers is critical to better prepare for
future events.

The main objectives of this study were to select and analyze the explanatory variables for
farmers’ perceptions of drought. A case study was conducted in a public irrigation perimeter in a
drought-prone region of Ceará state, Brazil. Semi-structured interviews were conducted with farmers.
These interviews (Appendix A) were composed of some questions to understand the short-term
memory (2012–2018 drought) and others to understand the long-term memory of irrigators in order to
explain the frequency of droughts perceived by irrigators. Drought characterization was performed
via the Standardized Precipitation Index (SPI) for drought duration and frequency, and the farmers’
perceptions of drought were investigated by selecting the most appropriate explanatory variables
using RF and DT methods.
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2. Study Site

This study was carried out with the farmers from the Tabuleiro de Russas irrigated perimeter.
This perimeter is located in the municipalities of Russas, Limoeiro do Norte, and Morada Nova in
the state of Ceará, Brazil (5◦37′20′′ S, 38◦07′08′′ W). The study site is located at an altitude of 82 m.
This area was chosen for the study because it is one of the main irrigated perimeters in this state.

The perimeter extends over a total area of 18,276 ha. According to the National Department of
Actions Against Droughts (DNOCS), the farmers of this region grow a variety of crops, including various
fruits, such as bananas, guavas, and coconuts, as well as vegetables, grains, green corn, forage grasses,
cane sugar, and oilseeds, among others [32]. Local irrigation technologies include micro-sprinkler
systems, drip irrigation, and central pivots.

Located in the river basin of Baixo Jaguaribe (Figure 1), the climate of the region is hot and semi-arid
and characterized as dry and very hot as per the Köppen classification. The mean annual precipitation
of 720 mm is irregularly distributed throughout the year, mostly between the months of December and
June or July, with the highest precipitation rates between February and April. The mean relative air
humidity and the mean monthly temperature are 60% and 27 ◦C, respectively, while the evaporative
demand is 2900 mm year−1 [33].

Water 2020, 12, x FOR PEER REVIEW 3 of 20 

 

This study was carried out with the farmers from the Tabuleiro de Russas irrigated perimeter. This 

perimeter is located in the municipalities of Russas, Limoeiro do Norte, and Morada Nova in the state 

of Ceará, Brazil (5°37’20” S, 38°07’08” W). The study site is located at an altitude of 82 m. This area 

was chosen for the study because it is one of the main irrigated perimeters in this state. 

The perimeter extends over a total area of 18,276 ha. According to the National Department of 

Actions Against Droughts (DNOCS), the farmers of this region grow a variety of crops, including 

various fruits, such as bananas, guavas, and coconuts, as well as vegetables, grains, green corn, forage 

grasses, cane sugar, and oilseeds, among others [32]. Local irrigation technologies include micro-

sprinkler systems, drip irrigation, and central pivots. 

Located in the river basin of Baixo Jaguaribe (Figure 1), the climate of the region is hot and semi-

arid and characterized as dry and very hot as per the Köppen classification. The mean annual 

precipitation of 720 mm is irregularly distributed throughout the year, mostly between the months 

of December and June or July, with the highest precipitation rates between February and April. The 

mean relative air humidity and the mean monthly temperature are 60% and 27 °C, respectively, while 

the evaporative demand is 2900 mm year−1 [33]. 

 

Figure 1. Tabuleiro de Russas irrigated perimeter, where the interviews were conducted; the Castanhão 

reservoir, which supplies the perimeter; and the river basins in Ceará State where they are located. 

Peter et al. reported that government departments at the federal and state levels adopted the 

policy of building reservoirs with storage capacities ranging from 103 to 109 m³, in order to adapt 

to water shortages and recurrent cyclical droughts [34]. The Banabuiú and Casthões reservoirs 

(located in the river basin of the Médio Jaguaribe) are the main supply sources for the irrigation 

perimeter, with total capacities equal to 1.6 and 6.7 km³, respectively, although the supply was later 

sourced from the Castanho reservoir only [35]. 

3. Data and Methods 

This study analyzed the 2012–2018 drought period that affected Ceará, focusing on the Tabuleiro 

de Russas irrigated perimeter. The methodology used to develop the study consisted of the following 

steps: bibliographic research, questionnaire presentation, application of the questionnaire using 

snowball sampling, and data tabulation and analysis. The last step (data tabulation and analysis) 

involved two sub-steps: (i) characterization of drought using the SPI and farmers’ perceptions; and 

Figure 1. Tabuleiro de Russas irrigated perimeter, where the interviews were conducted; the Castanhão
reservoir, which supplies the perimeter; and the river basins in Ceará State where they are located.

Peter et al. reported that government departments at the federal and state levels adopted the
policy of building reservoirs with storage capacities ranging from 103 to 109 m3, in order to adapt to
water shortages and recurrent cyclical droughts [34]. The Banabuiú and Casthões reservoirs (located
in the river basin of the Médio Jaguaribe) are the main supply sources for the irrigation perimeter, with
total capacities equal to 1.6 and 6.7 km3, respectively, although the supply was later sourced from the
Castanho reservoir only [35].

3. Data and Methods

This study analyzed the 2012–2018 drought period that affected Ceará, focusing on the
Tabuleiro de Russas irrigated perimeter. The methodology used to develop the study consisted of
the following steps: bibliographic research, questionnaire presentation, application of the questionnaire
using snowball sampling, and data tabulation and analysis. The last step (data tabulation and
analysis) involved two sub-steps: (i) characterization of drought using the SPI and farmers’ perceptions;
and (ii) characterization of farmers’ perceptions of the drought by selecting explanatory variables using
the RF and DT methods (Figure 2). These steps are described in the following sections.
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Figure 2. Methodological flowchart describing the steps taken in this study. Bibliographic research
was followed by questionnaire preparation, application of questionnaires via the snowball method,
and data tabulation and analysis. Two types of data tabulation and analysis were used: characterization
of drought using SPI and the selection of explanatory variables for farmers’ perception using RF and
DT techniques.

3.1. Collection and Analysis of Primary Data

Semi-Structured Interviews

The data used in this research were obtained by creating questionnaires and applying them to the
studied perimeter through face-to-face interviews with the farmers.

The snowball sampling technique was used to determine the sample size. This selection was made
given the descriptive dataset and because this methodology allows exploration of the subjectivity
and personal notions of the respondent in light of his/her experiences [36]. Snowball sampling
follows a referral system, whereby each respondent recommends the next person to be interviewed.
The respondent made his indication for three references: small, medium, and large irrigant. Given the
fact that the study site is characterized by large tracts of inactive, cultivated land that are difficult to
access, this technique assisted the authors of this study in covering a considerable number of farmers
and active (irrigated) fields.

The questionnaire was based on the works of Udmale et al. [37] and Cunha et al. [38], whose studies
covered social and political relations relevant to drought, the implications of drought, and the adaptation
strategies associated with the agriculture sector. The questionnaire included open- and closed-ended
(dichotomous, multiple choice, and ratable) questions. The answers were coded from 0 to 9 according
to the question profile, and tabulated using a semi-structured template. The data were processed and
analyzed statistically using descriptive and inference techniques.

3.2. Meteorological Data

The daily precipitation dataset (1911–2018) used to analyze and characterize drought in the
irrigated perimeter was obtained from the Hidroweb Portal, which was made available by the National
Water Agency [39]. The mean precipitation area for each of the two river basins of Ceará (Baixo Jaguaribe
and Médio Jaguaribe) was obtained using interpolated daily precipitation data for each pluviometer.
The data were raised to the second power and sourced from grid points sized 0.05◦, in line with the
inverse distance weighting method. Selecting mean precipitation areas allowed the inclusion of the
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perimeter and the river basin. The mean of the interpolated precipitation values was also extracted for
each analyzed area. In addition to homogenizing drought analysis, the scale of the river basin was
used to reduce random fluctuations when applying the point-based approach [22].

3.3. Drought Characterization

The drought analysis and characterization were based on calculations of the SPI with 12 calendar
months added [40]. This SPI was used to compare the precipitation over the 12 consecutive months
specific to our study to the 12 consecutive months of all years preceding this period in the historical
data series. In accordance with Silva et al. [41], the time scale used for calculating the SPI is directly
related to the time needed for the effects of the drought to be experienced in the different economic
sectors and the various water resources of the region. As such, this index facilitates the determination
of the intensity, magnitude, duration, and onset probability of a specific drought, given a historical
data series.

To convert the continuous information provided by the SPI moving window, a discretization
process was carried out [22]. Thereafter, a new time series was generated using the values for December
from each year (SPI12DEC). This series included accumulated annual information, with negative
values indicating drought and positive values indicating wet periods. This process aimed to archive
independent random variables that represented total annual precipitation, smooth the time series,
and avoid false SPI information influenced by values above or below the mean precipitation over the
course of the dry season months (July to December).

The SPI classification with respect to drought severity is displayed in Table 1, according
McKee et al. [40]. SPI classification values were obtained for each month. For this classification, the
onset of a drought was identified by means of a retroactive procedure. As such, an event was classified
as a drought by identifying a series of continuously negative values (i.e., when the SPI takes the value
of −1 or less). The duration corresponds to the number of years that elapsed between the beginning
and the end of the event.

Table 1. Limits of the SPI drought categories.

Drought Category SPI Values

Mild drought 0 to −0.99
Moderate drought −1.00 to −1.49

Severe drought −1.50 to −1.99
Extreme drought −2.00

3.4. Selection of Explanatory Variables and Classification of Drought Perception

Understanding the perception of a given population is a difficult task, given that this depends on
several factors (e.g., social, cultural, political, and economic). Evaluating the variables which influence
perception allows for a better understanding of the factors that guide the formation of the perception
and how these factors interact.

These variables are called predictive variables and can interact in complex and nonlinear ways.
Thus, it may be challenge to common statistical techniques interpret them. Given their technical
character, superior performance, ease of visual interpretation, and implementation availability with
R software, machine learning techniques are considered as an alternative approach to conventional
statistical models [20].

This study used a RF method to classify the explanatory variables and a DT methodology to
understand the synergy between these variables. The choice of the predictive variables used as input
data for the model was based on the drought literature [6,18,37,38].

The farmers’ perceptions to drought were characterized using nine explanatory variables: gender,
age, experience in the agriculture sector, education, number of actively cultivated land plots, years of
droughts experienced, reason listed as opinion of the main cause of droughts, number of information
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sources regarding climate, and participation in discussion groups regarding droughts. Table 2 shows
the selected variables. For the perception variable, the respondents were asked about the increased
duration and frequency of droughts, with the option to remain neutral or respond positively or
negatively. These responses were considered as indicators of perception.

Table 2. Descriptions of the variables used in the RF method in this study.

Variable Description Code

Perc Perception Rating (0–3)
Gender Gender of the respondent Binary (F/M)

Age Age of the respondent Open-ended (years)
Time Experience in the agriculture sector Open-ended (years)
Educ Level of education Rating (0–5)
Land Number of cultivated land plots Rating (0–5)
Years Number of drought years experienced Open-ended (years)

Reason Reason listed as the main cause of droughts Rating (0–4)
Info Number of information sources regarding climate Multiple choice (0–5)

Discussion Participation in discussion groups regarding droughts Binary (Y/N)

Perception was classified into four categories: indifferent, high, low, and no perception. In the
questionnaires, these categories corresponded to the following codes: indifferent (0), high (1), low (2),
and no perception (3).

3.4.1. Random Forest

RF is a prediction method, based on Breiman’s classic algorithm, that chooses variables as part of
its learning process. The RF method is a popular machine learning algorithm based on the combination
of several classification tree and/or regression (CART) models trained with bootstrap aggregation
(bagging) [42]. The bagging technique is used to train the data by randomly resampling the original
dataset with replacements. Therefore, while some data can be used more than once during training,
other data may not be used at all. The final decision for the selection of variables comes from the
votes of several trees that were built from this sampling with repetition (bootstrap). This method was
applied to evaluate the importance of each explanatory variable of perception.

At the outset, the selection of the training set for each tree involved the reduction of approximately
one-third of the observations for performance evaluation, resulting in the Out-of-Bag (OOB) sample.
This sample was used to obtain an unbiased estimate of the prediction error as well as an estimate of
variable importance [43].

The RF method evaluates the importance of each variable based on the increase in the mean
squared error (MSE), calculated on the OOB sample subset (Equation (1)) [44,45]. From permuting
test data, the percent IncMSE is computed, which accounts for the mean decrease in accuracy or how
the prediction gets worse when that variable changes its value. The higher is the IncMSE, the more
important is the variable.

MSEOOB = n−1
n∑

i=1

{
yi − ŷi

oob
}2

(1)

Here, yi corresponds to the mean value of the variable and ŷi
oob is the mean of the OOB predictions

for the ith observation. IncMSE was considered as a measure of variable importance. One hundred
test sets were used, and the tests were randomly selected. The median of IncMSE for the 100 test sets
was used as a classification measure for the variables.

The definition of the sample size (an) was based on the size of the dataset (an = 29) for this
classification model. The number of trees (ntree) underwent a change in the pattern (ntree = 500),
yielding a value of 100. The remaining parameters followed the pattern defined by Breiman et al. [42].
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3.4.2. Decision Tree

The decision analysis was based on the DT model, a tool that provides decision-making support,
and describes the logical structure, uncertainties, and positive results of decisions [46]. Fundamentally,
a DT consists of a hierarchy of internal and external nodes connected by branches.

In a DT, the route corresponds to the presentation of a dataset in an initial node (or root node) of
the tree. Thereafter, depending on the result of the logical test used by the node, the tree branches to one
of the leaf nodes, repeating the procedure until an end node is reached. This repetition characterizes
the recursion of the DT.

Instead of classifying end notes, in the CART methodology, the tree grows until a limit is reached
(for instance, when the minimum number of data remains in the sample).

With regards to the classification tree, the value (class) obtained by the end node in the training
data is considered to be the mode of the observations. As such, the value of the corresponding mode is
attributed to a new observation.

Finally, the CART method requires locating the ideal division to minimize the impurities in the
DT. To measure the impurities, the algorithm uses the Gini Index [42] as a measure for the best division
selection. This index is defined as

IG
(
tx(xi)

)
= 1−

∑m

j=i
f
(
tX(xi), j

)2
, (2)

where f (tX(xi), j) corresponds to the proportion of samples in which xi belongs to leaf j in node t.
The lowest index of purity determines which attribute is chosen and consequently, the division of the DT.

The DT had two main parameters, one for each variable in the model: Minsplit, namely the
minimum number of observations that must exist in a node for a division to be made, and Cost,
which is a vector of non-negative costs. In this study, the split that costs the least was chosen. For the
model, Minsplit was defined as 2, while Cost took the default value (Cost = 1).

4. Results and Discussion

4.1. Drought Characterization

Droughts can extend over many years or recur over short periods of time. A comparison between
drought duration and frequency was adopted to parameterize farmers’ perceptions. To understand the
impact of these criteria on farmers’ perceptions, it was worthwhile to visualize two areas of concern:
the local reality (Baixo Jaguaribe) and the supply reservoir (Médio Jaguaribe).

The Figure 3a,b present the duration of drought events and their frequency during the period
1911–2018 for Baixo Jaguaribe and Médio Jaguaribe, respectively.
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Figure 3. Drought duration (years) in the time series of 1911–2018: (a) for Baixo Jaguaribe; and (b) for
Médio Jaguaribe. The duration was calculated based on the SPI12 time series. Each rug on the x-axis
indicates the occurrence of one drought. Smoothed linear regression of drought duration is presented
in blue. The gray area indicates the 95% confidence interval.
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The drought duration and frequency have not monotonically increased over the years. Instead,
cyclical behavior for drought duration and frequency was observed. Drought duration reached its peak
recorded value in the most recently recorded drought (which began in 2012 and lasted seven years),
which affected both regions. An increase in the frequency occurred since the 2000s for both regions.

The 2012–2018 drought, which severely affected the northeast region of Brazil, deserves special
attention, because it is essential for understanding the perceptions of farmers in relation to drought
characterization. Rainfed agriculture suffered the most over the first two years of the drought [22],
during 2012–2013, causing many farmers to completely abandon their crops. The abandoned soil
adapted to dry conditions, and the native vegetation recovered despite the drought. Irrigated agriculture
was practically exempt from consequences at the beginning of the drought; its water supply was
guaranteed by multi-annual reservoirs with considerably high volumes of stored water. However,
the long drought period drastically influenced these levels, affecting the allocation of water used for
irrigation. The Tabuleiro de Russas irrigated perimeter was directly impacted by these sanctions,
resulting in the abandonment of cultivated land and the loss of a large crop area.

The drought events for the two studied river basins in the state of Ceará were identified using
SPI12 (Figure 4a,b). For the 2012–2018 drought, the majority of the SPI12 values were found to be
within the threshold of −1 to 0 (mild) or −1 to −1.49 (moderate), which was linked to the persistence of
this event. Extreme drought conditions occurred between 2012 and 2014, with the SPI values reaching
and exceeding the threshold of −2. Despite being the longest drought duration on record, it was not
the first drought to reach this magnitude in these regions. The events in the 1930s and during the
1970s/1980s, for instance, are displayed in the historical series (Figure 1), and were highlighted by the
farmers as difficult years for agriculture.
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Figure 4. SPI values for the two study areas: (a) Baixo Jaguaribe; and (b) Médio Jaguaribe.

Even though the SPI12DEC values were greater than or equal to −1 in almost every period
(2012–2018), excluding 2013–2014 where an SPI value of −2 was reached, the intensity of the drought for
Médio Jaguaribe remained constant after 2015, while the drought intensity for Baixo Jaguaribe decreased
after 2017. To compare these results with the field survey, Questions 12–14 were included in the
questionnaire (Appendix A) to represent the long-term memory of the irrigators. In comparison,
field research identified 2015–2018 as the most severe and damaging years for farmers, i.e., 90% of
irrigators cited the years 2015–2018 as drought years (Figure 5). Of these, 10%, 17%, 17% and 23%
indicated, respectively, that 2015, 2016, 2017, and 2018 was the most severe drought year within the
time period they worked with irrigated agriculture.

Even though 2013 was the most critical year in terms of drought intensity, according to the SPI
(Figure 3), the drought years that most affected the farmers were concentrated after 2015. Of these,
2018 is worthy of attention as it was considered the most severe drought year based on the farmers’
perceptions, although this is contradicted by the meteorological data. This fact can be explained
by the decrease in the storage levels of the reservoir after 2016, which significantly affected the
users’ perceptions.
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Figure 5. Frequency of drought years indicated by local farmers.

Figure 6 displays the water reserves of Castanhão, over the period 2010–2018, where there is a
notable reduction in the percentage of stored water since 2012. The reservoir reached its dead volume
in 2017, which in turn negatively influenced irrigated agriculture within the perimeter in 2018 and led
to a hydrological drought [47]. At the beginning of the drought, the reservoir had more than 75% of its
accumulated capacity, since 2011 was quite rainy in the region. These reserves were used to guarantee
the supply during the persistent years of drought, making the reservoir work as a filter that prevented
the perception by irrigators of the severity of the existing drought.
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Figure 6. Castanhão reservoir water reserves in the period of 2010–2018.

The impacts of the drought felt at Tabuleiro de Russas irrigated perimeter can be expressed as a
function of the volumes of water supplied by Castanhão reservoir that are allocated to the perimeter
during 2012–2018 (Table 3). In the state of Ceará, due to the concentration of rainfall in only one half of
the year, the water allocation decision is made in July, in a participatory process based on the rainy
season (February to May). According to values provided by the DNOCS (Table 3), the negotiated
allocation of water to the perimeter decreased only from 2015 onwards, even though the region was
already facing meteorological drought since 2012, which shows a time lag between the beginning of
the drought and the beginning of its impacts on the irrigation perimeter.

Table 3. Water allocation to the Tabuleiro de Russas irrigated perimeter during the 2012–2018 drought (m3/s).

Year Allocated Amount (m3/s)

2012 217
2013 270
2014 268
2015 190
2016 132
2017 95
2018 12
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4.2. Farmers’ Perception to Drought

Drought was characterized by 60% of the respondents as lack of rain, indicating that most
respondents perceived the drought to be the result of a meteorological phenomenon. This perception
may be linked to the trajectory of rainfed agriculture experienced by the farmers before they settled on
the perimeter. From the perspective of irrigated agriculture, drought can be better defined in terms of
a hydrological phenomenon associated with supply reservoirs than in terms of a local meteorological
phenomenon. Therefore, hydrological drought is the most likely explanation for the phenomenon of
droughts in the irrigated areas.

Regarding the reason for the droughts, 70% of the respondents defined natural disasters as
the main cause for droughts, compared to 23% who blamed lack of planning by the responsible
agencies, and 7% who pointed to poor water management as the main reason. Thus, the drought was
intrinsically associated with local precipitation, with the issue of poor water management comparatively
ignored. As such, these numbers were consistent with the farmers’ understanding of drought as a
meteorological phenomenon.

For the drought frequency and duration, the classification of the importance of the explanatory
variables via the RF method is shown in Figure 7a,b. Farmers’ perception was considered at two levels:
perception of the temporal evolution of drought frequency and perception of the increase or decrease
in drought frequency.

With respect to drought duration (Figure 7a), the RF method indicated that the number of actively
cultivated land plots belonging to the farmer (land) and the years of work experience of the farmer in
the agriculture sector (time) were the most important explanatory variables for drought perception.
Other significant explanatory variables were: the respondent’s opinion regarding the reason for
drought (reason), age of the respondent (age), and the respondent’s level of education (educ).

With respect to drought frequency (Figure 7b), the RF method indicated that the respondent’s
age (age), education level (educ), and number of actively cultivated land plots (land) were the most
important variables in influencing the farmers’ perceptions. Other significant explanatory variables,
in order, were: the number of droughts experienced (time), years of work experience in the agriculture
sector (years), and the number of climate information sources (info).

Predictors pertaining to cultivated land (land), age of the respondent (age), years of work
experience in the agriculture sector (time), and level education (educ) were among the top five
(although not necessarily in that order), for both the duration and frequency analyses, indicating their
importance in understanding farmers’ perceptions.

A comparison with the literature showed that some of these variables have previously been
identified as influencing perception. Many factors, such as age, gender, religion, access to education,
and means of communication, have been previously cited in studies on climate and risk perception [48–
50].

Batha et al. [18] indicated that education is an important factor in the development of community
resilience to the impact of drought. Poor education can be associated with marginalization and poverty,
and, therefore, the lower is the education of farmers, the greater is the chance that they are susceptible
to the impacts of drought. Another hypothesis developed by Lidoso is that many youths lead lives
that are increasingly disconnected from agricultural activities and increasingly connected to their
studies and urban activities, which could influence their perception of environmental tendencies and
cycles [51]. The variable educ exhibited considerable importance in our model, as shown in Figure 7b.

Udmale et al. [37] confirmed that farmers with the greatest amount of land, or the most plots,
demonstrated more resilience and less vulnerability to drought scenarios, adopting measures such as
changing their agricultural calendar and prioritizing cultures that consumed lower amounts of water.
These practices were less frequently observed among farmers with more restricted and smaller land
properties. In our study, the respondents were mainly distinguished by their cultivated crops and the
size of their plots, since their irrigation and handling techniques were largely similar. Drought had
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a different effect for these farmers depending, for example, on their physical environment, type and
degree of involvement in agricultural activities, and the level of impact on their financial well-being.Water 2020, 12, x FOR PEER REVIEW 11 of 20 
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A relationship between the area of cultivated land and farmer productivity can be established
under the hypothesis that more cultivated land is associated with larger producers, leading to greater
purchasing power and, possibly, access to newer technologies. This discussion is highly pertinent,
given that this variable was shown to have considerable importance for both analyses.

Years of experience in the agricultural sector (years) also played an important role and significantly
affected the recovery and expectations of farmers [19]. As such, it was necessary to observe how the
daily lives and experiences of farmers affected their perception of drought as well as their resilience and
adaptation to the impacts and risks. Ashraf et al. [19] analyzed the experiences of rural workers and
showed that the most experienced farmers perceived variations in temperature and rainfall as more
significant, while those less experienced claimed to be unaware of the role played by these factors or
simply exhibited no opinion. Years of experience was also an important variable in this study, as shown
in Figure 7b. In this manner, it can be inferred that years of experience of a farmer in the agriculture
sector is a major factor with respect to his/her adaptation to drought scenarios, which, consequently,
influences his/her perception of drought.

A correlation between age and education level was observed. In this study, the age of the
respondents ranged from 30 to 60 years, with 37% of them being 40–50 years old. This age concentration
can be explained by various factors, including incentives to educate their children (given the ease of
access to education compared to past decades), which in turn points to a lower involvement of the
younger age group in agricultural practices. In addition, the difficulties imposed by low levels of water
availability for agriculture causes young people to avoid agriculture and practice other livelihoods.
Figure 7b highlights age as the most important predictor for the perception of drought frequency.

4.3. Synergy between Explanatory Variables

The synergies between explanatory variables were also analyzed using a DT. The method revealed
the variables cultivated land (land), number of droughts experienced (years), and age of the respondent
(age) for drought duration and the variables age of the respondent (age), level education (educ),
and gender of the respondent (gender) for drought frequency as the most important variables for
explaining and classifying the perceptions of farmers.

With respect to drought duration (Figure 8), each independent variable was accompanied by its
respective decision threshold value. The construction of the DT involved selecting the variable that
maximized the quality of the dataset and minimized its entropy. In this case, the first node or root
node was represented by the number of cultivated land plots, with a lower threshold of two actively
cultivated plots being stipulated for the next subdivision. If this condition was not met, the second
node corresponded to years of agricultural experience, for which the threshold limit was set to less
than 5.5 experienced drought years. If the second node was negative, the model considered a third
node, using the variable age and a threshold greater than or equal to 51 years. The percentage of
observations for the respective response appears below each result in Figure 8.

Similarly, Figure 9 analyzes the relationships between the explanatory variables with respect to
drought frequency. The analysis was conducted in a similar manner as that shown in Figure 8. The
first node considered the variable age, the most important factor in the RF analysis, with a threshold
greater than or equal to 57 years. If this condition was met, a further sub-division was tested for a new
threshold, greater than or equal to 58 years. This process continued until an age value of greater than
68 years. If the condition for the first node was not met, education was then considered, with a lower
threshold of 5 (incomplete higher education), corresponding to a positive incidence of 83%. If this
condition was not met, a new node was considered for gender (female = 0, male = 1), in which the
incidence of women was the same as that of men (considering the prior results).

The parameters identified in the DT are shown in the captions of the figures, corresponding to
the group of variables affecting perception and the percentage of observations in the node seen under
each partition.
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Comparing the DTs helped to identify the similarities between the group results. For drought
duration (Figure 8), the sum of the percentages that indicated high perception at the end nodes
comprised 90% of the responses, compared to 10% in the group with no perception and no answers
for the other groups. Similar results were presented for drought frequency, but with responses in all
groups; the total responses were 89%, 3%, 3%, and 3% for the group with high perception, those who
were indifferent, those with low perception, and those with no perception, respectively (Figure 9).
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Analyzing the trees separately, Figure 8 indicates that farmers with more than two cultivated land
plots, who had lived through more than 5.5 years of drought, and were younger than or equal to 51 years
in age presented no perception (Group 3). These results do not agree with those of Udmale et al. [37]
and Ashraf [19], who reported high perception among farmers with more cultivated land plots and
broader experience with drought. However, our hypothesis is that the perception of drought was
lower when analyzed in terms of duration for farmers with greater land ownership, given that these
individuals also have greater purchasing power and can adapt more effectively to dry scenarios, either
through the acquisition of new technologies or through easier access to technical knowledge.

Age was the most important factor that guided farmers’ decisions relative to drought frequency.
Education level and gender were also selected by the DT as important predictors. According to the DT
in Figure 9, farmers younger than or equal to 57 years in age (90% of the data) with incomplete higher
education (educ > 5) were influenced by gender, with women showing high perception (perc = 1) and
men showing low perception (perc = 3). Those who were indifferent and who had low perception
were captured in the DT associated with farmers aged less than 63 or 58 years, respectively. As this
parameter is associated with frequency, a lower age plays a role in the farmers’ experience of drought
and the manner in which they tracked its recurrence.

Comparing the methods of analysis, the number of cultivated land plots (for duration) and age
(for frequency) were revealed to be the most important in the RF method, and this result was confirmed
by the DTs. Thus, these variables are fundamental for understanding farmers’ perceptions of drought.
The vast majority expressed a perception that was classified as “high”, and approximately 10% of the
farmers exhibited indifference or lack of perception with respect to drought risk scenarios.

5. Conclusions

The objective of this study was to evaluate farmers’ perceptions of the drought that occurred from
2012–2018 in the Tabuleiro de Russas irrigated perimeter of Ceará state, northeast Brazil, using SPI
values to characterize the drought and machine learning algorithms to evaluate the importance of the
explanatory variables for the farmers’ perceptions.

An SPI analysis over a 12-month period for both hydrographic regions allowed a hydrological
analysis of the 2012–2018 drought, with the aim to determine the farmers’ perception to the drought.
The farmers who use irrigated agriculture supplied by a large reservoir classified the drought as
meteorological, which contrasts with our statistical analysis.

The SPI results indicate that the beginning of the drought (2012–2013) was the most severe;
however, irrigation was not affected because the water reservoirs contained a high water supply
due to an elevated inflow in the previous year. Due to the persistence of the drought, water levels
reduced drastically, resulting in the introduction of stern measures to cut water demand, including the
reduction of water allocation for irrigation. Therefore, the farmers’ perception to drought indicated that
2016 was the most severe period. These characteristics render the drought in the region, as per local
perceptions, in hydrological terms, rather than meteorological. Lack of a singular drought definition
makes it difficult for stakeholders to understand the real drought state during an event. Understanding
farmers’ perceptions to drought may facilitate communication and increase engagement with proposed
measures to mitigate the impacts.

The field research was directed to small irrigators (1–3 irrigation lots) due to the social network
of the respondent and the difficulty of access to irrigated areas. The farmers’ perceptions to drought
were characterized using nine explanatory variables: gender, age, experience in the agriculture sector,
education, number of actively cultivated land plots, years of droughts experienced, opinion of the main
cause of droughts, number of information sources regarding climate, and participation in discussion
groups regarding droughts. These variables were evaluated with the RF method to determine their
importance in understanding farmers’ perceptions of drought.

The number of actively cultivated land plots, age of the farmer, and education level were among
the five most important variables for both analytical criteria (the duration and frequency of droughts).
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The importance of the first two was reaffirmed by the DT analysis. It is understandable that the
increase in the number of cultivated land plots is a major factor influencing access to more effective
irrigation methods and technology, which affects farmers’ experiences of the drought. The importance
of age is also understandable, since the age of the farmer is associated with his/her experience in both
drought scenarios.

The analysis of this study could be adopted to formulate strategies for allocating water,
thereby leading to participatory management. The perceptions of farmers could also be incorporated
when developing preparatory plans for drought and adopting educational measures to raise awareness
regarding water use and the optimal tools for adapting to drought.

This study is important because it identified the most influential variables affecting the technical
understanding and perception of farmers regarding drought, and the methodology used in this work
can be replicated in other regions to help them to adapt to water deficit scenarios. This work could also
be continued with a methodological model of perception, taking the variables selected by the machine
learning applications and adjusting the criteria for analysis and applicability to different sectors that
use water.

Adequately facing drought events is crucial to properly manage water resources. In the present
society, it is unacceptable that participatory water resource management is not promoted. Considering
farmers’ perception to drought as part of the decision-making process is fundamental in planning
measures to mitigate drought and would facilitate their engagement with proposed measures.
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Appendix A. Questionnaire

1. General Information
(1). The interviewee is: ( ) male ( ) female
(2). How old are you? _______________
(3). For how long have you been working as a farmer? ____________________
(4). What is your level of education?
( ) No formal education ( ) Elementary school
( ) Incomplete High school ( ) Incomplete Higher education
( ) High school ( ) Higher education
(5). Who owns the land you work on?
( ) Me ( ) Someone else ( ) A company ( ) A government agency
(6). How many people work on your lot? _____________
(7). How big is your lot (1 lot = 8.4 ha)? How many lots are active?
(8). What activities are developed in your lot?
( ) Agriculture
( ) Livestock
( ) Fish-farming
( ) Other. Which one? ________________________
Which one is the main activity? _____________________
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(9). Which crops are being grown on your lot in 2019?
(10). What is the water source used for irrigating your lot?
( ) Artesian well
( ) River / reservoir / water body ( ) Water tank truck
( ) CAGECE *Water company
( ) Water channel (Banabuiu)
( ) Water channel (Castanhão)

2. Drought Evaluation
(11). How would you define drought? Mark and prioritize the answers.
( ) God’s event ___ ( ) No rain ____
( ) Lack of water in the soil____ ( ) Lack of water in the reservoir __
( ) Outros______________
(12). How many years of drought have you lived as a farmer? __________
(13). What were those years? ______________________________________
(14). Which ones were the most severe (i.e., that most affected your work)?
1O: ___________ 3O: _________
2O: ___________ 4O:__________
(15). How long does a drought lasts?
( )1 month ( ) 1 to 3 years
( ) 3 months ( ) 3 to 5 years
( ) 6 months ( ) More than 5 years
( ) 1 year
(16). In your opinion, what is the main reason for the droughts? Please prioritize them.

( ) Natural disaster _____ ( ) Poor resource management ____
( ) Lack of planning _______ ( ) I do not know how to answer ____
( ) Other: _________________________________________________
(17). How does drought affect your work?
(18). How can you tell that a drought is starting?
( ) The weather gets very warm ( ) From the government forecasts
( ) The soil gets very dry ( ) The crops require more water
( ) I watch animals behavior
( ) I don’t know how to answer
( ) Other ________________________________________
(19). What were the impacts of the last drought on your work?
( ) Lower profit
( ) Break crops
( ) Loss of livestock
( ) Population migration
( ) It caused anxiety, depression
( ) Lower livestock prices
( ) Increase in food prices
( ) Health problems/malnutrition
( ) Conflicts between residents and farmers
( ) Other impacts in livelihood
Other______________________________________
(20). How frequent do you think that droughts are becoming in recent years?
( ) More ( ) No difference ( ) Less ( ) I don’t know
(21). How much longer do you think that droughts are taking in recent years?
( ) More ( ) No difference ( ) Less ( ) I don’t know
(22). How do you get information about weather forecasts?



Water 2020, 12, 1546 17 of 20

( ) I don’t get this information
( ) Radio / TV
( ) Friends/neighbors
( ) Newspapers
( ) Experience
( ) Government Institutions
(23). How do you react to a drought (What habits change in your daily life)?
(24). What actions were taken to continue farming during the drought?
( ) Changed the crops
( ) Changed irrigation methods
( ) Changed the water supply
( ) Reduced planted area
( ) I don’t know how to answer
( ) Other________________ _________________________
(25). What do you think it means to be prepared to deal with the drought?
(26). What is your level of preparedness to deal with the drought?
( ) Very high
( ) High
( ) Medium
( ) Low
( ) Very low
( ) I don’t know how to answer
(27). Did you get support from any government program to deal with the drought between 2010–2018?
( ) Yes ( ) No Which one(s)? ________________________
(28). Is your activity sensitive to drought?
( ) Very sensitive
( ) Sensitive
( ) Medium sensitivity
( ) Low sensitivity
( ) Not sensitive
( ) I don’t know how to answer

3. Farmers’ Opinion
(29). How satisfied are you with the government’s drought policies?
( ) Very satisfied
( ) Satisfied
( ) A little satisfied
( ) Unsatisfied
( ) I don’t know how to answer
In case you are unsatisfied, how do you think they could be improved?
(30). What do you expect from the next rainy season (February to May)? Why?
(31). Are you part of any discussion group related to drought?
( ) Yes ( ) No Which one(s)?__________________________________
(32). Did you need to relocate to other activities in the dry season (2010–2018)?
( ) Yes ( ) No Which one(s)?______________________________
(33). Do you know what is the meeting for the negotiated water allocation?
Have you participated before? Yes ( ) No ( ) Why not?___________________________
(34). Does your perimeter have water security? (i.e., reliable availability of an acceptable quantity and

quality of water for irrigation)?
( ) Yes ( ) No
(35). What actions has the government taken to help farmers deal with the drought?
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4. Government
(36). In the past 6 years, the government has taken important steps to mitigate the effects of drought.
( ) Agree ( ) Disagree
(37). In the past 6 years, the government has provided some information on how to prepare for

the drought.
( ) Agree ( ) Disagree
(38). In the past 6 years, the government has provided some information on how to use less water

in agriculture.
( ) Agree ( ) Disagree
(39). In the past 6 years, the government has provided financial resources for farmers to deal with

the drought.
( ) Agree ( ) Disagree
(40). In the past 6 years, the government has provided technical resources for farmers to deal

with drought.
( ) Agree ( ) Disagree
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