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Abstract: This paper presents long- and short-term analyses and predictions of dammed water
level in a hydropower reservoir. The long-term analysis was carried out by using techniques
such as detrended fluctuation analysis, auto-regressive models, and persistence-based algorithms.
On the other hand, the short-term analysis of the dammed water level in the hydropower
reservoir was modeled as a prediction problem, where machine learning regression techniques were
studied. A set of models, including different types of neural networks, Support Vector regression,
or Gaussian processes was tested. Real data from a hydropower reservoir located in Galicia, Spain,
qwew considered, together with predictive variables from upstream measuring stations. We show
that the techniques presented in this paper offer an excellent tool for the long- and short-term analysis
and prediction of dammed water level in reservoirs for hydropower purposes, especially important
for the management of water resources in areas with hydrology stress, such as Spain.

Keywords: dammed water level; hydropower reservoirs; detrended fluctuation analysis; ARMA
models; machine learning regressors; reservoir management

1. Introduction

The use of river water resources by means of reservoirs and dams is of primary importance
for energy generation, water supply, navigation, and flood control, among others [1]. Over half of
the major river systems in the world have dammed reservoirs, which control or affect the river’s
flow [2]. The management of water reservoirs in rivers is therefore a critical problem, including many
possible tasks that depend on the specific aim of the dammed reservoir. Among these tasks, the
prediction of the dammed water level in the reservoir is critical in many cases, for evaluating structural
problems in dams [3], water supply and resource availability [4,5], water quality [6–8], bio-diversity
conservation [9], navigation management [10], disaster prevention [11], and hydropower production
optimization, which is the problem we are interested in this paper [12,13].

The problem of dammed water level prediction in reservoirs can be tackled by considering very
different predictive variables (input data). Many authors [14,15] have considered hydro-meteorological
data, but alternative input data for prediction are also available, such as images from video cameras [16]
or satellite-based information [17,18], among other possibilities. Regarding the computational methods
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applied in dammed water level prediction problems, there have been different attempts using
time series processing algorithms [19], empirical orthogonal functions [20], error correction-based
forecasting [21], multivariate approaches [22], or ensemble-based algorithms [23]. However, the use of
Machine Learning (ML) algorithms in this problem has been massive in the last years, including many
different types of learning algorithms such as neural networks, support vector machines, and different
hybrid approaches. One of the first approaches using ML algorithms for level prediction in reservoirs
was presented by [24], who compared the performance of artificial neural networks and neuro-fuzzy
approaches in a problem of short-term water level in two German rivers, from hydrological upstream
data. Adaptive neuro-fuzzy inference algorithms were also considered by [25,26] for water level
prediction in reservoirs after typhoons events. In [1], the performances of different ML algorithms
such as neural networks, support vector regression, and deep learning algorithms are evaluated in a
problem of reservoir operation (mainly inflow and outflow prediction) at different time scales, in the
Gezhouba dam, across the Yangtze River, in China. In [27], a recurrent neural network is proposed for
estimating the inflow of a reservoir from a distributed hydrological model. In addition, different hybrid
ML approaches have been proposed for problems of water level prediction in reservoirs, e.g., [28],
hybridized a neural network with a genetic algorithm to improve the network training. This hybrid
approach was tested in a problem of dammed water level prediction at the low Han River, China.
In [29], a Support Vector Regression (SVR) algorithm hybridized with a fruit fly algorithm for SVR
parameter optimization is proposed. In this case, the authors tested it on a problem of river flow
forecasting in Lake Urmia basin, Iran.

In this paper, we present long- and short-term analyses and predictions of dammed water level
in a reservoir for hydropower generation. We evaluated the use of persistence-based techniques for
long-term analysis of the dammed water level for hydropower (including Detrended Fluctuation
Analysis (DFA), auto-regressive models, and pure persistence-based techniques, such as a typical
year for dammed water level calculation), together with a number of ML regression techniques for
short-term prediction of dammed water level at of Belesar hydropower reservoir (Miño River, Galicia,
Spain). The long-term analysis was carried out directly from water level data of the reservoir. On the
other hand, for the short-term analysis, the ML models used exogenous hydro-meteorological input
variables measured at different stations upstream the river which feeds the reservoir, at weekly
time-horizon.

The main contributions of this paper are the following:

• We show that the long-term persistence of the total amount of dammed water at Belesar reservoir
has a clear yearly pattern, which supports the application of persistence-based approaches such
as typical year or AR models.

• We show how ML techniques are extremely accurate in short-term prediction, involving exogenous
hydro-meteorological variables.

• We evaluated the performance of a number of the ML regressors such as multi-layer perceptrons,
support vector regression, extreme learning machines, or Gaussian processes in this problem of
short-term prediction.

• We finally show how the seasonal pattern of dammed water is very accused in this prediction problem;
thus, it can be exploited to obtain better prediction mechanisms, mainly in short-term prediction.

The rest of the paper has been structured as follows. Section 2 presents the data available for this
study and all the methods applied to the analysis and prediction of the dammed water level at the
objective reservoir. Section 3 presents the experimental part of the article, where the performance of
the previously defined approaches is evaluated in the problem. This section also includes a discussion
and analysis part, where the results obtained are detailed in connection with previous studies in the
literature. Finally, Section 4 closes the paper with some ending conclusions and remarks.
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2. Data and Methods

In this section, we first describe the data available for this study, and the methodology carried
out, mainly the data split in train and test, and the different input variables considered. The long- and
short-term algorithms considered in this study are also described in this section. For the long-term
analysis of the dammed water level in the reservoir (reservoir water volume available), we used DFA,
auto-regressive models, and a typical year based on persistence algorithm. The short-term analysis of
the dammed water level was formulated as a weekly time-horizon prediction problem, where different
ML regression techniques were evaluated, such as multi-layer perceptrons, extreme learning machines,
support vector regression algorithms or Gaussian processes.

2.1. Data Description and Methodology

Belesar is a dammed water reservoir on the Miño River in Galicia (42.628889○ N, 7.7125○ W),
Spain, built in 1963 [30]. Its maximum capacity is 655 hm3, with a surface of 1910 ha. Belesar reservoir
was created as part of a hydropower project, together with a hydropower station. This reservoir is also
used for human consumption in the zone. Figure 1 shows the reservoir location at the north-west of
Spain. Dammed water level (hm3) daily data (complete 51 years) are available since the beginning
of the reservoir operation, on 1 October 1963, until 30 September 2015. Note that an expansion work
in the power generating section of the dam was carried out in 2011, which required the reservoir
to be drained almost completely from spring to winter. We therefore skipped 2011 in this study.
We considered weekly data, by averaging the daily dammed water level in weekly periods, obtaining
a total of 2704 data samples. Observe that, in the long-term analysis, we only considered data from
the dammed water level historic time series at Belesar. However, for short-term analysis, exogenous
variables must be considered to obtain atmospheric and hydrological information to feed the ML
models. This way, we also considered data from nine measuring stations located upstream Miño
River and on its tributaries. Figure 2 shows the time series of weekly water level at Belesar reservoir.
Figure 2a shows the complete series from 1964 to 2015. We used it to evaluate the long-term prediction
and analysis methods. Figure 2b shows the time series since 2009, when data from upstream measuring
stations are available. We considered in the latter dataset the results obtained in short-term prediction
by the ML regression methods. The descriptive statistics for both cases (complete series and series
since 2009) are shown in Table 1.

Table 1. Descriptive statistics for the dependent variable (water level at Belesar reservoir) for both
problems presented in this paper: long-term prediction and analysis (time series since 1964) and
short-term prediction (time series since 2009).

Time Series
Descriptive Statistics

Water Level Data for
Short-Term Prediction Since 2009 (hm3)

Water Level Data for
Long-Term Analysis Since 1964 (hm3)

Minimum 77.36 33.21
1st Quartile 225.92 244.61

Median 374.92 391.64
Mean 354.42 371.80

3rd Quartile 491.16 511.54
Maximum 560.68 653.62

Standard Deviation 147.19 161.00
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Figure 1. Geographical location of the meteorological stations (blue dots) and the Belesar reservoir
(red dot). (1) Belesar reservoir; (2) Sarria river (Pobra de S. Xulian); (3) Neira river (O Paramo); (4) Miño
River (Lugo); (5) Narla river (Gondai); (6) Ladra river (Begonte); (7) Miño River (Cela); (8) Miño River
(Pontevilar); and (9) Azúmara river (Reguntille).
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(a) Complete weekly time series of water level at Belesar
reservoir (since 1964).
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(b) Water level at Belesar reservoir since 2009.

Figure 2. Time series of weekly water level at Belesar reservoir: (a) complete time series (since 1964);
and (b) time series since 2009, when data from upstream measuring stations are available.

The location of the measuring stations is also shown in Figure 1. These stations measure the
height (m) and flow (m3/s) upstream and on the tributaries, and also the precipitation amount (mm),
both of which account for the predictor variables. The target variable is the dammed water level at
Belesar reservoir, measured in hm3. Along with this variable, another one is provided with the dam’s
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data: the amount of water used to generate electricity, measured in m3/s. Given that this water is
taken out from the reservoir, it was considered as another input to the model. A change in the demand
of electricity causes a variable decrease in the water available in the reservoir. This directly affects
the levels of water stored in the reservoir in the next weeks, and, without this variable, this decrease
would be impossible to be accounted for by the model.

In addition, the depth of snow accumulated and the level of snow melt were used in the months
of spring to try to improve the results obtained with only hydro-meteorological variables. Given the
geographical region where the rivers and reservoir are located, barely any high terrain nearby could
accumulate snow during the autumn and winter months, and it could affect the levels of water in the
reservoir by means of groundwater(s). The snow data were obtained from the reanalysis ERA5 model
from the Climate Data Store API [31]. Given that the data of the predictors and the target variable
were obtained from different sources, the starting and ending dates do not match. The reservoir data
start in 1963 and stopped on 30 September 2015. In turn, the predictive data, from the measurement
stations and the Climate Data Store API, start 1 January 2009 and end on 31 December 2015. To use
the maximum amount of data available, the dates used in the short-term analysis of Belesar dammed
water level for hydropower were considered from 1 January 2009 to 30 September 2015.

As mentioned above, the original data were on a daily basis, thus a weekly aggregation was
performed both for long- and short-term analyses. This improved the representation of the differences
in the changes of the level of the water stored in the reservoir; otherwise, the differences in a smaller
scale of time (daily or hourly) would be too small and unstable to properly train the model. Depending
on the type of variable, either an average or a sum was performed. On the precipitations and the
output of the reservoir (water used for electricity production), the sum was calculated, while, for the
variables that measure the level of the tributaries and the reservoir level, averages were obtained
to convert them to weekly data. In the short-term case, we considered a prediction problem with a
time-horizon prediction of one week; thus, in this case, the predictive variables were time delayed one
week with respect to the objective variable (i.e., the values of the independent variables for the first
week of 2009 were used to predict the dammed water level on the second week, and so on). Finally,
note that outliers were removed in the target series, so that the models could generalize better on
new unknown data that were not used in the training process. As previously explained, in 2011,
an expansion work in the power generating section of the dam was carried out which required the
reservoir to be drained almost completely for the greater part of the year, specifically from spring to
winter. The values of all the variables (both predictive and explained) from that period were removed.
After the cleaning and pre-processing of the data, there were 306 data samples for the short term
experiments. A seasonal approach was also considered as part of the experimental performance of
the ML algorithms considered. Firstly, the available data were split into the four seasons of the year.
Then, every regression technique was trained with each corresponding seasonal dataset (data of all
the years available but with only one season of the year). This way, it was possible to assess how the
different models perform on each season and, accordingly, it was possible to select the best model to
predict the dammed water level for spring, summer, autumn, and winter.

To analyze all the input variables effect in the ML regression techniques, different groups of input
variables were used to create multiple datasets. This way, the best models could be chosen, so that
they were trained with different sets of variables for each season. Table 2 shows the different groups of
input variables considered.

A hold-out scheme was used in all the experiments for short-term analysis and prediction with
ML algorithms, with a 80/20 split, where 80% of the data were used to train and 20% for testing.
This helped check the performance of the trained models on new unseen data. With this hold-out
scheme, two datasets were created: a first dataset where the data were split randomly, each week
was chosen randomly for training or testing, and a second dataset where the division was made in a
temporal manner, taking the first 80% of the weeks for training and the last 20% for testing the models,
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which allowed a temporal view of the predictions even if the problem was not properly accounted for
as a time series by the regression models.

Table 2. Input variables included in each of the datasets used in the experimental evaluation of the ML
regression techniques for short-term analysis and prediction of dammed water level at Belesar.

Dataset Variables Included Number of Variables

1 Upstream and tributaries’ flow 19

2 Upstream and tributaries’ flow & Precipitations 28

3
Upstream and tributaries’ flow,

Precipitations & Reservoir output 29

4
Upstream and tributaries’ flow,

Precipitations, Reservoir output & Snow data 31

2.2. Detrended Fluctuation Analysis for Long-Term Persistence Evaluation

The DFA algorithm has been recently proposed to analyze long-term persistence in time series
in a number of applications [32]. It was also used in the long-term analysis of Belesar water level for
hydropower generation. The DFA algorithm consists of three steps:

(1) First, the periodic annual cycle of the time series is removed, by the procedure explained in detail
in [27]. The process consists in standardizing the input time series xi of length N as follows:

x′i =
xi − x̄i

σi
, (1)

where xi stands for the original time series, x̄i represents the mean value of the time series, and σi
is its standard deviation.

(2) Then, the time series profile Yj (integrated time series) is computed as follows:

Yj =
j

∑
i=1

x′i . (2)

The profile Yj is divided into Ns = ⌊ N
s ⌋ non-overlapping segments Ys

j = {Yk
j ∣ 1 ≤ k ≤ Ns} of equal

length s.

For each segment Yk
j , the local least squares straight-line Zk

j is calculated, which measures its local
trend. As a result, a linear peace-wise function Z̃s

j compounding each linear fitting is obtained:

Z̃s
j = [Z1

j ⋯ Zk
j ⋯ ZNs

j ] , (3)

where the superscript s refers to the time window length used to the linear fitting of each piece.
(3) Then, the so-called fluctuation as the root-mean-square error from this linear piece-wise function

Z̃s
j and the profile Yj is obtained, varying the time window length s:

F(s) =

¿
ÁÁÁÀ 1

N

N
∑
k=1

(Z̃s
j −Ys

j )2. (4)

At the time scale range where the scaling holds, F(s) increases with time window s as power law
F(s) ∝ sα. Thus, the fluctuation F(s) versus the time scale s would be depicted as a straight line
in a log-log plot. The slope of the fitted linear regression line is the scaling exponent α, also called
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correlation exponent. If this coefficient α = 0.5, the time series is uncorrelated, which means there
is not long-term persistence in the time series. For larger values of α, the time series are positively
long-term correlated, which also means the long-term persistence exist across the corresponding
scale range.

A recent study has applied a DFA analysis for studying the long-term persistence of rainfall and
streamflow in India and USA [33].

2.3. Auto-Regressive Moving Average Models

Auto-Regressive-Moving-Average (ARMA) models [34] are often used to describe and forecast
time series, x(t, θ), when the dependency on the external variables θ is not evident or not known,
so only the values of x(t) are available. In general, ARMA models provide a parsimonious description
of a stationary stochastic process, in terms of two polynomials, one for the dependency on past values
of the series, the Auto-Regressive model (AR), and the other one for the dependency on past errors,
the so-called residuals characteristic of the Moving Average model (MA). Formally, ARMA models are
defined by the following recursive equation:

x(t) = φ1x(t − 1) +⋯+ φpx(t − p) + ε(t) − θ1ε(t − 1) −⋯− θqε(t − q), (5)

where {φi}
p
i=1 stand for the AR parameters and {θi}

q
i=1 are the MA coefficients, which are estimated.

Parameters p and q represent the order of polynomials for the AR and MA parts, respectively.
The term x(t) is the original series and ε(t) stand for the unknown errors (residuals) of the time
series, usually assumed to follow a Gaussian probability distribution. This model for a time series is
known as an ARMA(p,q) model.

In the description of ARMA models, it is quite common to use the back-shift operator B[⋅] to write
the models in a different form. This operator has the effect of changing the period t to t − 1. Thus,
B[x(t)] = x(t − 1), B2[x(t)] = x(t − 2) and so on. By the back-shift operator, ARMA model analysis
simplifies and can be rewritten as follow:

(1− φ1 B−⋯− φp Bp) x(t) = (1− θ1 B−⋯− θq Bq) ε(t), (6)

or, by defining two linear combinations of powers back-shift operators, Φp[⋅] = (1− φ1 B−⋯− φp Bp) [⋅]
and Θq[⋅] = (1− θ1 B−⋯− θq Bq) [⋅], the ARMA equation becomes:

Φp[x(t)] = Θq[ε(t)]. (7)

2.4. Typical Year Prediction Approach

The typical year prediction approach is one of the most frequently used persistence-based approach
among the last decades. It is a statistical model which assumes processes repeat over time, specifically
with a period of one year. The time step can be any period of time less than a year, such as hours, days,
or months, but in the present study we used weeks.

Focusing on our purpose, let us consider a training set {xi(t) ∣ 0 < i ≤ T, 0 < t ≤ N} of dammed
water level time series of the reservoir along T years. Each xi(t) stands for the dammed water level at
the ith year during the week t. The number of weeks per year are fixed to N = 52. From this training
set, the corresponding vector of residuals ri(t) are created, defined as ri(t) = xi(t+ 1) − xi(t). Moreover,
a matrix of residuals for all the training set is calculated:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

r1(1) ⋯ r1(t) ⋯ r1(N)
⋮ ⋱ ⋯ ⋱ ⋮

ri(1) ⋯ ri(t) ⋯ ri(N)
⋮ ⋱ ⋯ ⋱ ⋮

rT(1) ⋯ rT(t) ⋯ rT(N)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

T×N

, (8)



Water 2020, 12, 1528 8 of 23

where each coefficient ri(t),

ri(t) = xi(t + 1) − xi(t), 1 < t < N, 1 < i ≤ T, (9)

stands for the residuals of the dammed water level in the reservoir in the week t of the ith year of the
training set. The typical year prediction approach is then obtained by averaging the residuals over all
years in the training set:

r(t) = 1
T

T
∑
i=1

ri(t), 0 < t < N. (10)

Note that the average residual r(t) can be used to estimate the dammed water level as a typical
year, just by setting the first measurement of the dammed water level in a given year in a test set:

x̂(t) = { x(1), t = 1,
x̂(t − 1) + r(t − 1), 1 < t ≤ N,

(11)

where x̂(t) stands for the reservoir water level predicted for the week t.

2.5. Machine Learning Regression Techniques

Several ML regression algorithms were considered in this research, for the short-term
dammed water level prediction at Belesar: Support Vector Regression (SVR) [35,36], Multi-layer
Perceptron (MLP) [37,38], Extreme Learning Machine (ELM) [39,40], and Gaussian Process Regression
(GPR) [41,42]. We outline some general characteristics of the applied methods. For instance, the ELM
is a very fast-training algorithm, since it is based on a pseudo-inverse calculation. In contrast, the GPR
is usually the most computationally-demanding model to be trained, and it has sometimes shown
problems related to the amount of time required to train the model in large databases. On the other
hand, although the MLP trained with the backpropagation algorithm [43] with stochastic gradient
descent [44] is a strong regression approach, it is computationally more demanding than the ELM
since it has to iterate the data multiple times to adjust the weights of the model. Finally, the SVR
computational burden is comparable to the MLP.

The implementations of the proposed ML regression techniques are those supported by the
R language in the cases of ELM and SVR, where the libraries used are: elmNNRcpp [45] for ELM;
e1071 [46] for the implementation of the SVR algorithm; and the Python library scikit-learn MLP

and GPR [47,48].

2.5.1. Support Vector Regression

SVR [35] is a well-established algorithm for regression and function approximation problems.
SVR takes into account an error approximation to the data, as well as the ability to improve the
prediction of the model when a new dataset is evaluated. Although there are several versions of the
SVR algorithm, we used the classical model (ε-SVR) described in detail in [35], which has been used
for many problems and applications in science and engineering [36].

The ε-SVR method for regression starts from a given set of training vectors {(xi, ϑi)}N
i=1 and

models the input–output relation as the following general model:

ϑ̂(x) = g(x) + b = wTφ(x) + b, (12)

where xi represents the input vector of predictive variables and ϑi stands for the value of the
objective variable ϑ corresponding to the input vector xi, the water level in the reservoir in this
case. ϑ̂(x) represents the model which estimates ϑ(x). The parameters (w, b) are determined to match
the training pair set, where the bias parameter b appears separated here. The function φ(x) projects
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the input space onto the feature space. During the training, algorithms seek those parameters of the
model which minimize the following risk function:

R[ϑ̂] = 1
2
∥w∥2 +C

N
∑
i=1

L (ϑi, ϑ̂(xi)) , (13)

where the norm of w controls the smoothness of the model and L (ϑi, ϑ̂(xi)) stands for the selected
loss function. We used the L1-norm modified for SVR and characterized by the ε-insensitive loss
function [35]:

dL (ϑi, g(xi)) = { 0 if∣ϑi − g(xi)∣ ≤ ε

∣ϑi − g(xi)∣ − ε otherwise.
(14)

Figure 3 shows an example of the process of a SVR for a two-dimensional regression problem,
with an ε-insensitive loss function.

+e-e
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0

x

Kernel spaceInput space

Fxi

f(xi)

x*
i

j

j

x*i

e

xj

f (xj)

L(e)

Figure 3. Example of a support vector regression process for a two-dimensional-regression problem,
with an ε-insensitive loss function.

To train this model, it is necessary to solve the following optimization problem [35]:

min
w,b,ξ

1
2
∥w∥ +C

N
∑
i=1

ξi + ξ∗i ,

s.t. ϑi −wTφ(xi) − b ≤ ε + ξi, i = 1, . . . , N,

− ϑi +wTφ(xi) + b ≤ ε + ξ∗i , i = 1, . . . , N,

ξi, ξ∗i ≥ 0, i = 1, . . . , N.

(15)

The dual form of this optimization problem is obtained through the minimization of a Lagrange
function, which is constructed from the objective function and the problem constraints:

max
α,α∗

−1
2

N
∑

i,j=1
(αi − α∗i )(αj − α∗j )K(xi, xj) − ε

N
∑
i=1

(αi + α∗i ) +
N
∑
i=1

ϑi(αi − α∗i ),

s.t.
l
∑
i=1

(αi − α∗i ) = 0, i = 1, . . . , N,

αi, α∗i ≥ 0, i = 1, . . . , N,

− αi,−α∗i ≥ −C, i = 1, . . . , N.

(16)
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In the dual formulation of the problem, the function K(xi, xj) represents the inner product
⟨φ(xi), φ(xj)⟩ in the feature space. Any function K(xi, xj) may become a kernel function as long as it
satisfies the constraints of the inner products. It is very common to use the Gaussian radial basis function:

K(xi, xj) = exp(−γ ⋅ ∥xi − xj∥
2). (17)

The final form of the function g(x) depends on the Lagrange multipliers αi, α∗i as:

g(x) =
N
∑
i=1

(αi − α∗i )K(xi, x). (18)

Incorporating the bias, the estimation of the dammed water level in the reservoir is finally made
by the following expression:

ϑ̂(x) = g(x) + b =
N
∑
i=1

(αi − α∗i )K(xi, x) + b. (19)

2.5.2. Multi-Layer Perceptrons

A multi-layer perceptron is a particular class of Artificial Neural Network (ANN), which has
been successfully applied to solve a large variety of non-linear problems, mainly classification and
regression tasks [37,38]. The multi-layer perceptron consists of an input layer, a number of hidden
layers, and an output layer, all of which are basically composed by a number of special processing
units called neurons. All neurons in the network are connected to other neurons by means of weighted
links (see Figure 4). In the feedforward multi-layer perceptron, the neurons within a given layer are
connected to those of the previous layers. The values of these weights are related to the ability of the
multi-layer perceptron to learn the problem, and they are learned from a sufficiently long number of
examples. The process of assigning values to these weights from labeled examples is known as the
training process of the perceptron. The adequate values of the weights minimizes the error between
the output given by the multi-layer perceptron and the corresponding expected output in the training
set. The number of neurons in the hidden layer is also a parameter to be optimized [37,38].

xn

J

Figure 4. Structure of a multi-layer perceptron neural network with one hidden layer.

The input data for the multi-layer perceptron consist of a number of samples arranged as input
vectors {xi ∈ Rn}N

i=1, where each input vector xi = (xi
1,⋯, xi

n). Once a multi-layer perceptron has been
properly trained, validated, and tested using an input vector different from those contained in the
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database, it is able to generate an estimated output ϑ ∈ R. The relationship between the output ϑ and a
generic input signal x = (x1,⋯, xn) of a neuron is:

ϑ(x) = ϕ
⎛
⎝

n
∑
j=1

wjxj − b
⎞
⎠

, (20)

where ϑ is the output signal, xj for j = 1, . . . , n are the input signals, wj is the weight associated with
the jth input, and b is the bias term [37,38]. The transfer function ϕ is usually considered as the
logistic function:

ϕ(x) = 1
1+ e−x . (21)

The well-known Stochastic Gradient Descent (SGD) algorithm is often applied to train the
multi-layer perceptron [44]. In this case, we use the scikit-learn implementation of the multi-layer
perceptron with the SGD training algorithm.

2.5.3. Extreme-Learning Machines

The extreme-learning machine [39] is a fast training method for neural networks, which can
be applied to feed-forward perceptron structures (see Figure 4). In ELM, the network weights of the
first layer are randomly set, after which a pseudo-inverse of the hidden-layer output matrix is obtained.
This pseudo-inverse is then used to obtain the weights of the output layer which best fit the objective values.
The advantage of this method is not only that it is extremely fast, but also that it obtains competitive
results versus other established approaches, such as classical training for multi-layer perceptrons,
or even SVM algorithms. The universal-approximation capability of the ELM is proven in [40].

The ELM algorithm can be summarized by considering a training set {(xi, ϑi) ∣ xi ∈ Rn, ϑi ∈ R, 1 ≤ i ≤
N}, an activation function g(x), and a given number of hidden nodes Ñ, and applying the following steps:

1. Randomly assign input weights wi and the bias bi, where i = 1, . . . , Ñ, using a uniform probability
distribution in [−1, 1].

2. Calculate the hidden-layer output matrix H, defined as follows:

H =
⎡⎢⎢⎢⎢⎢⎣

g(w1x1 + b1) ⋯ g(wÑx1 + bÑ)
⋮ ⋯ ⋮

g(w1xN + b1) ⋯ g(wÑxN + bÑ)

⎤⎥⎥⎥⎥⎥⎦N×Ñ

. (22)

3. Calculate the output weight vector β as follows:

β = H†T, (23)

where H† is the Moore–Penrose inverse of the matrix H [39] and T is the training output vector,
T = [ϑ1, . . . , ϑN]T .

Note that the number of hidden nodes Ñ is a free parameter to be set before the training of the
ELM algorithm, and it must be estimated for obtaining good results by scanning a range of Ñ. In this
study, we used the ELM implemented in Matlab by G. B. Huang, freely available at [45].

2.5.4. Gaussian Processes for Regression

A Gaussian Process for Regression (GPR) is a supervised-learning method designed for
solving regression problems. In this section, we give a short description of the most important
characteristics of the GPR algorithm. The interested reader can consult exhaustive reviews for further
information [41,42].
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Given a set of n-dimensional inputs xi ∈ Rn and their corresponding scalar outputs ϑi ∈ R, for the
dataset DS ≡ {(xi, ϑi)}N

i=1, the regression task obtains the predictive distribution for the corresponding
observation ϑ∗ based on DS, given a new input x∗.

The GPR model assumes that the observations can be modeled as some noiseless latent function of
the inputs, in addition to an independent noise, ϑ = f (x) + ε, and then specifies a zero-mean Gaussian
process for both the latent function f (x) ∼ GP (0, k(x, x′)) and the noise ε ∼ N(0, σ2), where k(x, x′) is
a covariance function and σ2 is a hyper-parameter that specifies the error variance.

The covariance function k(x, x′) specifies the degree of coupling between ϑ(x) and ϑ(x′) and
encodes the properties of the Gaussian process, such as the variance and smoothness. One of the
most used covariance functions is the anisotropic-squared exponential, which has the form of an
unnormalized Gaussian function, k(x, x′) = σ2

0 exp (− 1
2 xTΛ−1x), and depends on the signal power σ2

o
and length scales Λ, where Λ is a diagonal matrix containing one length scale per input dimension.
Each length scale controls the degree to which the correlation between outputs decay as the separation
along the corresponding input dimension grows. We collectively refer to all kernel parameters as θ.

The joint distribution of the available observations (collected in ϑ) and some unknown output
ϑ(x∗) form a multivariate Gaussian distribution, the parameters of which are specified by the
covariance function:

[ ϑ

ϑ∗
] ∼ N (0, [ K+ σ2IN k∗

kT
∗

k∗∗ + σ2 ]) , (24)

where [K]nn′ = k(xn, xn′), [k∗]n = k(xn, x?), and k∗∗ = k(x∗, x∗). Here, IN is used to denote the identity
matrix of size N. The notation [A]nn′ refers to the entry at row n, column n′ of A. Likewise, [a]n is
used to reference the nth element of vector a.

From Equation (24) and the conditioning on the observed training outputs, we obtain the
predictive distribution as:

pGP(ϑ∗∣x∗,D) = N(ϑ∗∣µGP∗, σ2
GP∗)

µGP∗ = kT
∗
(K+ σ2IN)−1ϑ

σ2
GP∗ = σ2 + k∗∗ −kT

∗
(K+ σ2IN)−1k∗,

(25)

which is computed O(N3) times, due to the inversion of the N × N matrix K+ σ2IN .
The hyper-parameters {θ, σ} are typically selected by maximizing the marginal likelihood of the

observations, which is

log p(ϑ∣θ, σ) = −1
2

yT(K+ σ2IN)−1ϑ−

− 1
2
∣K+ σ2IN ∣ − N

2
log(2π). (26)

Observe that, by providing analytical derivatives of Equation (26), gradient methods reduce their
computation time to an order O(N3).

3. Experiments and Results

We experimentally evaluated the different long- and short-term approaches used for the analysis
of Belesar reservoir water level. First, we detail the experimental design carried out both for long- and
short-term analyses of the dammed water level. We also describe the error metric used in the short-term
analysis of water level in the reservoir. The experimental results for the long-term case are shown
after, together with a discussion based on DFA, ARMA, and typical year persistence-based results.
This experimental evaluation is closed with the short-term results of dammed water level, focused on
a weekly time-horizon prediction problem, and how ML algorithms perform on this problem.
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3.1. Experimental Design

The methodology used in this study is introduced in Section 2, but it is explained here in
more detail. The long-term analysis was carried out through the DFA on the dammed water level
times series, since 1963. This analysis shows that persistence-based approaches, such as ARMA and
persistence-based models, are a good option to obtain long-term predictions for the water level at
this reservoir. In the short-term case, we considered exogenous variables, and analysis from 2009
to 2015. In this case, for all the datasets considered (see Table 2), two types of experiments were
carried out. The first one considered all the weeks in the training set ordered sequentially, whereas
in the second one we carried out a seasonal analysis for all the available years (2009–2015). In the
first experimental design, two hold-out schemes were used for partitioning the data into a training
and test set: a random or shuffle partition and a “temporal” partition. In the shuffle split, each week
was chosen randomly to belong to either training or test set, with a proportion of 80% of the data in
the training set and the remaining 20% used to test the performance of the model. In the temporal
split, the first 80% of the weeks, ordered sequentially, were used for training purposes, and the rest for
testing the model. In the second experimental design, the one with a table for each season, only the
temporal split was considered.

For the three resulting data partitions, the four regression techniques summarized in Section 2.5
were applied. Other hyper-parameters associated with each method were tuned using an internal
k-fold cross-validation (k = 3) over the training data. The parameter values were explored using a
grid-search, in such a way that every classifier was run 3×C times, where C is the number of all possible
parameter combinations. The combination of parameters leading to the lowest average validation
RMSE from this three-fold cross-validation was selected as the optimal one, and the training process
was finally repeated using this configuration. The values explored for each hyper-parameter in the ML
techniques are shown in Table 3, where the values included in curly brackets are the ranges used in
the search process, and those that are not in brackets are fixed for all combinations. In the case of the
architecture of the MLP, the values shown are the number of neurons in each layer (separated by a
colon; the architectures explored range from one to three layers). In the tables where the experimental
results are shown (Tables 4 and 5), only the best configuration for each model is included. Note that,
for MLP, the best configuration was consistently the one with one layer and 100 neurons, using a
hyperbolic tangent as transfer function. In addition, for the GPR, the best kernel was always the dot
product. For ELM, the best results were always obtained with a sigmoid function and 50 hidden
neurons. Finally, it is important to outline that the test set was never used during parameter tuning.

Note that, for the methods that have a stochastic nature (caused by the training algorithm or the
weight initialization), as in the case of MLP, ELM, or GPR, all experiments were run 30 times and
the mean value was obtained. For MLP, which involves an iterative training, a stopping criterion
was used to prevent overfitting. This caused the training to stop when the validation score stopped
improving by less than 10−4 for 10 consecutive iterations. In GPR, a cross-validation method during
the maximization of the marginal likelihood was done to prevent the overfitting. Note the obtained
results over the test data partition suggest that the evaluated ML methods did not overfit.

Regarding the evaluation metrics for short-term analysis, we considered two metrics for
comparison purposes: the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE).
RMSE calculates the value of the root square of the squared difference between the ground truth, ϑi,
and the predicted value, ϑ̂i, and gives an average for all examples predicted:

RMSE = 1
N

¿
ÁÁÀ N
∑
i=1

(ϑi − ϑ̂i)2, (27)
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MAE calculates the value of the difference between the ground truth, ϑi, and the predicted value,
ϑ̂i, in absolute value, and gives an average for all examples predicted:

MAE = 1
N

N
∑

i
∣ϑi − ϑ̂i∣. (28)

Both errors are measured in the same units as the variable under study (in our case, hm3) and
have been widely used for model evaluation [25–29]. While MAE gives the same weight to all errors,
RMSE penalizes variance as it gives errors with larger absolute values more weight than errors with
smaller absolute values. Both aspects are important and should be taken into account during the
model evaluation.

Table 3. Configuration parameters of the ML regressors considered.

MLP

Transfer function: {Logistic, Hyperbolic Tangent, ReLU}
Architecture: {25, 50, 75, 100, 125, 25:25, 50:50, 75:75,

50:50:50, 75:50:25}
L2: 0.0035

Learning rate: {0.0001 , 0.00085, 0.0016,
0.00235, 0.0031, 0.00385, 0.0046}

Training algorithms:
{Stochastic Gradient Descent: µ = {0.9, 0.85, 0.7},

Adam: β1 = 0.9 , β2 = 0.999 }

SVR Linear

C: {0.25, 0.5, 1, 2, 4, ..., 512}
ε ∶ {0, 0.025, ..., 0.2}

SVR rbf

C: {0.25, 0.5, 1, 2, 4, ..., 512}
ε ∶ {0, 0.025, ..., 0.2}

γ ∶ { 1
N , 1

N + 0.1, ..., 0.4},
(where N is the number of input variables)

GPR

Kernel: {Dot Product, Radial,
Dot Product + White Noise}

α ∶ 1× 10−6

ELM

Transfer function: {ReLU, Sigmoid, Radial}
Number of layers: 1

Number of neurons: {50, 75}

3.2. Long-Term Reservoir Level Analysis

We first applied the DFA algorithm to the complete time series of dammed water level at Belesar.
Figure 5 shows the DFA obtained. As can be seen, there is a clear two-ranges structure with separation
point at around 52 weeks, which matches a year duration. Up to 52 weeks, the dammed water
level time series is extremely long-term correlated, as the correlation exponent α ≈ 1.52 (recall that
an exponent α = 0.5 represents an uncorrelated process). Over 52 weeks, the time series is mostly
uncorrelated since the correlation exponent is α ≈ 0.57, very close to 0.5. This result suggests a process
with a strong annual period. This justifies the use of persistence-based techniques for analysis of the
time series, such as the typical year approach or auto-regressive methods, as good options to obtain
accurate long-term predictions of the weekly dammed water level at Belesar.
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Figure 5. DFA for the reservoir water level (weekly) at Belesar.

We therefore evaluated the application of ARMA and typical year persistence-based models for
this long-term analysis of water level in Belesar reservoir. We varied the ARMA parameters p and q
from 0 to 12 to determine the optimum ARMA model. Finally, the ARMA(9,0) = AR(9) obtained the
best results.

Figure 6a,b shows the performance of an AR(9) model (the best auto-regressive method obtained)
and the typical year method for dammed water level prediction respectively. Note that, in both cases,
we used as training set the values of the dammed water level time series from 1963 to 2006. The model
parameters were estimated in the training set, and the results are reported in the test set. As can be
seen, the AR(9) model fits most of the dammed water level series. In general, the AR model is able to
estimate the trend of the dammed water level time series, obtaining a reasonable result.
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Figure 6. AR(9) and typical year persistence-based long-term predictions for Belesar reservoir water level.

The fact that an AR model obtains good results in the prediction indicates that the prediction
approach via typical year should also work fine in the prediction of water level at Belesar. This is also
expected after the DFA analysis carried out at the beginning of this discussion. Figure 6b shows the
performance of the typical year persistence-based method in the test set of Belesar. As can be seen,
this approach is very effective in different years, which perfectly fit the typical year. There are, however,
other years in which the typical year prediction does not work as well, which indicates that those
years present anomalies in terms of the dammed water level, which may be associated with rainfall
anomalies, droughts, etc. In general, the prediction given by the typical year is smoother than that of
the best AR model found, which seems to indicate that the water level at Belesar has a very important
intra-annual persistence, and a small inter-annual contribution, as shown in the DFA analysis of the
dammed water level time series.

3.3. Short-Term Reservoir Level Prediction

In this section, we evaluate the performance of different ML regressors in a short-term (one
week time-horizon) dammed water level prediction problem at Belesar reservoir. We structured the
experiments carried out by the type of data considered (standard, i.e., all seasons, or seasonal) and by
the type of train-test partitioning: random or temporal partitioning.

3.3.1. Standard Data, Random Partitioning

Figure 7 shows the results obtained in this experiment considering standard data and random
partition for test. Table 4 presents the detailed numerical results of the experiment.

The best model in these set of experiments was an MLP with the input variables defined in Dataset
3 (see Table 2). Figure 8 shows the best prediction obtained by MLP in the test set, plotted against the
ground truth. As can be seen, the prediction obtained by MLP is excellent, being close to the dammed
water level ground truth. Note that, since random data were considered, there is no time relation
between each of the samples shown, which does not allow checking how the regressor model manages
the temporal character of the time series. However, observe that both RMSE and MAE values are
extremely good, which indicates that MLP is able to obtain an extremely accurate weekly prediction of
water level in reservoir based on the variables specified in Dataset 3.
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Table 4. Results of the different ML regression techniques for different variables considered (datasets)
in the case of standard data (all seasons) and random partitioning. Boldface stands for the best value
found in a dataset, and italic for the second best.

Dataset Model RMSE (hm3) MAE (hm3)

1 ELM 33.68 19.61
1 SVM (lin) 35.85 22.76
1 SVM (rbf) 24.63 16.37
1 MLP 24.86 16.45
1 GPR 32.51 21.10

2 ELM 33.17 20.22
2 SVM (lin) 30.52 18.49
2 SVM (rbf) 30.63 22.42
2 MLP 22.94 16.28
2 GPR 36.91 21.57

3 ELM 32.50 17.93
3 SVM (lin) 28.72 15.58
3 SVM (rbf) 30.35 20.80
3 MLP 20.20 14.26
3 GPR 34.27 18.12

4 ELM 31.13 17.99
4 SVM (lin) 27.65 15.04
4 SVM (rbf) 29.79 20.24
4 MLP 20.44 14.04
4 GPR 36.22 18.29

ELM

SVM (lin)

SVM (rbf)

MLP
GPR

Dataset 1 Dataset 2 Dataset 3 Dataset 4
0

5
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25

Dataset 1 Dataset 2 Dataset 3 Dataset 4
0

5

10

15

20

25
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40

Figure 7. Results of the different ML regression techniques for different variables considered (datasets)
in the case of standard data (all seasons) and random partitioning: (a) the RMSE results; and (b) the
MAE results.
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Figure 8. Ground truth vs. predicted for weekly Data, random partitioning dataset.

3.3.2. Standard Data, Temporal Partitioning

In the experiment where the standard data and a temporal split partition were used, the best
results obtained in the different datasets considered are depicted in Figure 9 and numerically detailed
in Table 5.

Dataset 1 Dataset 2 Dataset 3 Dataset 4
0

5

10

15

20

25

Dataset 1 Dataset 2 Dataset 3 Dataset 4
0

5

10

15

20

25

30

ELM

SVM (lin)

SVM (rbf)

MLP
GPR

Figure 9. Results of the different ML regression techniques for different variables considered (datasets)
in the case of standard data (all seasons) and temporal partitioning: (a) the RMSE results; and (b) the
MAE results.

In this case, the best model is the SVR with linear kernel in Dataset 3.
Figure 10 shows the prediction obtained with SVR together with the ground truth for each test

sample. As can be seen, in this case the data shape is smoother, given the continuity in time of the data
samples. This allows checking the temporal behavior of the prediction algorithm, given that the model
is fed (Xt, yt) to predict yt+1, which could not be observed in the previous experiment. It seems that the
temporal continuity in the data has helped the model make a better prediction, as can be seen in the
improvement of the results in both error metrics considered. The SVR result fits extremely well to the
ground truth, having a few small abrupt errors in some areas where there are notable changes. Note
that the SVR has correctly accounted for this intrinsic characteristic of the data and with great success.
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Table 5. Results of the different ML regression techniques for different variables considered (datasets)
in the case of standard data (all seasons) and temporal partitioning. Boldface stands for the best value
found in a dataset, and italic for the second best.

Dataset Model RMSE (hm3) MAE (hm3)

1 ELM 24.27 17.48
1 SVM (lin) 19.96 16.18
1 SVM (rbf) 19.34 14.55
1 MLP 21.66 17.24
1 GPR 21.74 18.28

2 ELM 24.86 18.31
2 SVM (lin) 25.35 20.79
2 SVM (rbf) 22.56 16.46
2 MLP 23.42 17.38
2 GPR 24.43 19.28

3 ELM 21.59 14.56
3 SVM (lin) 16.44 11.28
3 SVM (rbf) 19.28 12.09
3 MLP 21.12 15.17
3 GPR 17.00 11.99

4 ELM 22.87 15.10
4 SVM (lin) 18.60 12.74
4 SVM (rbf) 21.88 14.25
4 MLP 20.37 15.19
4 GPR 18.65 13.40
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Figure 10. Ground truth vs. SVR predicted results for seasonal data, random partitioning dataset.

3.3.3. Seasonal Data, Temporal Partitioning

Finally, we considered an experiment with seasonal data and temporal partitioning. We skipped
the experiment with random partitioning since the ML algorithms obtain worse results here. The results
obtained in this case of seasonal data and a temporal partition are shown in Table 6.

The results in Table 6 can be better interpreted if they are observed along with the predictions
shown in Figure 11. It is easy to see that the most difficult season to predict seems to be winter,
where the SVR (best model) uses the bare minimum information, only the upstream and tributaries’
flows. Note, however, that the same behavior is observed in summer, which is apparently the simplest
season to predict (it seems to be quite linear with negative slope). In this case, it is the ELM regressor
that provides the best result, also using Dataset 1 (upstream and tributaries’ flows). The complexity
in winter seems to be well modeled by the SVR with RBF. In spring, the data seem fairly similar
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to summer, and they are modeled with a simple model, a linear SVR. In this case, it uses a higher
number of variables (Dataset 3) to predict the apparent changes in trend of the data, which seem to first
decrease, then increase, and slightly start to decrease again. The autumn data have more complexity,
but they are modeled correctly with a GPR and a higher number of variables (Dataset 3).

Table 6. Best results obtained for the case of temporal partitioning. Only the best algorithm in each
season and dataset are detailed in this table.

Season Model Dataset RMSE (hm3) MAE (hm3)

Spring SVR (Linear) 3 17.41 13.94
Summer ELM 1 7.83 5.73
Autumn Gaussian Process 3 14.40 11.01
Winter SVR (RBF) 1 22.14 15.39

Average Metrics 15.45 11.52
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Figure 11. Ground truth vs. predicted for seasonal data, temporal partitioning dataset.

3.3.4. Discussion on Short-Term Prediction Results

Table 7 shows the results obtained in each experiment carried out for the short-term prediction
of dammed water level at Belesar reservoir. Note that the best overall result according to RMSE was
obtained with the configuration seasonal data, temporal partition, which uses four different ML models
for each season. According to MAE, the best overall result was obtained with the configuration standard
data, temporal partitioning using a SVR algorithm.

Some specific remarks can be given when the results in Tables 4 and 5 are analyzed in detail.
Note that including the snow variable in the predictive variables (Dataset 4) worsens the results obtained
with the variables in Dataset 3. This seems to indicate that snow is not a key variable for this specific
reservoir, even though it is known to be important at other locations. We can also observe that, in general,
the most relevant variable to predict the dammed water level in the reservoir is the upstream and
tributaries’ flow, and not the precipitation amount or the output of the dam for electricity production.
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Table 7. General comparison of the experimental results in the short-term prediction of water level at
Belesar reservoir. Boldface stands for the best value found in a dataset, and italic for the second best.

Experiment RMSE (hm3) MAE (hm3)

Standard data, random partitioning 20.20 14.26
Standard data, temporal partitioning 16.44 11.28

Seasonal data, temporal partitioning 15.45 11.52

4. Conclusions

In this study, we carried out a complete investigation on the long- and short-term prediction
of dammed water level for hydropower generation at a reservoir in Miño River (Belesar, Spain).
Different techniques were explored, such as Detrended Fluctuation Analysis, Auto-regressive models,
persistence-based techniques, and Machine Learning (ML) regression algorithms.

The long-term analysis of the dammed water level showed a clear annual persistence of the signal,
which allows applying auto-regressive and persistence-based algorithms with success for this problem.
We showed that, depending on the year analyzed, persistence-based approaches such as a typical year
are able to model the water level of the reservoir with a high accuracy.

In the short-term analysis, we tackled a prediction problem of the water level at the reservoir with
a prediction time-horizon of one week, by using different ML regression techniques and exogenous
hydro-meteorological variables. In this case, we showed that the ML algorithms are able to obtain
extremely accurate results. We showed that the predictability of dammed water level of the reservoir
is highly based on variables such as upstream and tributaries flow. On the contrary, the precipitation
measurements and dam outputs for hydropower production proved to be less relevant variables to
predict the dammed water level.

Note that this work is based on measurements and data from a single reservoir (Belesar, Galicia,
Spain). This reservoir is interesting since it is mainly devoted to hydropower generation, but it is also
used in part to cover human consumption. Measuring stations installed upstream Miño River and on
its tributaries provide rich information about the amount of water poured into the reservoir. Thus, note
that this reservoir has all the elements needed to explore the performance of both long- and short-term
algorithms in a water level prediction problem. All the algorithms developed for this reservoir are
directly applicable to any other site with similar rich information of measurements and data. Of course,
specific hydro-meteorological characteristics of the zone will not be exportable to other specific areas
with different hydro-meteorological characteristics. For example, we showed that snow is not a very
important feature in the short-term water level prediction of this reservoir, even though it is known
that it is in fact a key feature in other reservoirs, mainly in springtime [49]. However, note that the
methodology reported here, both for long- and short-term prediction, is able to detect the importance
of specific hydro-meteorological features at any other reservoir where it is applied.

Finally, this work opens new lines of research, e.g., testing alternative regression techniques such as
random forest or grammatical evolution, among others, and exploring alternative exogenous atmospheric
variables which can provide information to improve the water level prediction of the reservoir.
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