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Abstract: Over the last few years, several authors have presented contrasting models to describe
the response of boulders to extreme waves, but the absence of direct observation of movements has
hindered the evaluation of these models. The recent development of online video-sharing platforms
in coastal settings has provided the opportunity to monitor the evolution of rocky coastlines during
storm events. In September 2018, a surveillance camera of the Marine Protected Area of Plemmirio
recorded the movement of several boulders along the coast of Maddalena Peninsula (Siracusa,
Southeastern Sicily) during the landfall of the Mediterranean tropical-like cyclone (Medicane) Zorbas.
Unmanned autonomous vehicle (UAV) photogrammetric and terrestrial laser scanner (TLS) surveys
were performed to reconstruct immersive virtual scenarios to geometrically analyze the boulder
displacements recorded in the video. Analyses highlighted that the displacements occurred when
the boulders were submerged as a result of the impact of multiple small waves rather than due to a
single large wave. Comparison between flow velocities obtained by videos and calculated through
relationships showed a strong overestimation of the models, suggesting that values of flow density
and lift coefficient used in literature are underestimated.

Keywords: boulders; Medicane; flow; UAV; waves

1. Introduction

Mediterranean hurricanes, also called Mediterranean Tropical Like Cyclones (TLCs) or medicanes,
are warm-core cyclones that develop over the Mediterranean Sea [1–3] with characteristics similar
to tropical cyclones. Such storms are constituted by rotating cloud systems characterized by gale
force winds, severe precipitation, and a low pressure center, accompanied by a spiral pattern of
thunderstorms [4–7]. Two specific areas appear to be the favored locations for medicane genesis: the
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western Mediterranean [2,8] and the central Mediterranean–Ionian Sea [9,10]. During the last decades,
the impacts of medicanes along the coasts of Mediterranean basin have strongly influenced the human
settlements, causing a lot of damage and casualties [6,11]. Moreover, several authors predict that, in
the next future, climate changes could modify medicanes, decreasing the frequency of their occurrence
but increasing the strength of their impacts [4,12,13]. In the last 10 years, two different medicanes
made landfall along the coast of Southeastern Sicily; the first one occurred in 2014 and was called
Qendresa, and the second occurred in 2018 and was called Zorbas.

In September 2018, Medicane Zorbas impacted the Ionian coasts of Southeastern Sicily and was
registered along the coasts of Apulia, Basilicata, and Calabria with minor energy [14]. Evidence of this
storm event was observed along the rocky coast of the Maddalena Peninsula (Siracusa, southeastern
Sicily; Figure 1), where a surveillance camera of the Marine Protected Area of Plemmirio recorded
several boulder displacements that occurred inside an ancient Greek quarry. This coastal sector is
characterized by the presence of important boulder fields, interpreted as evidence of the impact of
severe storms and tsunami events in the past [15,16]. Since 2009, the ancient quarry has been intensely
monitored, using several survey techniques, to identify and analyze boulder displacements with the
main purpose to verify if storm waves could be responsible for the movement of boulders which have
been attributed to tsunami events [15].

A determination if storm or tsunami waves were responsible for the boulder displacements on
coastal area has been the object of considerable debate. Several studies agree that severe storms are
generally able to displace most of the small boulders found along coastlines all over the world [17–22].
Some authors proposed that, although boulder displacements occur both during storm and tsunami
events, the main cause for movements of the biggest boulders are probably tsunami [15,23]. In contrast,
other studies ascribe storms the capability to detach and transport the boulders [24]. A new debate
has been recently opened on the number of tsunami events reconstructed for the Mediterranean
Sea. Marriner et al. [25] consider this number strongly overestimated, contesting the attribution to
tsunami of most of the field evidences described in the literature, and suggesting that cyclical periods
of increased storminess, driven by late Holocene climate changes, would be responsible for them.
Vött et al. [26] replied to this theory disputing the tsunami DB and the statistical analyses used by
Marriner et al. [25], confirming the reliability of the literature in the definition of tsunami events
occurred in the Mediterranean Sea.

The Mediterranean basin, due to the lack extreme events such as cyclones, has been considered
an excellent area for studies aimed to describe tsunami events [27]. In the absence of observatories,
the analytical approach for the study boulder displacements has been the application of different
hydrodynamic models (e.g., references [28–32]) to estimate the main features of the wave responsible for
the dislocation (Typology, Wave Height, Wave flow velocity). To apply these models it is fundamental
to acquire high-resolution data of the boulders (size, volume and mass), but it is also very important to
reconstruct (i) the scenario in which the movement occurred (joint bounded or subaerial/submerged);
(ii) the typology of movement (sliding, rolling/overturning, saltation/lifting); and (iii) the entity of
displacement. These parameters are often very complicated to deduct by field evidence [33,34]. Up to
the present, all the studies started from the assumption that the different position of a boulder, after
and before an extreme marine event, represents the effect of a single wave impact [20,30,35]. For these
reasons, until now, it has been very difficult to test the reliability of the hydrodynamic models in the
description of the natural processes.

The aim of this work is to overcome this problem through the analyses of video recorded along
the Maddalena Peninsula. Given that video witness has never been used before to analyze boulder
displacements, we defined a methodology to reconstruct immersive scenarios, useful for georeferencing
the images recorded in the video and to accurately measure, from them, several important parameters
such as the wave heights at time of impacts and the wave flows at time of displacements. This kind of
approach let us accurately test hydrodynamic equations, showing a significant overestimation of them,



Water 2020, 12, 1497 3 of 25

probably due to an underestimation of important parameter, such as seawater flow density and lift
coefficient [31,32,36,37].

Furthermore, the work provides evidence about the dynamics of boulder movements, suggesting
that single wave impacts are unlikely to be responsible for displacements, which normally occur as a
result of multiple waves impact, generating a turbulent flow able to nullify frictions. In addition, our
work shows that some boulders, previously interpreted as deposited by a tsunami event, have never
been displaced in 10 years of monitoring, and so accord with the hypothesis that only tsunamis could
be responsible for the deposition of boulders with particular features as dimension and shape.

2. Geological Settings

Southeastern Sicily (Figure 1A) is part of the emerged portion of the Pelagian Block, the foreland
domain of the Neogene-Quaternary Sicilian Collision Zone [38]. It is mostly formed by the Hyblean
Plateau that along the Ionian coastline is dissected by a system of Quaternary normal faults bounding
NNW–SSE oriented horst and graben structures [39]. The Maddalena Peninsula, constituted by a
Neogene-Quaternary calcareous succession, is one of the horst structures located along the Ionian
coast of southeastern Sicily (Figure 1B). The whole area lies at the footwall of a large normal fault
system that, since the Middle Pleistocene, has reactivated the Malta Escarpment [40], a large Mesozoic
boundary separating the Pelagian Block from the Ionian oceanic domain to the East [41–43].

Southeastern Sicily is one of the most seismically active areas of the central Mediterranean. It is
characterized by a high level of crustal seismicity producing earthquakes with intensities of up to
XI–XII Mercalli-Cancani-Sieberg (MCS) and M ~7, such as the 1169, 1693, and 1908 events [44–46]
and related tsunami [15,16,47–49]. Being located along a collisional belt, at the footwall of a normal
fault system, the analyzed coastal area has experienced vertical deformation that, combined with
sea-level changes, has been recorded by several orders of Middle-Upper Quaternary marine terraces
and palaeo-shorelines [40,50–52]. However, since the Late Pleistocene the Maddalena Peninsula
(Figure 1C) was tectonically stable, as inferred from the elevation of the MIS 5.5 terraces [53] but lightly
uplifting in the Holocene [54–57]. According to Anzidei et al. [58], during the last few decades, Global
Positioning System (GPS) data and Glacial Isostatic Adjustment (GIA) models indicated current weak
subsidence at rates close to 1 mm/yr. This is relevant considering that the area is undergoing heavy
coastal retreat and so is exposed to severe storms associated with high-waves, also as a consequence of
the global sea-level rise [59–62].

The Ionian coast of Southeastern Sicily, between the towns of Augusta and Siracusa, is characterized
by the occurrence of anomalous calcareous and calcarenitic boulders. Scicchitano et al. [15] performed
direct observations on these boulders (distance from the coastline, size and weight), together with
statistical analysis of the storm regime of the area and hydrodynamic estimations, to verify if tsunami
or storm waves were responsible for their detachment and transport. Radiocarbon age determinations
of marine organisms encrusting the blocks, compared to historical catalogues, suggested that, in the last
1000 years, the largest earthquakes with local sources (e.g., the 1169, 1693, and 1908 events) could have
triggered tsunami waves that displaced the largest boulders occurring in the area. Other evidence of
these tsunami events were found along the coasts of Southeastern Sicily, inside several lagoons [63–65]
and in coastal deposits [48].

Along Maddalena Peninsula, boulder deposits usually occur on large surfaces gently sloping
towards the sea, bordered by high cliffs up to 5 m, formed by Pleistocene depositional terraces or
rock platforms dissecting Neogene sub-horizontal, well-stratified, and fractured limestones. The
surveillance camera detected boulder displacements inside an ancient Greek quarry located in the
northern sector of the Maddalena Peninsula, whose floor has been partially submerged by Holocene
sea level rise (up to 40 cm [54]). Boulders located inside the quarry were surveyed with terrestrial laser
scanner (TLS) techniques in order to estimate, through the use of a specific hydrodynamic equation [30],
the inland penetration limit of the tsunami responsible for the deposition of the block [16]. The two
biggest boulders surveyed inside the quarry were represented by a boulder of about 13 ton in weight,
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previously attributed to a tsunami impact [15], and a boulder of about 41 ton displaced in January 2009
by a storm. Hydrodynamic analyses performed by several authors reveal that coasts of Southeastern
Sicily can be affected by severe storm which generate waves able to detach large blocks from the coastal
edge and transport them inland [15,16,19,24,66,67].
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Figure 1. Geological settings of Southeastern Sicily. (A) Tectonic sketch map of the Sicilian Collision
Zone in eastern Sicily (from Cultrera et al. [39], modified). (B) Position of the Maddalena Peninsula
area along the Ionian coast of southeastern Sicily. (C) Morphological map of the Maddalena Peninsula
showing the location of the study area (box).

For the Ionian coast of Sicily, significant spectral wave height (Hm0) and peak period (Tp),
recorded during the last 18 years by the Catania buoy (RON—Rete Ondametrica Nazionale;
www.idromare.com [68]), are available (Figure 2A). Wave data recorded by the Catania buoy indicated
that the most severe storm, which occurred on 2 February 1996, was characterized by significant
spectral wave height (Hm0) of about 6.2 m and peak period Tp = 11.3 s. According to Inglesi et al. [69],
the return value Hm0 (50) corresponding to a return period of 50 years in the Catania sector do not
exceed 6.24 m. A monitoring operated at the quarry located on Maddalena Peninsula indicated that the
main boulder displacements have occurred as result of three distinct storms that occurred in 2009, 2014,
and 2018. The events of 2014 and 2018 were two medicanes, called Qendresa and Zorbas, respectively.

www.idromare.com
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Qendresa formed on 5 November and rapidly intensified two days later, reaching peak intensity on
7 November. It directly hit Malta in the afternoon and then crossed the Eastern coast of Sicily on
8 November. Later, the cyclone weakened significantly and dissipated over Crete on 11 November.
Measurements taken by the ondametric buoy of Crotone and Catania (RON—Rete Ondametrica
Nazionale; www.idromare.com [68,70]; Figure 2B), during the passage of Qendresa, show values of
significant spectral wave height Hm0 of about 4 m. Medicane Zorbas emerged into the Aegean Sea,
moved westward to reach the center of Ionian sea, then inverted its track, moving over northwestern
Turkey. Although Zorbas did not affect southeastern Sicily directly, as in the case of Medicane Qendresa,
its impact induced similar effects, as recorded by satellite data in off-shore (significant wave height
Hs of about 4.1 m) (source AVISO satellite altimetry, credits CLS/CNES [71]). Another relevant effect
induced by Zorbas was a storm surge, up to 1m above, detected by the tide gauge sited inside Catania
harbor (Figure 2C) and also observed in the video recorded in the Maddalena Peninsula.Water 2020, 12, x FOR PEER REVIEW 5 of 25 
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Figure 2. Meteo-marine features recorded in Southeastern Sicily. (A) Data of significant spectral wave
heights Hm0 recorded by ondametric buoy of Catania (1986–2006). (B) Wave height Hm0 recorded by
Catania buoy (RON) during Medicane Qendresa. (C) Sea level recorded by tide gauge of Capo Passero
(ISPRA [72]) during Medicane Zorbas.
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3. Material and Methods

In 2003, the technicians of the Marine Protected Area of Plemmirio installed 10 surveillance
stations along the coasts of Maddalena Peninsula with the aim to detect illegal fishing operations and
to monitoring sea conditions. One of these stations was positioned in proximity of the ancient Greek
quarry sited in the northern sector of the Maddalena Peninsula (Figure 3A). The stations are mounted
9 m high on a pole (Figure 3B) and equipped with a HDTV camera (Figure 3C) with 30x optical zoom
framing the coastal area (lens 4.3–129 mm; F1.6–4.7; horizontal field of view: 65.6◦–2.0◦; vertical field
of view: 39.0◦–1.2◦).
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Figure 3. (A) Orthophoto (Resolution 1cm/pxl) of ancient Greek quarry located in the northern sector of
the Maddalena Peninsula, the arrow shows the Monitoring Station. (B) Monitoring Station mounted on
pole at 9 m height. (C) HDTV camera. (D) Unmanned Autonomous Vehicle (UAV) survey operations
in the studied area, the pole with Monitoring Station is also visible.

During 28 September 2019, the camera recorded about 4 h of video during the Medicane
Zorbas. Analyses of this video identified 28 boulder movements inside the quarry. Some of these
boulders were already present, and they had been attributed both to tsunami and storm events [15].
The others were detached from the submerged area and transported inland during the Medicane
Zorbas. In order to proceed with the analysis of the videos extracted from the Control Center Data Base
(resolution 1920 × 1080, frame rate of 25 fps, 50 Hz), it has been necessary to reconstruct a detailed
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and accurate immersive virtual scenario of the quarry and of the boulders, pre and post the impact of
Medicane Zorbas.

In 2009, the northern sector of the Maddalena Peninsula was surveyed using Terrestrial Laser
Scanner (TLS) techniques in order to reconstruct the morpho-topographic features of the quarry and
of the boulders inside it [16]. The survey was performed by scanning the area from four different
points, located on the top of the quarry and from two other points sited inside it. The complete TLS
dataset was treated and analyzed by using HDS Cyclone software in order to remove any outliers
such as vegetation or anthropogenic features. Then, a dense cloud of points was generated permitting
the reconstruction of a 3D model of the quarry and of the boulders present in it. Moreover, since the
acquisition of TLS data, we started to monitor the boulder positions inside the quarry by surveying after
every storm event, through RTK-GPS techniques, benchmarks located on boulders reconstructed with
TLS. In January 2015, a few months after the Medicane Qendresa (8 September 2014), we performed
UAV photogrammetric surveys of the quarry to detect the position of the boulders displaced during
the Medicane. The results convinced us to replace TLS with UAV photogrammetry techniques (cheaper
than TLS and with similar resolution and accuracy) to monitor boulder movements occurring inside
the quarry. With this aim, we performed surveys in 2016–2018.

A pre-impact virtual immersive scenario has been modelled combining cloud points reconstructed
with TLS in 2009 with the cloud points detected with the UAV photogrammetric surveys performed on
2017. This scenario was used to detect in the video morphological features, such as the edges of the
quarry, useful as benchmarks to geometrically analyze, through specific software, the images recorded
in the video showing boulder movements. To reconstruct the post-impact virtual immersive scenario
we performed, three days after the impact of the Medicane Zorbas, an UAV photogrammetric survey
(Figure 3D) of the quarry area together with a proximity photogrammetric survey of the new boulders
displaced on the coast.

Geographic Information System (GIS) analyses of the products of previous and recent surveys let us
identify most of the boulders appearing in the recorded video (the others have probably been fragmented
into smaller blocks). The video has been analyzed by Tracker (https://physlets.org/tracker/ [73]), a video
analysis and modelling software built on the Open Source Physics (OSP, Doug Brown, Cabrillo College,
California, U.S.) Java framework. Distance between specific features clearly visible in the video, as
for example quarry edges, holes, and fractures, were inserted as a spatial reference in Tracker. Once
defined, the spatial reference, tagging in each frame of the video objects in motion (boulders, waves,
and flows), the software is able to calculate velocity and accelerations. We focused our analyses on the
estimation of the flow velocity at time boulder movements occurred.

From the assessment of boulder features, we have calculated, through the hydrodynamic
equations of Nandasena et al. [32], the flow needed to start the movements of the blocks analyzed in
the videos. Flow values estimated trough video analyses were compared with those calculated with
the Nandasena et al. [32] model in order to evaluate the possible discrepancies.

3.1. UAV Data and GIS Analyses

The use of Unmanned Autonomous Vehicles (UAV), better known as drones, in various
fields of geoscience has increased during the last five years. In coastal geomorphology studies,
UAV photogrammetry techniques have been applied for flood estimation [58,74] and for boulder
field monitoring [20,21]. Since 2015, the area of study has been seasonally monitored with UAV
photogrammetry surveys in order to detect boulder movements inside the Greek quarry sited in
Maddalena Peninsula. Considering the large number of boulders displaced during the impact of the
storm generated by the Medicane Zorbas, we performed an UAV survey three days after the storm.
The survey was performed with a Multicopter NT4 Airvision (Studio Geologi Associati T.S.T., Catania,
Italy) (Figure 3), equipped with an High Definition camera (resolution 24Mpx, lens 16 mm, f3, 5–5, 6),
that flew at 30m of altitude, during four distinct flights, with a speed of 1.5 m/s.

https://physlets.org/tracker/
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In order to obtain an accurate georeferencing of the UAV data, we used the ground control point
(GCP) net installed in 2015 and composed of 40 benchmarks regularly spaced along the quarry area
(Figure 4A). Benchmarks positions were surveyed with real-time kinematic (RTK) GPS performing 1 h
of acquisition for each point of the net. Colored markers, visible from 30 m of altitude, were placed
on the benchmarks (Figure 4B) before realizing the flights. A total of 152 pictures were collected and
processed using Agisoft Photoscan Professional software version 1.4.0 (St. Petersburg, Russia) to obtain
a high-resolution digital elevation model (DEM, 2 cm grid cell; Figure 5A) and orthophotographs
(1 cm/pxl; Figure 5B).
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These two products were integrated into the general Geo Data Base developed in 2009 and
composed by (i) orthophotos and DEM obtained by TLS (2009) and UAV surveys (2015–2018);
(ii) orthophotos provided by Regione Sicilia (2007, 2008, 2013); (iii) RTK-GPS data of boulder positions
and displacements (2009–2018); and (iv) a 3D model of all boulders dislocated inside the quarry
since 2009. Morpho-topographic surveys were performed every year and interpreted in the GIS
environment (QGIS) through the digitalization of all the main morphological features such as boulders,
fractures, detached part of coastline, score marks and sediment accumulations. These features have
been compared with those extracted from the orthophotographs and DEM obtained in the previous
year to identify boulder movements or other changes in coastal landscape. As it is possible to observe
in Figure 6, several boulders were displaced in the studied area for effects of the impact of Medicane
Zorbas; some of these were already in the area and moved from their original position, while others
were detached from the infralittoral zone and deposited on the coastline.
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Figure 6. Boulders edited in Quantum Geographic Information System (QGIS) from the Orthophoto
reconstructed after the impact of Medicane Zorbas; the boulders already present on the coastline and
displaced by Zorbas are marked in yellow, the boulders detached from the coastline and dispersed
on the shore-platform by Zorbas are marked in orange, and the boulders not displaced by Zorbas are
marked in green.
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3.2. Boulders Survey

Once identified in the most recent orthophoto, the new boulders dispersed on the coastline by
the impact of Medicane Zorbas have been surveyed with photogrammetry techniques to accurately
calculate volume, dimension, and organic encrustations. Pictures were collected with an High
Definition camera (resolution 24Mpx, lens 16 mm, f3,5-5,6). Around each boulder, 38 benchmarks were
positioned on the boulders and surveyed with a total station for georeferencing the reconstructions
of the blocks. Pictures and Benchmarks were processed in Agisoft Photoscan Professional software
version 1.4.0 (Figure 7A) to obtain high-resolution 3D surface of the boulders and then post processed
in Rhino 6 (Rhino Software 6, Mc Neel Europe, Barcellona, Spain) to close holes and missed surface
and generate the final 3d model (Figure 7B). Determination of bulk density was carried out on rock
samples collected from the surveyed boulders. The volume of rock samples was determined through
the Instantaneous Water Immersion Method [75]. The mass of each boulder was estimated as the
product of boulder’s density and volume. Density was assigned to each boulder on the basis of results
of bulk density measurements as well as considering its thickness and lithology (Table 1).
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Table 1. Boulder features detected through photogrammetry surveys and laboratory analysis.

ID Volume
(m3)

Density
(kg/m3)

Masses
(kg) a-Axis (m) b-Axis (m) c-Axis (m) a-Axis

Direction

BN 0.367 2080 763.36 1.8 0.95 0.3 N110E
B2 0.705 2080 1466.4 1.5 1.17 0.42 N120E
B3 0.828 2040 1689.12 1.9 0.96 0.45 N210E
B4 0.569 2070 1177.83 1.57 0.97 0.4 N190E
D 2.283 2040 4657.32 2.4 1.95 1
F 1.461 2040 2980.44 2.1 1.9 0.6 N354E
H 3.377 2040 6889.08 2.6 2.4 0.9
L 0.89 2040 1815.6 2.5 1.6 0.5 N338E
N 4.031 2040 8223.24 3.2 2.2 1.15 N281E
J 3.367 2040 6868.68 2.2 2.1 1.25
X 1.61 2040 3284.4 2.2 1.95 0.7
K 18.782 2200 41320.4 5.8 5.18 1.3 N159E

3.3. Video Editing

More than 7 h of consecutive video recorded on 28 September 2019 were analyzed, detecting 28
distinct boulder movements occurred in the Greek quarry (Table 2). In particular, we focused on five
boulders, for which a reliable identification in field and in the orthophoto was possible. Boulders B2,
B3, B4, and BN were not present on the coastline before the impact of Zorbas. Boulder K is a very
large block, about 41 ton in weight, first displaced by a storm in 2009 and moved again by the two
medicanes (2014 and 2018). Videos highlighted the wave impacts on the Greek quarry and showed the
boulder movement that occurred in subaerial/submerged scenario. In the video frames, the moment of
boulder movements is visible, which occurred with a clear wet surface caused by a continuous wave
flow impacting. At the moment of boulder movement, wave flow assumed a turbulent motion with
main directions from SE and E, with subsequent backwash flow detected in different directions.

Table 2. Results of video analyses of boulder displacements detected in the Maddalena Peninsula.

No. Video Time Frame Boulder Movement Dynamics Found in Field Flow u (m/s)

1 14:21:37.221–14:21:50.945 B1 Sliding NO
2 14:29:32.769–14:29:44.885 B1 Sliding/overturning NO 2.012
3 14:31:08.964–14:31:13.264 B1 Overturning NO 1.71
4 14:33:11.857–14:33:16.157 B1 Saltation NO 1.29
5 14:35:32.948–14:35:36.648 B1_F Overturning NO 1.588
6 14:41:13.447–14:41:15.147 B1 Overturning NO 2.113
7 15:01:18.471 B1 Saltation NO
8 15:02:17.148–15:02:18.948 B2 Overturning NO 2.101
9 15:14:57.718-15:15:04.118 B2 Overturning NO 1.687
10 15:51:53.464 B1_F Saltation NO 1.783
11 15:52:46.083 B2 Saltation YES 2.101
12 15:57:57.546–15:58:02.145 B3 Sliding YES
13 15:59:05.542–15:59:07.342 B3 Sliding YES 2.58
14 15:59:16.666 B3 Sliding YES
15 16:05:17.440–16:05:24.040 B3 Overturning YES 1.663
16 16:08:04.024–16:08:34.941 B3 Overturning/Sliding YES 2.331
17 16:16:17.351–16:16:23.504 B3 Overturning YES 1.305
18 16:16:57.984–16:17:05.536 BN Overturning YES 1.981
19 16:18:08.880–16:18:13.080 B3 Overturning/Sliding YES
20 16:26:28.971 B3 Overturning/Sliding YES
21 16:28:04.317–16:28:14.854 BT Overturning NO 1.345
22 16:28:30.688–16:28:44.506 BT Overturning NO 2.269
23 16:31:27.882 B3 Overturning YES
24 16:31:30 K Sliding YES 4
25 17:41:35.526 B4 Saltation YES
26 17:42:45.483–17:42:52.613 B4 Saltation YES
27 17:49:26.616–17:49:36.252 B4 Overturning YES
28 18:16:30 B4 Sliding YES 2.525
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Video analysis has been performed by means of Tracker software (Doug Brown, Cabrillo College,
CA, USA) using as metric reference the measures of the quarry borders detected by TLS data and
some other specific features recognizable on the bedrock of the quarry (Figure 8). Metric references
were selected very close to the boulders displaced in the video in order to avoid issues related to
perspective distortion that could induce significant errors in the measurements of flow velocity. Videos
were acquired with a frequency of 25 fps; detecting a fixed point on the boulders in each frame, it
was possible to assess the wave flow velocity, wave period, wave height, velocity, and acceleration
of boulders when they start to move. For boulders B2, B3, B4, and BN, we selected the movement
showing highest values of flow velocity as reported in Table 3. Boulder K moved just one time, but,
unfortunately, the presence of strong turbulence at that time did not permit us to evaluate the flow for
each frame of the video. In this case, velocity was calculated considering distance and time between
two clearly visible frames.
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Figure 8. Editing analysis of video frames during boulder movements through Tracker software.
(A) Rolling of boulder B2 at hour 15:02:00 UTC; (B) movement of boulder B3 at hour 16:16:00 UTC.
In the red box diagrams are showed the flow velocity estimations marked for each frame of the video.

Table 3. Boulder detected by video editing, selected for flow velocity comparison with hydrodynamic models.

Boulder Instant Time (Hour UTC) Maximum Flow Observed in the Videos (m/s)

B2 15:01:59 2.1 ± 0.42
B3 16:26:13 2.33 ± 0.5
BN 18:16:27 1.98 ± 0.11
B4 16:17:49 2.53 ± 1.34
K* 16:30:08 4 ± 2.25

3.4. Hydrodynamic Models

In the last few years, several hydrodynamic models have been proposed by different authors
to describe boulders displacement in coastal areas as result of the propagation of an extreme
wave [28,29,31,32,36,76]. Nandasena et al. [32], in particular, elaborated a model to calculate the
flow velocity needed to start the movement of a boulder for various dynamics of movement
(sliding, rolling/overturning, saltation/lifting) and different pre-settings conditions of the boulder
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(the joint-bounded-JB, subaerial/submerged-SB). At the present, the main limit for applying
Nandasena et al. [32] to field evidence has been that the dynamics of the movements were not
certain but reconstructed comparing the final position of a boulder with the previous position.

As exposed in the videos editing, the final position of the boulders, displaced during the Medicane
Zorbas, is never related to a single wave impact, but it is the result of several different movements that
occurred in different directions and with different amplitudes. In this case, we overcome this problem
because, through the recorded video, it was possible to extract, for each movement, certain information
about the original position and pre-setting condition of the boulder and the dynamics of the movement.
Moreover, from video editing, we obtained values of flow velocity at the time of movement of the
boulders that could be directly compared with values estimated by Nandasena et al. [32] model. This
model has been applied to the five considered boulders in relation to five specific movements recorded
in the video (Table 3), in subaerial/submerged scenario:

sliding

u2 =
2(ρs/ρw − 1)gc(µscos θ+ sin θ)

Cd(c/b) + µsCl
(1)

rolling/overturning

u2 =
2(ρs/ρw − 1)gc(cos θ+ (c/b)sin θ)

Cd

(
c2/b2

)
+ Cl

(2)

saltation/lifting

u2 =
2(ρs/ρw − 1)gc(cos θ)

Cl
(3)

in joint-bounded scenario
saltation/lifting

u2 =
2(ρs/ρw − 1)gc(cos θ+ µs sin θ)

Cl
(4)

where

u is the flow velocity needed to start the boulder movement;
ρs is the density of the boulder;
ρw is the density of the water (equal to 1025 kg/m3);
g is the gravity acceleration;
µs is the coefficient of static friction;
θ is the angle of the bed slope at the pre-transport location in degrees;
Cd is the drag coefficient (equal to 1.5);
a− b− c are the axis of the boulder, with the convention a > b > c;
Cl is the lift coefficient (equal to 0.178).

Although some authors attributed to the wave flow the same density value for the
seawater [28,29,31,32], recent work [77] has demonstrated that flow density, resulting from a mix of
seawater and sediments, should be estimated as follow:

ρm = (fs∗ρs) + (fw + ρw) (5)

where ρm is the average density of the seawater and sediment mix, fw is the seawater fraction by
volume between 0 and 1, fs is the sediment fraction by volume between 0 and 1, ρw is the density of
clear seawater (1.025 g/cm3), ρs is the sediment density, and fw + fs = 1.

4. Results

Since 2009, the coast of Maddalena Peninsula has been impacted by several storms, three of which
induced boulder displacements inside a Greek quarry and two, in particular, were Medicane events
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(Qendresa 2014; Zorbas 2018). on 13 January 2009, an intense storm displaced the biggest boulder
(K, about 41 ton in weight) about 9 m inland, which was also moved during Medicanes Qendresa and
Zorbas (Figure 9). Analyses of orthophotos provided by Regione Sicilia for (2007, 2008) revealed that
the boulder K was broken from the coastline between August 2017 and August 2018. Field survey
suggested that it occurred as a result of erosional process (Figure 9B) and not in response to the direct
impact of a wave. Although the storm in 2009 was able to induce the biggest displacement to boulder
K, if compared with movements during Medicane (Figure 9C), it did not dislocate many other boulders
(only four more small boulders were moved during the storm). In contrast, Qendresa and Zorbas
displaced a larger number of small boulders but were able to move boulder K only for short distance
(about 1 m for each event).

Water 2020, 12, x FOR PEER REVIEW 14 of 25 

where ρm  is the average density of the seawater and sediment mix, fw is the seawater fraction by volume 

between 0 and 1, fs is the sediment fraction by volume between 0 and 1, ρw is the density of clear seawater 

(1.025 g/cm3), ρs is the sediment density, and fw + fs = 1. 

 

4. Results 

Since 2009, the coast of Maddalena Peninsula has been impacted by several storms, three of which 

induced boulder displacements inside a Greek quarry and two, in particular, were Medicane events (Qendresa 

2014; Zorbas 2018). on 13 January 2009, an intense storm displaced the biggest boulder (K, about 41 ton in 

weight) about 9 m inland, which was also moved during Medicanes Qendresa and Zorbas (Figure 9). Analyses 

of orthophotos provided by Regione Sicilia for (2007, 2008) revealed that the boulder K was broken from the 

coastline between August 2017 and August 2018. Field survey suggested that it occurred as a result of erosional 

process (Figure 9B) and not in response to the direct impact of a wave. Although the storm in 2009 was able 

to induce the biggest displacement to boulder K, if compared with movements during Medicane (Figure 9C), 

it did not dislocate many other boulders (only four more small boulders were moved during the storm). In 

contrast, Qendresa and Zorbas displaced a larger number of small boulders but were able to move boulder K 

only for short distance (about 1 m for each event). 

 

Figure 9. Boulders displacements during storm events; (A) Position of Boulders K and A from 2007 to 2018. (B) 

Position of Boulders K and A on 2008. (C) Displacements of Boulder K for the impact of the storms. 

The two medicanes transported inland dozens of small blocks, ranging in weight between 1 ton and 2 

ton, eroded from the external edge of the coastline (Figure 10) and dispersed on the coastal area up to the 

external walls of the quarry located about 33 m landward. The most relevant boulder deposit was detected in 

the NW corner of the quarry and it is mainly composed by imbricated boulders lying on a coarse sand of about 

40 cm thick. Analyses of the video showed that this berm was the result of boulder accumulation by the action 

of wave impacts, but mostly due to a turbulent flow, running along the base of the quarry, that moved the 

boulders along a path parallel to the coastline. The video highlighted that this flow, reaching flow velocity 

Figure 9. Boulders displacements during storm events; (A) Position of Boulders K and A from 2007
to 2018. (B) Position of Boulders K and A on 2008. (C) Displacements of Boulder K for the impact of
the storms.

The two medicanes transported inland dozens of small blocks, ranging in weight between 1 ton
and 2 ton, eroded from the external edge of the coastline (Figure 10) and dispersed on the coastal area
up to the external walls of the quarry located about 33 m landward. The most relevant boulder deposit
was detected in the NW corner of the quarry and it is mainly composed by imbricated boulders lying
on a coarse sand of about 40 cm thick. Analyses of the video showed that this berm was the result
of boulder accumulation by the action of wave impacts, but mostly due to a turbulent flow, running
along the base of the quarry, that moved the boulders along a path parallel to the coastline. The video
highlighted that this flow, reaching flow velocity values of up to 4 m/s, was nourished by the strongest
waves, hitting the wall of the quarry, and triggered by the topography gently sloping toward the north
(about 0.58◦).
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Figure 10. Boulders displaced by the impact of medicanes Qendresa and Zorbas; the rectangle marks
the area where boulders have been detached from the coastline, and the arrow indicates the direction
of the flow generating boulder deposit on the edge of the quarry.

By video analysis, it was possible to observe the movement of the boulders in relation to the
wave flow impacting, highlighting that a surface wetted by a significant number of waves allowed
the movement of the boulders. Both sliding, rolling/overturning, and saltation lifting movements
were observed in video records, and the main displacements were observed during great wave
flow impacting on the shore platform, with Eastern and Southeastern directions, characterized
by a minimum flow of 1.2 m/s and a maximum flow of 4 m/s. Considering the relationships of
Nandasena et al. [32], the wave flow needed for boulders movements has been assessed, obtaining
wave flow values for subaerial/submerged scenario span from 1.96–4.78 m/s in sliding, 3.75–9.73 m/s in
rolling/overturning, 5.64–12.63 m/s in saltation lifting and wave flow values in joint bounded scenario
span from 5.8–12.76 m/s (Figure 11). In particular, focus was given on boulders BN, B2, B3, B4, K
(Figure 12) in submerged scenario, selecting the five most clearly visible movements (one video for
each boulder, see Table 3 and Supplementary Materials Video S1: Boulder B2; Video S2: Boulder B3;
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Video S3: Boulder B4; Video S4: Boulder BN; Video S5: Boulder K) in order to estimate the wave flow
in combination with type of boulder movement. These boulders present volume values spanning
from 0.37 m3 to 0.83 m3 with masses estimated between 763 kg and 1689 kg. In each one, sliding,
rolling/overturning, saltation/lifting movements were detected by video records in combination with
fragmentation as well. For the boulder K, about 41 ton in weight, a movement with a displacement of
1 m between 16:31–16:32 UTC was detected (Figure 13). Although the great turbulence at the time
of displacement did not permit us to calculate flow velocity in each single frame of the video, we
estimated the flow considering the time that the wave spent to run across the distance existing between
the edge of the quarry and the boulder K.
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Figure 11. Flow needed to move the boulders assessed with Nandasena et al. [32] relationships and
flow obtained by video editing.
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Figure 13. Boulder displacements after a strong wave flow; in green, boulders with volume less than
1 m3 in blue boulders with volume between 1-5 m3, in red boulders with volume greater than 5 m3.

5. Discussions

The Medicane Zorbas caused a very strong storm, characterized by high values of surges and
wave height, able to dissipate a lot of flow energy on the coastal zones. The energy dissipated on
Maddalena Peninsula was sufficient to move coastal boulders of relevant weight, up to 41 tons. Up to
the present, the studies of boulders movements were carried out through a definition of pre and post
impact scenarios after the event (e.g., references [19–22,30,75]), but in this work, for the first time, it was
possible not only to directly observe how the boulders movements occur, but also to accurately measure
some important parameter, as the flow velocity at time of boulder displacement, useful to compare the
hydrodynamic model with natural process. From a general analysis of the videos, although all the
displaced boulders were already present on the coastline, 90% of the movement occurred only when
the boulders were completely submerged by water flows. Single wave impact is rarely responsible of
boulder displacements (three cases out of 28), highlighting that it is not correct to connect unique wave
height and boulder movements. According to Cox et al. [34], it appears more reasonable that boulder
displacements along the coastline occur due to the effects of multiple waves. In our videos, it is evident
that multiple waves set up a continuous and turbulent water flow on the coastal area, causing flooding
able to submerge the boulders that start the movement.

During the storm on Maddalena Peninsula, flooding generated by multiple waves impact was
amplified by a temporary storm surge inducted by the effects of Medicane. The towns of Marzamemi
and Santa Croce Camerina, located about 40 km south of the Maddalena Peninsula, registered severe
flooding inside the harbor with a sea level increased up to 1 m. In addition, on 28 September 2018, the
tide gauge located inside the harbor of Catania recorded anomalous values of sea level—up to 15 cm
above normal (Figure 2C). This effect was estimated also in Maddalena Peninsula through a comparison
between pre-impact immersive scenario, reconstructed from TLS and UAV photogrammetric data,
and images extracted from the videos. This analysis let us reconstruct an increase of water column in
Maddalena Peninsula of about 50 cm (Figure 14).

In any case, the main contribution to the flooding that submerged the boulders in the Greek quarry
sited in the Maddalena Peninsula is related to the impact of multiple waves, up to nine associated with
the displacement of the biggest boulders, which sometimes reached the highest level of the quarry’s
wall (4 m height). Furthermore, for the boulder K, which is the biggest displaced by the storm, the
movement occurred only when 9 multiple waves (wave heights span 0.22–1.3 m in video records)
generated a great flow impacted the shore. For boulder K, the Engel and May [36] relationship provides
wave height at breaking point needed to start the movement, equal to 11.56 m, much greater than what
recorded both by satellite data in off-shore (Hs of about 4.1 m) (source AVISO satellite altimetry, credits
CLS/CNES [71]) and by video analysis on the shore-platform.
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In the videos, we detected 28 distinct boulders movements; for 10 of these, it was not possible
to calculate flow velocity because, at the time of their occurrence, turbulence was too intense to
detect certain points in the video images. Moreover, boulders B1, B1_F, and BT were not recognized
in field, so we cannot apply the Nandasena et al. [32] model to these boulders. For these reasons
we focused our analyses on four little boulders (B2, B3, B4, BN), for which movements occurred
through dynamics of sliding, rolling/overturning and saltation/lifting, and one big boulder of 41 tons
(boulder K), displaced by a turbulent wave flow. Knowledge of the boulder features, obtained by
TLS (K) and photogrammetric (B2, B3, B4, BN) surveys, permitted us to assess the flow needed to
displace the boulders for each three types of movements by means of the hydrodynamic equations of
Nandasena et al. [32], while the video records allowed us to determine the wave flow velocity at the
moment of starting movement with software Tracker. Flow velocity assessed through software Tracker
is subjected to relative error dependent on perspective distortion and frames sampling. This error
ranges in value between 15% in case of clearly visible flows and 50% in case of turbulent flows that do
not permit to identify reference points in the frame of the video. Although the use of a flow meter
located inside the quarry could contribute to better evaluate flow velocity, the absence of solid points
to anchor the instruments does not permit us to use this technique. For this reason, video editing was
the most suitable tool for estimating the wave flow velocity in this case of study.

We selected for each boulder the movements with the highest value of flow velocity measured
in the video and compared these values with those calculated with the Nandasena et al. [32] model.
Comparison shows that the models provide flow values greater than those measured on the video at
the starting movements. The discrepancy is probably related to the fact that the Nandasena et al. [32]
model considers equal the flow velocity required to move a boulder in a subaerial and submerged
scenario, while evidence highlighted from the analyses of the videos suggested that it is easiest for
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multiple waves to move a submerged boulder. This could be explained considering that a wave flow
able to move a boulder owns a density that is different than normal seawater because it is made by a
mix of seawater and sediments. In the literature, the standard density value of seawater is attributed at
the wave flow, while the recent work of Terry and Malik [77] has demonstrated that the correct density
value is due to the mix of seawater and sediments.

We made different evaluations of the flow velocity based on the Nandasena et al. [32] model
considering the different ρm values (Table 4) in function of sands fraction. Although assessment of
model flow, considering a 20% sand fraction with 80% of seawater fraction, shows a better fitting
between calculated and observed flow velocity values in hydrodynamic relationships, and they still
show an important disagreement (Figure 15).

Table 4. The Terry and Malik [77] relationship between seawater fraction (fw) and sand fraction (fs)
connected to the average density of the seawater and sediment mix (ρm).

fw fs ρm(kg/m3)

1 0 1025
0.9 0.1 1082.5
0.8 0.2 1140
0.7 0.3 1197.5
0.6 0.4 1255
0.5 0.5 1312.5
0.4 0.6 1370
0.3 0.7 1427.5
0.2 0.8 1485
0.1 0.9 1542.5
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Figure 15. Flow needed to move the boulders, evaluated using Nandasena et al. [32] relationships,
included correction for values of water flow density, compared with flow derived by video analysis.

Another parameter that has probably to be redefined is the lift coefficient. The friction forces
encountered by the wave flow are conditioned by this coefficient that in literature is equal to 0.178.
Recent work by Rovere et al. [37] and Cox et al. [34] show that the value of lift coefficient used in
literature was underestimated. We used Nandasena et al. [32] equations to estimate the value of lift
coefficient necessary to fill the gap existing between flow velocities calculated, included of density
correction, with those observed in the video. In the specific case of the Maddalena Peninsula, we
estimated a corrected lift coefficient equal to 1.4.

Another consideration on Boulder A (Figure 9A,B) located in the Southern area of the quarry.
This boulder of about 19 ton in weight was interpreted in Scicchitano et al. [16,54] as the result of the
impact of a past tsunami event. Although it is much smaller than Boulder K (41 ton in weight), it
was not displaced during the three storms that occurred in last 10 years. Boulder A is resulted in the
same position (measured with centimetric accuracy trough RTK-GPS and TLS techniques) since the
beginning of monitoring in 2007. In the same period Boulder K, that is double in weight, was displaced
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at least two times (Figure 9). Analyses of the videos, together with comparison of the 3D model of
the boulders, suggested that the axis orientation and the contact surface geometry between boulders
and bedrock play an important role in the displacements of boulder. Boulder K exposed its longer
axis to the main wave impact direction (from East), while Boulder A face has been showed the same
direction with the shorter axis. Moreover, the face of the Boulder A, directly in contact with the surface
of the quarry, is flat and very regular (it was probably part of the quarry detached and transported
inland by an extreme event), resulting in high value of friction. In contrast, the surface of Boulder K is
heavily karstified and exposes several erosional polls up to 1 m of diameter and 40 cm depth. These
characteristics led to the water flow, induced by the impact of multiple waves, to generate turbulences
below Boulder K that are minimized for Boulder A. These considerations support the hypothesis that a
tsunami could be reasonably responsible of the displacement of Boulder A [15,16].

Last but not least, analyses of the three storms that impacted Maddalena Peninsula in 2009, 2014
and 2018, suggest that, although medicanes generated wave heights compatible with the annual storm
regime of the area (Figure 2A), their impacts produced major effects. Qendresa and Zorbas displaced
dozens of blocks up to 2 ton in weight in the quarry of Maddalena Peninsula; most of these were
eroded from the coastline and transported landward. The 2009 storm dislocated only one boulder
that, although is the biggest located inside the quarry, at that time, it was lying very close to sea in
a very unstable position (Figure 9). Major effects produced by medicanes could be explained by the
storm surges (up to 1 m in the case of Zorbas) that they induced on coastal area as registered by the
tide gauge of Catania and observed in the video recorded on Maddalena Peninsula. As a consequence,
coastal areas are probably more vulnerable to the impact of medicanes than to common storms, and this
appears more significant when taking into account the theories claiming that, in the future, medicanes
will increase in strength in response to climate changes [12,13,78].

6. Conclusions

The dynamics of boulder displacements, in response to the impact of a storm event, are always a
difficult aspect to study due to the lack of evidence about the modality of the movements. Although
surveys pre and post events allow analysis the entity of boulders displacements, video records represent
the best solution for a deeper comprehension of the dynamics correlated to this natural process. In this
study, we present the first known video records of boulder displacements, which occurred inside
an ancient costal quarry located in the Maddalena Peninsula (Siracusa). Using different techniques
of survey and remote sensing, we reconstructed pre and post immersive virtual scenario that were
used to geometrically analyze the video and to calculate flow velocity and wave heights at the time of
boulder displacements. General observations, together with comparison between data measured in
the video and calculated with hydrodynamic model, suggested us the following conclusions:

(1) Boulder displacements occur mainly in submerged scenario, as consequence of flooding generated
by the impact of a series of waves. Although some hydrodynamic models equal the flow velocity
necessary to move a boulder in sub-aerial and submerged scenario, our evidence suggest they
should probably be described with different specific equations.

(2) Movements occur for the impact of multiple small waves rather than of a singular big one; in any
case, the possibility that a singular big wave could displace a boulder is not excluded at all, but
it is probably more attributable to tsunami events. Multiple waves generate a continuous flow
that nullifies friction forces, triggering the boulder displacements. Modelling through the Engel
and May [36] approach results in wave height values (11.56 m) much higher than those recorded
by satellite data in off-shore (Hs of about 4.1 m) and by video analysis on the shore platform
(0.22–1.3 m). This confirms that single impact models provide values of wave heights strongly
overestimated, respect to the natural process.

(3) Analyses performed for five displacements, in particular, let us compare values of flow velocity
estimated from videos with those calculated through Nandasena et al. [32] model for the same
boulders. Comparison shows a strong overestimation of the model, enforcing the thesis that



Water 2020, 12, 1497 21 of 25

sub-aerial and submerged scenarios have to be treated with different equations and suggesting
that the values of flow density and lift coefficient used in literature are underestimated. For the
case of the boulders movements occurred in the Maddalena Peninsula, we estimated a value of
flow density of about 1140 kg/m3, according to Terry and Malik [77] and a different value of lift
coefficient according to Rovere et al. [37] and Cox et al. [34].

(4) Considerations on a big boulder not displaced by the impact of the storm in 2009 or by the
impact of the two medicanes—Qendresa (2014) and Zorbas (2018)—suggest that a tsunami could
be reasonably responsible for the deposition of the boulders [15,16]. This seems to confirm
that, although some authors considered overestimated the number of tsunami reconstructed for
Mediterranean Sea [25], it is possible to define field evidence and methodological analyses to
discern tsunami and storm events [26].

Analyses of the monitored data suggest that medicanes produce greater effects than common
storms; this is probably due to the flooding they induce on the coastal areas and represents an important
aspect to investigate to properly assess the vulnerability of the coasts.
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