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Abstract: Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we
review the life cycle of O&G fields in the MRD focusing on the production history and resulting
environmental impacts and show how cumulative impacts affect coastal ecosystems. Individual fields
can last 40–60 years and most wells are in the final stages of production. Production increased
rapidly reaching a peak around 1970 and then declined. Produced water lagged O&G and was
generally higher during declining O&G production, making up about 70% of total liquids. Much of
the wetland loss in the delta is associated with O&G activities. These have contributed in three major
ways to wetland loss including alteration of surface hydrology, induced subsidence due to fluids
removal and fault activation, and toxic stress due to spilled oil and produced water. Changes in
surface hydrology are related to canal dredging and spoil placement. As canal density increases,
the density of natural channels decreases. Interconnected canal networks often lead to saltwater
intrusion. Spoil banks block natural overland flow affecting exchange of water, sediments, chemicals,
and organisms. Lower wetland productivity and reduced sediment input leads to enhanced surficial
subsidence. Spoil banks are not permanent but subside and compact over time and many spoil
banks no longer have subaerial expression. Fluid withdrawal from O&G formations leads to induced
subsidence and fault activation. Formation pore pressure decreases, which lowers the lateral confining
stress acting in the formation due to poroelastic coupling between pore pressure and stress. This
promotes normal faulting in an extensional geological environment like the MRD, which causes
surface subsidence in the vicinity of the faults. Induced reservoir compaction results in a reduction
of reservoir thickness. Induced subsidence occurs in two phases especially when production rate
is high. The first phase is compaction of the reservoir itself while the second phase is caused by a
slow drainage of pore pressure in bounding shales that induces time-delayed subsidence associated
with shale compaction. This second phase can continue for decades, even after most O&G has been
produced, resulting in subsidence over much of an oil field that can be greater than surface subsidence
due to altered hydrology. Produced water is water brought to the surface during O&G extraction
and an estimated 2 million barrels per day were discharged into Louisiana coastal wetlands and
waters from nearly 700 sites. This water is a mixture of either liquid or gaseous hydrocarbons, high
salinity (up to 300 ppt) water, dissolved and suspended solids such as sand or silt, and injected fluids
and additives associated with exploration and production activities and it is toxic to many estuarine
organisms including vegetation and fauna. Spilled oil has lethal and sub-lethal effects on a wide range
of estuarine organisms. The cumulative effect of alterations in surface hydrology, induced subsidence,
and toxins interact such that overall impacts are enhanced. Restoration of coastal wetlands degraded
by O&G activities should be informed by these impacts.
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1. Introduction

The first successful oil well was drilled in Louisiana in 1901 in southwestern Louisiana, in the
Jennings field and marked the beginning of oil and gas (O&G) production in Louisiana that, by the
mid-20th century, was the state’s primary industry [1]. Production of petroleum has been widespread
in the Mississippi River Delta (MRD) and there is a dense network of pipelines both inshore and
offshore (Figure 1). Hydrocarbon extraction in the MRD necessitated the dredging of canals through
wetlands and waterbodies for navigation, pipelines, and O&G extraction. As canals were dredged,
spoil material from canals was placed on the side of canals partially impounding wetlands; altering
natural hydrology and salinity; decreasing nutrient, organic matter, and sediment exchange; changing
vegetation composition and reducing vegetation productivity (e.g., [2–5]).

To understand the impacts of O&G activity on MRD wetlands, it is important to recognize that
wetland degradation in O&G fields occurred much more rapidly (decades) than the natural deltaic
cycle, which took place over centuries to millennia [5–10]. Naturally-occurring geologic faulting,
sediment compaction, the delta lobe cycle, variability in river discharge, global sea-level change, tidal
exchange, wave erosion, and storms such as hurricanes and frontal passages have shaped the MRD
landscape for thousands of years [5–15]. However, in less than a century, more than 30,000 km of
canals were dredged in the MRD [16–18], causing dramatic wetland loss (e.g., [9]) due to cumulative
effects [4,19] of altered surface hydrology, induced subsidence and fault activation [20], and toxicity of
produced water and spilled oil [21–23].
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Our objective in this paper is to review the literature on the life cycle of O&G fields in the MRD
by (1) describing the production history of hydrocarbons and produced water and (2) reviewing the
impacts of surface alterations, induced subsidence, and toxic materials. Although, these impacts have
been well documented, their interacting affects have been less well addressed. Thus, an important
objective is to consider their cumulative and indirect impacts on coastal ecosystems, especially wetlands,
in the MRD and to show how this information informs restoration.

2. Production History of Oil and Gas Fields

Hydrocarbon extraction has occurred in the MRD for over a century. Production increased rapidly
and then declined as reserves were depleted and fluid output was dominated by produced water
(Figures 2 and 3). This is true for the overall production history and for individual fields that were
active for 30–50 years or more.
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Figure 2. Annual oil and gas production in southern Louisiana between 1945 and 2019. Data source:
(http://www.dnr.louisiana.gov/assets/TAD/OGTables/Table03.pdf).

Wetland loss in coastal Louisiana has been quantified [19,24,25]. Researchers have used different
proxies of field development to correlate this land loss with specific oil and gas activities [26–29].
The authors of [30] reported the highest rates of wetland loss in the MRD correlated with peak
hydrocarbon production (Figure 3). In [18] it was reported that the annual number of well drilling
permits, a proxy for production, correlated with wetland loss rates (Figure 4). In this paper we
investigate the factors contributing to these relationships.

http://www.dnr.louisiana.gov/assets/TAD/OGTables/Table03.pdf
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Figure 3. Composite histories of fluid production from oil and gas fields and wetland loss in south 
Louisiana. Production data from the Louisiana Department of Natural Resources and the PI/Dwights 
PLUS database [31]. Wetland loss values were determined by [32] and John Barras (unpublished 
data). These historical data, integrated across the delta plain, show close temporal and spatial 
correlations between rates of wetland loss and rates of fluid production [30]. Note that “water” in the 
legend refers to produced water. 

 
Figure 4. The number of oil and gas permits issued annually and land loss rates [18]. 

Although individual fields show a similar pattern of production history and wetland loss, they 
differ in some details as illustrated for four different field complexes (Figure 5) that produced O&G 
over 4–6 decades. The Bully Camp and Madison Bay area had increased produced water 
development in the second half of their production history. Peak water production in the Bayou 
Rambio and DuLarge fields coincided with peak gas in this region that had relatively low oil capture. 
Water production was also high in the second half of the production history of this area. The pattern 
of water production in the Pointe au Chien study area was similar to gas production in the second 
half of the oil field life. In each example though, the production of oil, gas, and produced water varied 
over the field life-cycle, each field began, peaked, then gradually depleted over decades. All fields 
combine to yield the overall history of the coastal zone (Figures 2 and 3). All four fields illustrate the 
concept of a development cycle that includes a run-up to peak production followed by a gradual 
decrease to total abandonment. Individual fields and the aggregate of all fields follow a similar life 

Figure 3. Composite histories of fluid production from oil and gas fields and wetland loss in south
Louisiana. Production data from the Louisiana Department of Natural Resources and the PI/Dwights
PLUS database [31]. Wetland loss values were determined by [32] and John Barras (unpublished data).
These historical data, integrated across the delta plain, show close temporal and spatial correlations
between rates of wetland loss and rates of fluid production [30]. Note that “water” in the legend refers
to produced water.
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Figure 4. The number of oil and gas permits issued annually and land loss rates [18].

Although individual fields show a similar pattern of production history and wetland loss, they
differ in some details as illustrated for four different field complexes (Figure 5) that produced O&G over
4–6 decades. The Bully Camp and Madison Bay area had increased produced water development in
the second half of their production history. Peak water production in the Bayou Rambio and DuLarge
fields coincided with peak gas in this region that had relatively low oil capture. Water production was
also high in the second half of the production history of this area. The pattern of water production in
the Pointe au Chien study area was similar to gas production in the second half of the oil field life.
In each example though, the production of oil, gas, and produced water varied over the field life-cycle,
each field began, peaked, then gradually depleted over decades. All fields combine to yield the overall
history of the coastal zone (Figures 2 and 3). All four fields illustrate the concept of a development
cycle that includes a run-up to peak production followed by a gradual decrease to total abandonment.
Individual fields and the aggregate of all fields follow a similar life cycle. These patterns have important
implications for the impacts of hydrocarbon extraction on coastal ecosystems, especially wetlands,
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for three main reasons. First, dredging of canals leads to severe alteration of surface hydrology that
impacts coastal wetlands. Second, extraction of fluids (oil, gas, and water) leads to changes in pore
pressure that result in induced subsidence and fault activation. Third, accidental spills and intentional
releases of oil and produced water cause toxicity stresses that degrade coastal ecosystems. These factors
are discussed in more detail below, after which we show how cumulative and interacting impacts
multiply the individual impacts.
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Figure 5. Production history of selected oil and gas fields in the Mississippi delta. Upper left—Bully
Camp; upper right—Bayou Rambio and DeLarge fields; lower left—Madison Bay field area; lower
right—Pointe au Chien study area [30]. Note that “water” in the legends refers to produced water.

3. Patterns of Wetland Loss and Oil and Gas Activities

From 1930 to 2010 about a quarter (about 5000 km2) of MRD coastal marshes were lost, mostly
by conversion to open water [33,34] with two general patterns (Figure 6). Wetland loss has been
pervasive across the coast with high loss near the mouth of the Mississippi River, in the Barataria
and Terrebonne basins, and in the Chenier Plain. Two areas stand out with much less loss. One is
the central coast that receives input from the Atchafalaya River, which carries about a third of total
Mississippi River discharge, that flows into shallow bays and wetlands over a wide arc along the
central Louisiana coast. The other zone is on the northeastern flank of the delta in the seaward reaches
of the Pontchartrain estuary.
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Figure 6. Wetland loss in coastal Louisiana from 1932 to 2016. Red and yellow areas have high land
loss rates. Note that land loss is low in the central coast and in the northeastern flank of the delta.
(Source: [33,34] The map can be downloaded at https://pubs.usgs.gov/sim/3381/sim3381.pdf for detailed
examination of specific areas of change. See also https://pubs.er.usgs.gov/publication/sim3381).

A number of studies have discussed the causes of wetland loss and addressed the role of O&G
activities in this loss (Table 1). O&G activities reduce forces leading to wetland sustainability
(e.g., sedimentation, accretion, vegetation biomass production) and enhance forces leading to
deterioration (e.g., increased subsidence, saltwater intrusion, vegetation decline, toxicity stresses).
O&G impacts on wetlands are both direct and indirect. Direct loss is due both to canal dredging and
spoil placement, while indirect impacts include alteration of surface hydrology, induced subsidence,
and introduction of toxic substances. Direct impacts are reported to have caused between 6% and 70%
or more land loss while indirect impacts have caused between 20% and 80% or more of wetland loss
(Table 1).

Table 1. Estimates of the percentage of wetland loss caused by all oil and gas activities (overall) or by
direct or indirect impacts of oil and gas activities.

Location Time Period
Overall

Impacts (%
Wetland Loss)

Direct Impacts
(% Wetland

Loss)

Indirect
Impacts (%

Wetland Loss)
Source

Coastal Louisiana 1931–1967 69 [35]
Coastal Louisiana 45 [36]
Coastal Louisiana 10–69 [37]
Coastal Louisiana 10 up to 80 [38]
Coastal Louisiana 1955–1978 10 48–97 [39]
Mississippi River

Deltaic Plain 1955/56–1978 25–39 [40]

Coastal Louisiana 1932–1990
Majority of

losses due to
canals

[18,26,27]

Coastal Louisiana 1955–1978 20–60 14–16 20–60 [16]
Coastal Louisiana 1955–1978 16 [41]
Coastal Louisiana 1955–1978 6.6 [42]
Coastal Louisiana 1955–1978 16 30–59 [43]

Breton Sound 1933–1990 68 [9]
Barataria Basin 1933–1990 72 [9]

Mermentau Basin 1933–1990 35 [9]
Mississippi River

Deltaic Plain 1930–1990 33.2 10.8 22.4 [24,25]

https://pubs.usgs.gov/sim/3381/sim3381.pdf
https://pubs.er.usgs.gov/publication/sim3381
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Wetland loss patterns are generally similar to temporal patterns of production (Figure 7).
The different studies were done using different methods and represent different conceptualizations of
the delta and sub-areas sampled. Regardless of the proxy used to describe the oil and gas life-cycle,
the relation to land loss is unmistakable. The rates of land loss differ because they are for different
areas (e.g., total coast vs. deltaic and Chenier plains) and for different time periods and the study
methods, though similar, are not the same [32,34,44]. Peak loss occurred generally between 1960 and
1980. The curve for total O&G production is sharper than that of land loss likely because of delayed
impacts of O&G as well as other causes of land loss (e.g., isolation from riverine input, edge erosion,
hurricane impacts).
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Figure 7. Oil and gas production and land loss studies for coastal Louisiana. Loss values are
from [32,34,44] where rate values represent an average over the time interval shown. Production data
are from Louisiana Department of Natural Resources. These historical data show close temporal and
spatial correlations between rates of wetland loss and rates of hydrocarbon production.

4. Indirect Impacts of Oil and Gas Exploration and Production on Coastal Louisiana Wetlands

4.1. Alteration of Surface Hydrology Due to Canal Dredging and Spoil Placement

MRD wetlands are dependent on sheet flow for exchange of water, sediments, and nutrients to
sustain wetland health. Unimpeded wetland hydrology facilitates alternating flooding and draining of
wetlands. Canals and spoil banks are linear and intersecting, and spoil banks are higher in elevation than
surrounding wetlands and normal high tides [4,9,15,45]. Placement of dredge spoil impounds wetlands,
reducing or eliminating surface water exchange and tidal influence, reducing sediment deposition
onto wetlands, impeding the exchange of materials (e.g., nutrients, sediments, organisms) between
semi-impounded marshes and the surrounding marsh, and increasing inundation duration while
decreasing inundation frequency [2,4,16,46–50]. Spoil banks trap water, increasing water logging and
decreasing drainage, sediment accretion, and vegetation productivity (Figure 8) [4,15,16,19,46,48,51–63].
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As surface flow is minimized by spoil banks, water may only be introduced into impounded wetlands
when water levels are elevated during frontal passages or major storms.
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Figure 8. Total hours flooded, for one month, at a reference marsh with a natural berm and a partially
impounded area where about 75% of the natural berm had been replaced by a dredged canal spoil
bank, Golden Meadow oil and gas field south of New Orleans, LA [52]. The dashed line shows what
the relationship would be if there were no partial impoundment.

Due to spoil banks, accretion in un-impounded marshes may be up to five times higher than
that in impounded marshes [3,57,61,64–67]. Canals also promote saltwater intrusion into wetlands
previously isolated from direct exchange with higher salinity waters [2,4,27,47,48,68–71]. Increases in
salinity cause changes in vegetation composition and reduced productivity and/or death of fresh and
low salinity marsh species and lead to formation of open water [53,71–73]. Introduction of saltwater
increases sulfate concentrations, which can be reduced to sulfides in anaerobic soils, that stresses
and causes mortality to low salinity wetland vegetation [73] and rapid decomposition and collapse
of soil organic matter and soil structure peats [74]. Reduced vegetation productivity and vegetation
death exacerbate land loss because plant roots bind soils and increase soil strength. When roots die,
the wetland rapidly loses elevation and is more vulnerable to erosion [74,75].

Over time, canals widen as a result of spoil bank undercutting, erosion, and collapse causing
additional wetland loss [45,46]. Localized subsidence along pipeline canals occurs along the flanks
of spoil banks when the weight of the spoil depresses the surface of the marsh and leads to the
formation of linear ponds behind the spoil banks due to subsidence from the weight of the spoil,
trapping of water at the base of spoil banks and blocking of sediment input [76]. The authors of [77]
documented soil compaction beneath spoil banks created more impenetrable soils that reduced ground
water movement. These processes isolate the wetland behind the spoil bank from both above- and
belowground water exchange.

O&G canals are deep, straight channels while natural waterways are primarily shallow and
sinuous tidal channels [4]. As canal density increases in an area, the density of natural channels
decreases because canals preferentially capture water flow from natural channels (Figure 9) [37,52] in
a process termed ‘channel theft’, because deep, straight canals transport water more efficiently than
natural shallow and sinuous channels [50].
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Figure 9. The relationship between canal density and the density of natural channels. The data are
averages of replicate 1-km2 grids (numbers shown by symbol) in the region of Leeville, LA, a saline
marsh area [37].

Once dredged, spoil banks are not permanent features and have a life cycle of their own.
They disappear over time due to compaction, subsidence, sea-level rise, and erosion. Spoil banks
protect remnant marsh from wave erosion and as spoil banks disappear remnant marsh can be lost
due to wave attack, leading to further wetlands loss. In Figure 10, subaerial land that disappeared
between the two mapping dates (center panel in Figure 10) in the Leeville Field includes both spoil
banks and marsh.

As O&G canals are so pervasive, it has been suggested that canals are responsible for practically
all wetlands loss. For example, the authors of [18,27] plotted land loss from 15-min quadrangles against
canal density and concluded that land loss was directly related to the percent of canals in each map,
indicating that almost all land loss was related to canals (Figure 11). However, in [5] and [9] the authors
showed that this approach is flawed because it statistically relates all land loss in 15-min quadrangles
(which cover about 66,000 ha) to canal density in the quadrangle even when it is neither spatially
or functionally related to land loss patterns. Additionally, as we discuss below, induced subsidence
causes land loss but is not functionally related to surface alterations in hydrology. In addition, toxic
stress due to spilled oil and produced water cause vegetation stress and mortality. However, altered
hydrology, induced subsidence, and toxic compounds interact synergistically and cause wetland loss
as indicated by the interactions demonstrated in the Leeville field (Figure 10).



Water 2020, 12, 1492 10 of 29
Water 2020, 12, x FOR PEER REVIEW 10 of 30 

 

 
Figure 10. Aerial imagery of a portion of the Leeville oil and gas field in southern Louisiana showing 
the disappearance of spoil banks and marsh between 1998 and 2017. Bayou Lafourche is in the upper 
left in each of the images [5]. Areas depicted in red in image B disappeared between the two dates. 
Red linear strips are spoil banks that disappeared. Green shows subaerial land, both spoil banks and 
marsh, that was still present in 2017. The Southwest Louisiana Canal at the top of image A was 
dredged in the late 19th century. In 1998, some spoil banks along the canal were still present, but by 
2017 they had disappeared. Louisiana highway 1 is shown at the upper left in image A. By 2017, a 
new, elevated highway was constructed (white lines in Image C). The width of images is 
approximately 2.8 km. 

As O&G canals are so pervasive, it has been suggested that canals are responsible for practically 
all wetlands loss. For example, the authors of [18,27] plotted land loss from 15-min quadrangles 
against canal density and concluded that land loss was directly related to the percent of canals in 
each map, indicating that almost all land loss was related to canals (Figure 11). However, in [5] and 
[9] the authors showed that this approach is flawed because it statistically relates all land loss in 15-
min quadrangles (which cover about 66,000 ha) to canal density in the quadrangle even when it is 
neither spatially or functionally related to land loss patterns. Additionally, as we discuss below, 
induced subsidence causes land loss but is not functionally related to surface alterations in 
hydrology. In addition, toxic stress due to spilled oil and produced water cause vegetation stress and 
mortality. However, altered hydrology, induced subsidence, and toxic compounds interact 
synergistically and cause wetland loss as indicated by the interactions demonstrated in the Leeville 
field (Figure 10).  

Figure 10. Aerial imagery of a portion of the Leeville oil and gas field in southern Louisiana showing
the disappearance of spoil banks and marsh between 1998 and 2017. Bayou Lafourche is in the upper
left in each of the images [5]. Areas depicted in red in image B disappeared between the two dates. Red
linear strips are spoil banks that disappeared. Green shows subaerial land, both spoil banks and marsh,
that was still present in 2017. The Southwest Louisiana Canal at the top of image A was dredged in the
late 19th century. In 1998, some spoil banks along the canal were still present, but by 2017 they had
disappeared. Louisiana highway 1 is shown at the upper left in image A. By 2017, a new, elevated
highway was constructed (white lines in Image C). The width of images is approximately 2.8 km.
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Figure 11. The land loss rate from the 1930s to 1990 and canal density in 15-min quadrangle maps.
The authors of [18] concluded that this demonstrates that most wetlands loss is due to canals. This is
incorrect, however, because of the large size of 15-min quadrangle maps and other causes of land loss
due to induced subsidence and toxic stress.

4.2. Oil and Gas Production Induced Subsidence

Oil, gas, and brine extraction depletes the hydrocarbon reservoir, often precipitously, resulting
in pressure drop, compaction, and fault activation (usually reactivation); and this change at depth
translates upward, manifesting at the surface as subsidence and faulting. That is, without pressure
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support the depleted reservoir collapses, and the pressure difference at the nearby associated fault plane
nucleates slippage there [4,20,28,30], leading to a subtle, and sometimes dramatic, overprint integrated
with other O&G related processes. Observations generally confirm the relationship between fluid
production and subsidence in coastal Louisiana: for example, wetland loss is typically higher in the
vicinity of oil and gas fields [9,20,29,78–83]. On the coastal Chenier Plain, the authors of [83] suggested
that paleo-sea level elevations, vertically offset by 0.5–1 m on a transect near the area of maximum oil
and gas production, were influenced by this production. Local rates of measured subsidence in oil and
gas fields in south central Louisiana (often more than 20 mm/year) were much higher than regional
rates in the Mississippi River Delta (about 10 mm/year) [84]. In [30] the authors analyzed releveling
surveys, remote images, subsurface maps, stratigraphic sections, and hydrocarbon production data
in relation to wetland loss for the Terrebonne-Lafourche basins and found that the highest rates of
subsidence coincided with the location of oil and gas fields (Figure 12) [30]. This study also showed
that subsidence rates were greater in the later epoch (1982–1993) than the earlier (1965–1982); that is,
subsidence accelerated late in the cycle of O&G production. In [20,30,84] it was concluded that
these rapid changes were likely caused by induced subsidence and fault reactivation due to oil and
gas activity.Water 2020, 12, x FOR PEER REVIEW 12 of 30 
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Figure 12. Map showing average subsidence rates between 1965 and 1993 in south Louisiana. Areas of
highest subsidence rates (>12 mm/year; hatched pattern) correlate closely with locations of oil and gas
fields. Lowest average subsidence rates are located between major producing fields [30].

Elevation change related to faulting in the MRD is often marked by an arcuate scarp separating
marsh and water [85], while subsidence related to a reservoir’s compaction is spread over and beyond
the production area (up to kilometers away from the producing wells) [20]. Subsidence involved with
O&G fields typically begins around the time of peak production [84], and continues for an extended
time as the field is depleted, often decades after peak production [29,79,86], though it too reaches an
ultimate limit [79,84].
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The Mississippi Delta is particularly susceptible to subsidence and faulting since rapid deposition
of sands and clays has created a weak, metastable situation that responded from early in its geologic
history with “landslide-like” faulting (down to the coast listric normal faulting) parallel to the coast,
and that faulting has progressed upward as deposition continued—that is, growth faulting [14,87–89].
The sedimentary section developed so rapidly that there was little time for consolidation, cementation,
or in many cases, normal pressure equilibration. At the same time, these faults and related rollover
anticlines on their downthrown side, formed hydrocarbon traps, the basis for many of the present-day
O&G fields on the delta (Figure 13). To add complexity, the low density, easily deformed Louann salt
layer that began near the base of the geologic section flowed upward in various geometries, creating
salt domes dragging up steeply tilted beds, faults, and anticlinal features that became hydrocarbon
traps as well. Growth faults in the delta move episodically over their lifetime, and along segments
a few kilometers in length (e.g., [90]). Over the cycle of MRD petroleum development, a number of
these growth faults related to oil and gas fields have been reactivated, with consequent displacement
and surface subsidence on the fault downthrown side. The mechanism of reactivation along these
growth faults is expedited by a poroelastic reduction of horizontal confining stress, which occurs as a
result of the fluid withdrawal and consequent pore pressure decrease [91,92]. That is, faults related to
MRD O&G fields that break the surface today are mostly reactivated growth faults involved with the
reservoirs below—reservoirs that these faults created in the first place.
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Figure 13. Typical Mississippi River Delta oil and gas reservoir, a rollover anticline on the downthrown
side of a down-to-the-coast normal fault. Oil, gas, and water production affects the subsurface
in and around the producing reservoir. The depletion process leads to production induced fault
activation, reservoir compaction with additional compaction of bounding shales as shown in the
subsurface. The surface manifestation of these subsurface changes is shown as a composite of land loss
on the downthrown side the activated fault plus subsidence over the compacted oil, gas, and water
producing reservoir.

The mechanism of O&G subsidence is involved with the collapse of the reservoir itself. Subsidence
happens when production of oil, gas, and water (and sometimes sand) reduces reservoir sand pore
pressure to the point where it can no longer support the overburden [93]. Thus, the delta’s young,
often poorly consolidated reservoir sands, sandwiched between shales, often undergo compaction
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with production drainage and this deformation is transferred to the surface as a subsidence bowl
form. The authors of [94] modeled this reservoir compaction and surface deformation process using
the concept of a nucleus-of-strain (the impacted reservoir), together with an elastically deforming
half-space (the geologic section above), spreading the effect and reducing the displacement to produce
a halo-like effect in and around the O&G field. In [79] the authors used this concept along with
1982–1993 epoch releveling at the Leeville, Golden Meadow, Cut Off, and Valentine fields and the
authors of [95] modeled the Lapeyrouse field (Figure 12). At Lapeyrouse, modeling matched the
measured releveling when a reactivated down-to-the-coast growth fault was added to the deformation
of the compacted disc reservoir sand. This reservoir compaction subsidence process is found in fields
along the Louisiana coast and often acts in concert with O&G field related faulting.

In [29] the authors considered the extended timeframe of subsidence where displacement related
to depleted O&G fields did not stop as the production cycle ended, but accelerated significantly for
decades. As shown in Figure 14, this study indicates (a) greater subsidence over traversed O&G fields
for each epoch (panels A and B), (b) increased subsidence rates (accelerated subsidence) in the later
epoch (panel C), and (c) areas of greatest subsidence and rates likely related to fault displacement.
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Figure 14. Elevation changes during epoch 1 (1965–1982; A) and epoch 2 (1983–1993; B), and the
rates of subsidence in the two epochs (C). Over the entire transect, subsidence rates were greater in
epoch 2 than in epoch 1. The yellow squares in (A) and (B) indicate an arbitrarily selected reference
station approximately 8 km south and outside of the projected Leeville (see Figure 10) to estimate the
magnitudes of local production-related subsidence signals [29].



Water 2020, 12, 1492 14 of 29

While post production time-dependent subsidence is intuitively expected due to factors such
as slow dissipation of pore pressure in the reservoir (e.g., [96]), and time-dependent creep in the
reservoir [97], this subsidence typically happens over only a few years, not decades after and not with
acceleration. The authors of [29] considered the role of the bounding shale above and below the sand
reservoir itself (Figure 15), and modeled compaction in the Valentine field (Figures 12 and 14) in two
stages, the first being poroelastic compaction of the reservoir sand during active production, followed
by the time-delayed compaction resulting from slow poroelastic and viscoplastic compaction of the
low-permeable bounding shale as included pore water slowly drained into the depleted sand.Water 2020, 12, x FOR PEER REVIEW 15 of 30 
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Figure 15. A simple compaction model of sand reservoir embedded with surrounding shale. It is
assumed that during production stage, pore pressure depletion in a sand reservoir induces poroelastic
compaction, and after depletion, a slow decrease in pore pressure in the bounding shale induces shale
compaction in two independent rheological modes (poroelastic and viscoplastic) (modified from [29]).

Compaction that occurs in reservoir-bounding shales is often evidenced by wellbore problems in
overburden formations during and after production, such as casing damage and even shear (e.g., [98]).
These studies and others matching displacement measurements and mathematical modeling of causality
mechanisms, confirm the importance of oil and gas field induced subsidence and faulting. In summary,
fault reactivation and reservoir compaction lead to induced subsidence at the surface that reflects
both. The interaction of these elevation change mechanisms with oil and gas field development is an
important part of land loss in the MRD.

5. Toxic Impacts of Produced Water and Spilled Oil

Produced water from O&G fields is brought to the surface during crude oil and natural gas
extraction and, prior to the USEPA banning surface discharge of produced water in 1992, an estimated
2 million barrels per day were discharged into Louisiana coastal wetlands from nearly 700 sites [99].
It is by far the largest volume byproduct or waste stream associated with O&G extraction and is about
10 times more toxic than oil [100]. The fluid generally includes a mixture of either liquid or gaseous
hydrocarbons, high salinity water, radioactive materials, dissolved or suspended solids, solids such as
sand or silt, and injected fluids and additives associated with exploration, drilling, and production
activities (Table 2) [101,102].
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Table 2. Common components of produced water resulting from oil and gas production [103].

Category Constituent

Metals

Aluminum, antimony, arsenic, barium, boron, cadmium, gold,
iron, mercury, chromium, copper, lead, zinc, nickel, platinum,

silver, strontium, tin, magnesium, molybdenum, titanium,
thallium, vanadium

Naturally occurring radioactive materials Radium-226, radium-228

Monocyclic aromatic hydrocarbons
Benzene, benzoic acid, chlorobenzene, di-n-butyl phthalate,
toluene, ethlybenzene, isopropylbenzene, n-Propylbenzene,

p-chloro-m-cresol, xylenes

Polycyclic aromatic hydrocarbons
Acenaphthene, anthracene, benzo(a)anthracene, cyrsene,
dibenzothiophenes, fluoranthene, flourene, napthalene,

benzo(a)pyrene
Miscellaneous organic chemicals Phenols, bis(2-ethylhexyl)phthalate, oil and grease

Miscellaneous other components Calcium, potassium, radon, sodium chloride, total dissolved
solids, ammonia, bromides, sulfates, sulfides

Several factors determine the fate and effects of produced waters in coastal environments including
the volume and composition of the discharge and the hydrologic and physical characteristics of the
receiving environment [22,104]. In many cases, oil field brine was discharged directly to wetlands
and surface waters [105]. Energetic storms can mix the water column and advect produced water
into marshes where it can significantly damage vegetation. Spills may also impact wetlands. In [106]
accidental brine spills between 1990 and 1998 were studied, and a total of 567 brine spills were
reported to LDEQ. In sites where produced water was spilled, acute and chronic exposure affected
the vegetation. The study author documented ecological impacts ranging from minor vegetation
damage to the destruction of hundreds of ha of wetlands. Many wetlands where a single spill had
occurred had not recovered up to 10 years later and most of the wetlands with chronic exposure were
no longer vegetated and some had converted to open water. In [105] the formation of new ponds
where produced water was being discharged was documented and the authors of [23] reported that
half of the Spartina alterniflora exposed to 120 mg/L of oil and grease, which is the norm for produced
water, died within 30 days.

Salinity of produced water ranges from a few psu to up to 300 psu [21,22,102,103]. High salinity
leads to the death of most plants and has been linked to wetland loss [105]. In Cameron Parish,
Louisiana, north of Black Lake and the Hackberry O&G fields, thousands of ha of sawgrass marsh were
killed due to discharge of produced water and the area subsequently converted to open water [107,108].
Naturally occurring radioactive material (NORM), primarily radium-226 and radium-228, is present
in much of the produced water in the Gulf of Mexico [109,110]. The authors of [104] reported total
radium activities ranged from 304 to 2312 dpm/L.

Hydrocarbons are also present in produced water, both in dissolved and dispersed (oil droplets)
form that can interact with the benthic community [103]. Dispersed oils can also rise to the surface
and interfere with the transfer of oxygen from the atmosphere into the water, coat marine mammals,
birds and fish, and have direct toxic action on some organisms [111]. Whole effluent toxicity assessments
have reported high toxicity levels of produced water [21,112]. Produced water has been shown to reduce
abundance of benthic macroinfaunal communities in wetlands receiving discharge [21,99,104,112]
often at distances of hundreds of m from discharge sources. [112]. The presence of high concentrations
of hydrocarbons in sediments near discharge sites indicates long-term accumulation and resistance to
degradation [21,22].

In [4] the authors reviewed the ecological impacts of O&G development on coastal ecosystems in
the Mississippi delta. Oil spills have generated significant impacts due to the toxicity of spilled oil.
Effects on plant communities include disruption of plant–water relationships, direct impacts to plant
metabolism, toxicity to living cells, and reduced oxygen exchange between the atmosphere and the
soil. Effects on consumers include growth inhibition, reduced production, altered metabolic systems,
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and biomagnification of hydrocarbon compounds. The combination of these factors increases plant
stress and plant death.

6. Interactive, Cumulative, and Indirect Impacts of Oil and Gas Impacts

Each of the three types of oil and gas activity (alteration of surface hydrology, induced subsidence,
and production of toxic contaminants) causes significant impacts. However, when the effects of all
three activities interact in cumulative and indirect ways, the impacts are much greater.

In Figure 16, the impacts of each type of activity are shown separately. The direct effect of induced
subsidence is a loss of surface elevation due fault activation and/or compaction of subsurface sediments
due to fluid removal. Loss of surface elevation leads in turn to stressed wetland vegetation, lower
productivity, and ultimately vegetation death and wetland loss.

Surface hydrologic alteration due to canals and spoil banks also leads to a loss of surface elevation
due to a cascading series of impacts as shown by the relationships in Figure 16. Deep straight canals
cause the deterioration of natural tidal channels and changes in regional hydrology and saltwater
intrusion. Spoil banks block tidal flooding of marshes and lead to increased inundation of marshes
as well as reduced sediment and nutrient input to marshes. These impacts stress marshes so that
productivity is lower and organic soil formation is reduced. The combination of lower sediment input
and lower organic soil formation causes higher shallow subsidence and ultimately to vegetation death.
Saltwater intrusion and vegetation death lead to collapse of the soil column due to rapid decomposition
of soil organic matter.

Toxic impacts are due to oil spills and produced water discharge which contains very high salinity
brines and a variety of toxic materials. These stress vegetation and cause wetland mortality and
collapse of marsh soils leading to loss of elevation.

Thus, all three types of impacts lead to stressed wetland vegetation, loss of elevation, and vegetation
death. The cumulative and indirect impacts are much greater than for individual impacts acting
independently. These interact with a range of environmental forcings such as lack of riverine input,
sea-level rise, and hurricanes to exacerbate wetland loss even further. For example, wetland loss in the
region of the central coast impacted by Atchafalaya River discharge is much lower than most of the
rest of the coast even in areas impacted by O&G activity [74,113]. The net effect is that O&G activities
make wetlands more susceptible to other forcings that negatively affect wetlands.

Such cumulative and indirect impacts due to O&G production are evident when images of oil
fields are viewed over time. The Venice Salt Dome in Plaquemines Parish and the Bully Camp oil
field in Terrebonne Parish are just two of hundreds of examples of wetland disappearance over time
in coastal Louisiana (Figures 17 and 18). In these two fields, pre-oil and gas activity maps show the
presence of small natural levee ridges and extensive unbroken marsh. In both fields, the 1950s maps
show canals and spoil banks but without significant marsh loss. Over time, marsh loss expands to
cover almost the entire area of the field and spoil banks begin to disappear as they subside below water
level. The widespread loss of wetlands is due to such cumulative and interacting effects of surface
alterations in hydrology, induced subsidence, and toxic effects.
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Figure 16. Diagram showing the three general types of impacts from oil and gas activity-induced
subsidence, toxicity effects, and altered surface hydrology due to canals and spoil banks. The impacts
of these activities are shown separately, and impacts shown in red are common to all three activities.
As reduced vegetation productivity, loss of elevation, and vegetation death can result from all three
activities, there are pervasive cumulative and indirect impacts that result in overall greater impacts on
coastal ecosystems, especially, that would result from the impacts acting separately.
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Figure 17. Images of hydrologic changes and wetland loss in the Venice field, Plaquemines Parish, 
Louisiana over time. This oil and gas field has been termed the “wagon wheel” because of the circular 
canals and spoil banks that outline the salt dome around which oil and gas containing formations 
were located. Note that wetland loss occurs both in the vicinity of the canals as well as throughout 
the area of the field. In addition to wetland loss, many of the spoil banks have subsided below water 
level and are no longer visible. The green highlighted channels in the 1940s are minor distributary 
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Figure 17. Images of hydrologic changes and wetland loss in the Venice field, Plaquemines Parish,
Louisiana over time. This oil and gas field has been termed the “wagon wheel” because of the circular
canals and spoil banks that outline the salt dome around which oil and gas containing formations were
located. Note that wetland loss occurs both in the vicinity of the canals as well as throughout the area
of the field. In addition to wetland loss, many of the spoil banks have subsided below water level and
are no longer visible. The green highlighted channels in the 1940s are minor distributary ridges that
both conveyed water and were a barrier to horizontal flow perpendicular to these ridges. (Images from
USGS topographic maps (late 1940s) and Google Earth).
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Figure 18. Images of the Bully Camp oil and gas field over time. The yellow line denotes an ownership
tract in the field and red dots show locations of oil and gas wells. Note that land loss has been pervasive
over the general area of the field. The central water body in the 1989 image is over an area of sulfur
production on the top of the salt dome underlying this field. The narrow blue lines in the 1935 map are
abandoned minor distributary ridges that were breached by canals (images from [76]).

7. Restoration

A well-designed restoration plan should be based on information about the impacts during the
life cycle of O&G fields. Restoration of wetlands lost due to O&G activities will involve a synergistic
approach that deals with the damage of O&G impacts and rebuilds a functioning coastal wetland
system. A central objective in restoration is rebuilding elevation due to both surface subsidence caused
by altered hydrology and subsurface induced subsidence. Subsurface induced subsidence cannot be
reversed, so sediment must be added at the surface to offset both subsurface and surface subsidence.
Options for restoration include (1) marsh creation and restoration using dredged sediments [114–117];
(2) full use of all available sediment resources including Mississippi River, GIWW, and sediments
resuspended during storms [118,119]; and (3) hydrologic restoration such as backfilling canals and spoil
bank management, and restoration of hydrologic networks [119–123]. Rebuilding natural levee ridges
that have been severed by canals can help restore natural hydrology to prevent saltwater intrusion and
reduce increased hydrologic energy caused by more direct connections between interior parts of the
delta and the Gulf of Mexico.

Elevation can be built up by adding dredged material to shallow water bodies, some that were
previously wetlands, to an elevation that will support marsh vegetation [115,124,125]. Restoration of
open water and degraded wetland areas to sustainable marsh are of tremendous importance in coastal
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Louisiana. The 2017 Coastal Master Plan (CMP) for restoration of the Mississippi delta dedicates
nearly $18 billion to marsh creation (the largest investment in a single type of restoration project) and
many of those projects include both a short-term and a long-term phase [126]. The short-term phase
focuses on immediate actions needed to protect vulnerable marshes from the proximal causes of loss
(saltwater intrusion, erosion, and other consequences of significant hydrologic modifications) using a
combination of restoration techniques (especially hydrologic restoration and marsh creation using
dredged sediments). Successful implementation of short-term strategies reduces rates of wetlands
loss and provides the foundation for longer-term strategies. The long-term phase focuses on wetlands
gains through Mississippi River sediment diversions and capture of sediments advected over the
marsh surface, with the intent of encouraging development of a sustainable wetland ecosystem
(https://www.lacoast.gov/new/about/Basin_data/te/Default.aspx).

Introduction of sediments, through placement of fill material and/or spray dredging, is a necessary
component of marsh restoration in degraded O&G fields and sediment can be pumped long distances,
as is the case for many 2017 CMP projects [127–132]. Containment dikes are utilized to confine
unconsolidated material until it settles and dewaters [120]. Then these dikes can be degraded or
gapped to the same elevation as the marsh platform in order to allow water exchange and marsh
drainage, to improve productivity and aeration, and increase capture of suspended sediments that are
advected over the marsh surface.

Sediment addition increases marsh surface elevation, thus reducing flood stress to the plant
community. The authors of [114] showed that raising the surface of a deteriorating Spartina alterniflora
salt marsh by 10 cm using dredge spoil resulted in a twofold increase in aboveground biomass
production after the second growing season. In [115] it was found that increased elevation through the
deposition of a 2 cm layer of dredged material in a deteriorated Louisiana marsh increased percent
cover of S. alterniflora three-fold within one year. The authors of [125] studied dead marshes near
Leeville that were restored using dredged material and found that sediment-slurry addition increased
the elevation of the marsh surface and alleviated stress associated with excessive inundation and high
salinity. Primary production was highest at elevations ranging from 29 to 36 cm NAVD 88 (12–20 cm
above ambient marsh), and decreased at elevations above 36 cm NAVD 88, where primary production
was limited by insufficient flooding and low nutrient availability. Sediment subsidy increases soil
mineral matter, soil fertility, and marsh elevation, and thereby reduces nutrient deficiency, flooding, and
interstitial sulfide stresses, generating a more favorable environment for plant growth and potentially,
marsh sustainability [116,117].

After containment dikes are gapped, restored marsh will have connectivity with surrounding
ecosystem and plants will naturally recruit to the area or they can be planted. Although the created
marsh will be initially higher than surrounding marshes, it will settle and have a higher bulk density.
It is likely that these created marshes will have a higher productivity and production of organic matter
than surrounding marshes. The plant species richness should the same as surrounding marshes,
which is not very high in brackish and salt marshes of coastal Louisiana compared to fresh marshes.
Plant diversity and soil organic matter content are higher in brackish marsh than in salt marsh. Brackish
marsh is typically dominated by Spartina patens (marshhay cordgrass). Other significant associated
species include Distichlis spicata (salt grass), Schoenoplectus olneyi (three-cornered grass), S. robustus
(salt marsh bulrush), Eleocharis parvula (dwarf spikesedge), Ruppia maritima (widgeon grass), Paspalum
vaginatum (seashore paspalum), Juncus roemerianus (black rush), Bacopa monnieri (coastal water hyssop),
S. alterniflora (smooth cordgrass), and S. cynosuroides (big cordgrass) [130]. Salt marsh has the least
plant diversity of any marsh type. The community is often totally dominated by smooth cordgrass.
Significant associate species includes marshhay cordgrass, salt grass, black rush, and Batis maritima
(salt wort).

A tidal network needs to develop in the restored marsh. All restoration plans need a component
that focuses on natural hydrological functioning. A large-scale restoration project on Delaware Bay
indicated that if a few primary channels were dredged, the system would naturally then develop a full
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tidal channel network [130,131]. The project involved restoration of tidal flooding by breeching dikes
around formerly diked salt-hay farm and re-excavation of tidal creeks. Hydrologic design occurred in
a “self-design” fashion after only initial cuts by construction of the largest (class 1) channels.

Spoil bank and canal management should be part of a restoration plan. Some canals should be
backfilled as much as possible by pushing spoil banks back into canals. As spoil banks have settled
and organic matter has decomposed, canals cannot be fully filled in using material from spoil banks.
Thus, dredged material will have to be used to fully fill canals. In some cases, spoil banks should be
left in place to protect remaining marshes from wave attack (see Figure 13).

After the marsh is restored and natural hydrology has been re-established, full use of all available
sediments should be incorporated into the restoration design. Important sources of sediments include
Mississippi/Atchafalaya Rivers as well as smaller rivers, sediment diversions, the Gulf Intracoastal
Waterway, and sediments resuspended by storms [118]. Water sources with appreciable levels of
nutrients should be used where possible to enhance marsh production including upland runoff,
agricultural drainage, and treated municipal effluent [133,134].

When planning restoration priorities, consideration should be given to the more stable underlying
geologic framework choices, and avoidance of those areas still in the actively degrading part of the
cycle. Examples include marsh construction on the more stable upthrown side of a fault, rather than
the subsidence compaction and fault affected O&G field on the downthrown side. The authors of [14]
discussed the role of faulting in wetland loss in the Mississippi delta. In [135] the authors pointed to
failed restoration projects where faulting has not been considered. Thus, taking into consideration
underlying geology can lead to more successful and sustainable restoration.

Decontamination of restored sites is an integral part of restoration. In many cases, toxins can
be buried in place but in some instances the contaminants have to be removed [4]. In addition to
environmental impacts associated with land loss from O&G production operations, there often is
environmental damage to soil and groundwater contamination that may have occurred from these
same types of O&G operations. These damages include contamination to soils, groundwater, and in
some cases underground sources of drinking water. These types of damages require extensive testing
and the restoration includes soil treatment or removal and the cleanup of contaminated freshwater
zones. Dealing with contamination can involve removal of the surface waste, excavation of ‘hot
spots’ of concentrated pollution (chemicals of concern, COC) followed by treatment and disposal,
and pumping and treatment of contaminated groundwater followed by treatment or subsurface
injection. The goal of the remediation effort is to return the soil and groundwater to agreed-upon
standards such as background soil standards contained in the La. DNR/OC regulations known as
29B (the section of the rules) and the La. DEQ RECAP (Risk Evaluation/Corrective Action Program)
for both soil and groundwater. A mix of the standards is sometimes used. The term ‘agreed upon’
is used because cleanup is usually done in the context of a legal action with the involvement of
the landowner-plaintiff, the oil companies(s), DNR, DEQ, and the Court. The DNR 29B (Title 43,
Part XIX, statewide order 29B) standards were/are heavily influenced by the oil and gas exploration
and production industry (E&P) while the DEQ RECAP standards are based on risk science (LAC 33,
2003; https://www.deq.louisiana.gov/assets/docs/Land/RECAP/RECAPfinal.pdf). RECAP provides
numerical screening standards for many chemicals in soil and groundwater and three management
options. In many cases, addressing land loss and environmental cleanup must be done at the same
time to fully restore the land.

In planning for restoration of degraded wetlands in O&G fields, there should be coordination
with other projects. For example, beneficial use of dredged sediments, where available, can be used
to raise elevation. There are numerous wetland restoration projects taking place in the Mississippi
Delta. These include marsh creation, river diversions, hydrologic restoration, barrier island restoration,
rebuilding of distributary ridges, and shoreline protection [126,136]. Restoration of the impacts of O&G
activities involves to a lessor or greater degree all of these activities. For example, where sediment
diversions are planned in the vicinity of an O&G field that is being restored, maximum use of diverted
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sediments should be a goal of the project. As noted above, beneficial use of sediments dredged for other
activities such as navigation canal maintenance should be considered for marsh creation in restoring
wetlands degraded by O&G activities. Hydrologic restoration and natural levee restoration in the
vicinity of a restoration project in an O&G field should be done in a way that compliments the larger
efforts. In this way, the restoration of and O&G field can be done to increase benefits over a larger area.

8. Summary and Conclusions

Oil and gas activity has been pervasive in the Mississippi delta and both production and
environmental impacts follow a predictable life cycle. There are hundreds of O&G fields in coastal
Louisiana, as well as a dense network of canals associated with drilling access, navigation, and pipelines.
The production history for individual fields can last 40–60 years with production rising rapidly to a
peak around 1970 and then declining. Since most drilling started in the 1940s and 1950s, most wells
are no longer producing or are in the final stages of production and this cycle conclusion holds true for
aggregate MRD production. Most fields had very low levels of production by the 2000s. Produced
water generally lagged O&G production and was generally higher during declining O&G production.

Oil and gas activities have contributed in three major ways to environmental impacts on coastal
ecosystems and specifically to wetland loss. These include alteration of surface hydrology due to canal
dredging and spoil placement, induced subsidence and fault re-activation due to fluids withdrawal,
and toxic stress due to pollution by spilled oil and produced water. Wetland loss due to O&G gas
activity is initially due mainly to direct impacts of canal dredging and spoil placement, but grows over
time due to cumulative and interactive effects. This wetland loss then grows over time to encompass
much of the field and adjacent areas. Networks of interconnected canals form new patterns of water
flow and often lead to saltwater intrusion. Interestingly, spoil banks are not necessarily a permanent
landscape feature and have a life cycle of their own. They subside and compact over time and a quarter
to a third of spoil banks likely have no subaerial expression.

Fluid withdrawal from O&G formations leads to induced subsidence and fault activation [91].
Induced subsidence occurs in two phases. Withdrawal of O&G and produced water induce reservoir
compaction resulting in a reduction of reservoir thickness. A slow drainage of pore pressure in the
bounding shale mainly due to water pumping induces time-delayed shale compaction and subsidence
can continue for decades after most O&G has been produced. This results in subsidence over much of
the oil fields that can be greater than surface subsidence due to altered hydrology.

Produced water from O&G fields is water brought to the surface during O&G extraction and
generally includes a mixture of either liquid or gaseous hydrocarbons, high salinity produced water,
dissolved or suspended solids, produced solids such as sand or silt, and injected fluids and additives
associated with exploration and production activities. Produced water has been shown to be toxic to
many estuarine organisms including vegetation and consumers. Spilled oil has been shown to have
lethal and sub-lethal effects of a wide range of estuarine organisms. The three main types of impact of
O&G activities act in cumulative, synergistic, and indirect ways that lead to greater overall impact.
Restoration of wetlands lost due to O&G activities will involve a synergistic approach that deals with
the damage of O&G impacts and rebuilds a functioning coastal wetland system.

Restoration should be the final stage in the life cycle of O&G fields. A central objective of
restoration is restoring lost elevation. Options for restoration include marsh creation and restoration
using dredged sediments, full use of all available sediment resources, and hydrologic restoration.
Decontamination of restored sites is an integral part of restoration.
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