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Abstract: Agriculture of Pakistan relies on the Indus basin, which is facing severe water scarcity
conditions. Poor irrigation practices and lack of policy reforms are major threats for water and
food security of the country. In this research, alternative water-saving strategies are evaluated
through a high spatio-temporal water footprint (WF) assessment (1997–2016) for the Punjab and
Sindh provinces, which cover an irrigated area of 17 million hectares in the Indus basin of Pakistan.
The SPARE:WATER model is used as a spatial decision support tool to calculate the WF and establish
alternative management plans for more sustainable water use. The average water consumption
(WFarea) is estimated to 182 km3 yr−1, composed of 75% blue water (irrigation water from surface
water and groundwater sources), 17% green water (precipitation) and 8% grey water (water used
to remove soil salinity or dilute saline irrigation water). Sugarcane, cotton, and rice are highly
water-intensive crops, which consume 57% of the annual water use. However, WFarea can be reduced
by up to 35% through optimized cropping patterns of the existing crops with the current irrigation
settings and even by up to 50% through the combined implementation of optimal cropping patterns
and improved irrigation technologies, i.e., sprinkler and drip irrigation. We recommend that the
economic impact of these water-saving strategies should be investigated in future studies to inform
stakeholders and policymakers to achieve a more sustainable water policy for Pakistan.

Keywords: Pakistan; Indus basin; water footprint; SPARE:WATER; water-saving strategies

1. Introduction

Irrigated agriculture in Pakistan is mostly associated with the Indus plains where 100% of cash and
90% of food crops depend on irrigation [1,2]. Surface water resources of Pakistan originate from the
Indus basin that consists of five tributaries (Indus, Chenab, Jhelum, Sutlej, and Ravi). The average flow
of these tributaries are 171 km3 yr−1. Approximately 75% of the water is diverted to the canal network for
irrigation. Of the available water, only 43 km3 (34%) reaches the farm’s gate. Large amounts of the water
is lost in channels due to poor conveyance efficiency of the irrigation system [3,4]. The effective rainfall
adds another 16 km3 yr−1 water to the basin (long-term average) [2,5]. However, the combination
of surface water and rainfall cannot satisfy crop water demands of the plain [6]. Therefore, a vast
amount of groundwater is used to achieve 40–60% of the irrigation needs [7,8]. The unsustainable rate
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of groundwater pumping results in a decline of the groundwater table. The government of Pakistan
reported that the groundwater table of 5–15% of the irrigated areas has dropped to inaccessible depths,
mainly in the Punjab province [9,10]. Additionally, groundwater quality is deteriorating, mainly due to
increasing salinity. The main sources of salinity are saline pockets that existed naturally in the shallow
aquifer and the Indus rivers system which added about 16.6 million tons salts annually in the basin via
irrigation [11,12]. While salinity varies between 0.5–4.5 dS m−1 in the upper part (Punjab province), it
drops down to 9 dS m−1 in the lower part of the Indus basin (Sindh province) [6]. Qureshi et al. [6]
report that for 23% of the irrigated area in Punjab, and even 78% of the area in Sindh are affected by
poor water quality, even though they are not reporting how they did define “poor water quality”.
On top of the water quality issues, Pakistan has crossed the threshold limits of water scarcity of
1000 m3/capita/year and is likely to reach even absolute water scarcity conditions (<500 m3/capita/year)
by 2035 [13,14]. Therefore, it has become a big challenge to ensure water security and related to this,
food security, for the growing population, keeping in mind that climate change is further impacting
crop production wand water availability [15].

Recently (2018), the government of Pakistan has established a water policy to overcome water
scarcity [16]. This policy aims at developing future strategies and action plans through the concept
of more crop per drop. Various management practices have been proposed to support this concept.
Examples include deficit irrigation to improve water productivity [17], irrigation technologies to reduce
field irrigation losses [18], cultivation of drought-resistant crops [19], substitution of water-intensive
crops with less water demanding crops [20], soil mulching to preserve soil moisture [21], or conservation
tillage to enhance water use efficiency of the crops [22]. In this study, we focus on the evaluation of
two alternative strategies, which have been also discussed in water policy as prospective options, i.e.,
substitution of high water-intensive crops with less water demanding crops and shifting traditional
irrigation practices (surface) to more advanced irrigation technologies.

Water footprint (WF) [23] assessment can be used to investigate alternative management strategies
for water governance [24–26]. The WF is defined as the volume of water used to produce goods and
services by individuals, communities or delineated areas such as watersheds or nations. The WF
consists of three main components according to the sources of water use. In agriculture, green water is
provided from precipitation. Blue water is the amount of freshwater taken from natural resources such
as surface water or groundwater and supplied via irrigation. Grey water is the amount of water needed
to dilute pollutants [23], for example, to wash out salts from the root zone to facilitate crop growth or to
reduce harmful chemical concentrations in recharging groundwater. Nouri et al. [27] studied the impact
of soil mulching and drip irrigation through WF assessment in the upper Litani basin of Lebanon
and concluded that these alternatives practices have the potential to reduce the WF of all major crops,
but their benefits are insufficient to control the overconsumption of water. Cao et al. [28] analyzed
water-saving strategies to improve water use efficiency of irrigated grain crops in China by using the
WF assessment approach and proposed that the government should invest in advanced water-saving
technologies to reduce the pressure on water resources in order to increase the food security of the
country. Multsch et al. [29] evaluated various cropping patterns and irrigation technologies in Saudi
Arabia and recommended that substitution of fodder crops with vegetables and cereal crops have
a great potential to reduce water consumption in the country. Tsakmakis et al. [30] investigated the
impact of irrigation technologies on cotton crop through WF assessment in northern Greece and
confirmed that drip irrigation technology has a high potential to save the loss of unproductive water
compared to sprinkler irrigation.

In this study, we use the SPARE:WATER model [31] to estimate the WF of crops in Pakistan
and evaluate a number of water-saving strategies. SPARE:WATER is a spatial decision support
system to estimate site-specific crop water requirements. It follows the principles to calculate the
crop water requirement during the vegetation period in accordance with the FAO56 guidelines [32].
The SPARE:WATER package has been used in a number of studies to assess the regional water footprint
and crop water requirement [33–37]. Since salinity of irrigation water has a high impact on soil
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salinization and crop production, we consider the leaching requirement as the dominant component of
the grey water fraction of the WF as discussed by Multsch et al. [29,31]. The leaching requirement in
this regard is the water needed to dilute the salts present in the irrigation water and the soil.

The objectives of the current study are: (1) to develop alternative cropping patterns for improving
the WF, considering the salinity of the irrigation water as it affects the leaching requirement, and (2)
to investigate the impact of improved irrigation technologies on water savings. The objectives are
investigated in two different steps. The WF is estimated for crops and the entire region in the first step,
whereas alternative cropping patterns are evaluated in the second step by considering two different
irrigation settings, i.e., existing traditional irrigation methods and improved irrigation technologies.

2. Materials and Methods

2.1. Study Area

This study focuses on the irrigated zones of the Punjab and Sindh provinces (24.03◦ to 34.10◦N,
67.40◦ to 74.69◦E), which cover approximately 17 million hectares of the Indus basin within Pakistan
(Figure 1). The surface topography is characterized by hills of up to 540 m a.s.l. in the north and flat
lowlands of up to 4 m a.s.l. in the south. The basin has a semi-arid to arid climate with significant
spatial and temporal variation in temperature and rainfall. The summer season extends from April to
September with average maximum temperatures (Tmax) of 34–44 ◦C. The winter season is short from
December to February with Tmax 20–28 ◦C. Average annual rainfall of 372 mm (1997–2016) peaks in the
summer season. There are two common cropping seasons called Kharif (April-September), dominated
by sugarcane, cotton, rice, and fodder crops as well as the dry Rabi season (October–March), in which
mainly wheat and fodder crops are grown. Sugarcane, cotton, and rice are grown as cash crops while
wheat is cultivated to meet the domestic food demand.Water 2020, 12, x FOR PEER REVIEW 4 of 20 
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Figure 1. Map of the study area.

The Indus River system provides irrigation water through a network of canals, distributaries, and
watercourses. Groundwater is used in areas as a primary source where there is no access to canal water
or where the quantity of surface water is insufficient for irrigation. In all other areas, groundwater is
used as a secondary source of irrigation to meet the crop water requirements. Groundwater is pumped
from small private tube wells, which are easy to install and operate due to the cheap availability of
drilling machinery at local level and the subsidized costs of electricity for farmers. However, this
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only applies as long as the groundwater level does not sink too far. Water is applied to fields through
surface irrigation in furrows (e.g., cotton, sugarcane) or as flood irrigation (e.g., rice, wheat and fodder
crops) with low application efficiencies of 45 to 60%. High-efficiency irrigation systems (drip and
sprinkler irrigation) are only installed at a small scale (50,000 ha) through a subsidized project of the
World Bank and the government of Punjab (PIPIP 2012–2021).

2.2. The Spare:Water Model

The SPARE:WATER [31] model is used to calculate the water footprint of crops and the entire
region. SPARE:WATER follows the general concept of estimating the water footprint according
to Hoekstra et al. [23] and is based on the widely used FAO56 Guidelines for computing crop water
requirements [32]. The regional WF (WFarea, km3 yr−1) is estimated by summing up the products of
all crop productions (t yr−1) multiplied by their crop water footprint (WFcrop; m3 t−1). The WFcrop is
calculated by adding the green, blue and grey WF components which are determined by dividing the
water requirements (m3 ha−1) by the crop yield (t ha−1). The water requirements of these components
are calculated according to the sources of water use, i.e., “green” water requirement is equal to
the minimum of crop evapotranspiration (ETc) or effective rainfall (Peff), “blue” water requirement
is the irrigation requirement (IRR) and the “grey” water requirement is estimated as the leaching
requirement (LR).

WFcrop =
min(ETc, Peff)

Y︸             ︷︷             ︸
green WF

+
IRR

Y︸︷︷︸
blue WF

+
LR
Y︸︷︷︸

grey WF

(1)

where Peff, IRR and LR are effective rainfall, irrigation requirement, and leaching requirement,
respectively, in [m3 ha−1] and Y is crop yield in [t ha−1].

SPARE:WATER requires two kinds of data inputs. First, a set of spatial model input data is
used to initialize and run the model on the selected spatial domain. Second, the model needs to be
parameterized to simulate crop specific evapotranspiration rates.

2.3. Spatial Model Input Data

The input data required by SPARE:WATER includes climatic data, crop data and irrigation data
(Table 1). The input data is provided in grid maps to calculate the crop water requirements and
footprints for each grid cell. For a comprehensive list of all input data and further model parameters
needed see Multsch et al. [31]. The efficiencies of the irrigation systems are set according to the FAO as
60%, 75%, and 90% for surface, sprinkler, and drip irrigation, respectively [38]. The grey WF is estimated
considering a local groundwater quality dataset collected by IWASRI during 2010–2014. We used the
ArcGIS Geostatistical Analyst extension to interpolate the 3500 point data from well measurements by
ordinary kriging using an exponential semi-variogram. As no information is available on the quality
of surface water, we used the same gridded data derived from the groundwater well measurements.

As this step introduces some uncertainty in our study, we performed sensitivity analyses to check
the effect of irrigation water quality on the grey WF by changing the water quality input data. We set
the EC of irrigation water as ±10, ±20 and ±30% to examine the consequence for the grey WF. Further,
we also investigated the sensitivity of the irrigation efficiency on the blue and grey WF by varying
the efficiency of the irrigation system. It is evaluated by changing the values from 45% to 75% in an
interval of 5%. We neglected higher potential irrigation efficiencies through drip irrigation as this kind
of irrigation is currently hardly applied in Pakistan.
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Table 1. Spatial model input data used in this study.

Dataset Description Years/Resolution Data Sources

Climate

Rainfall, wind speed, min. and
max. temperature, relative

humidity, sunshine hours for
19 weather stations

1997–2016
Monthly

Pakistan Meteorological
Department

Irrigated areas Spatial location of areas 2010
International Water

Management Institute
(IWMI) [39]

Crop data Harvested area and crop
production

1997–2016
Yearly

Pakistan Statistics
Bureau Islamabad

Crop parameters Sowing and harvesting date - National Agromet
Centre of Pakistan

Groundwater quality Electric conductivity dataset of
3500 wells 2010–2014

International
Water-Logging and

Salinity Research
Institute (IWASRI)

2.4. Parameterization

The crop evapotranspiration is determined by multiplying the reference evapotranspiration (ET0)
with crop coefficient (Kc). The reference evapotranspiration is derived from the Penman-Monteith
equation [32], which is based on climatic data (i.e., humidity, temperature, solar radiation, and wind
speed). The Kc value is adjusted by dividing the crop development period into four stages as initial
(Lin), development (Ldev), mid (Lmid) and late (Llate) stage. The length of the crop development stages
is taken from information provided from the Nation Agromet Center of Pakistan. We use Kc values
corrected for crop height presented by Ullah et al. [40]. Missing Kc values of some crops, i.e., vegetables,
fruits and fodder crops, are taken from a FAO dataset for sub humid regions [32] (see Kc values in
Table A1). We also obtained information on crop height from the same source to adjust the FAO Kc

values for specific weather conditions as described by Multsch et al. [31]. The effective rainfall Peff

is estimated by deducting the runoff losses (RO) from net rainfall (P), which is derived as a constant
ratio of 20% of rainfall (RO = P × 0.2) [32]. The irrigation requirement is estimated by combining the
productive and unproductive portions of irrigation water. Productive irrigation water is calculated by
subtracting the effective rainfall from crop evapotranspiration (ETc). If the effective rainfall is larger
than ETc, no irrigation is needed and vice versa. The unproductive irrigation water is calculated based
on the efficiency of the irrigation system by considering the additional volume of water that is lost
due to deep percolation or direct surface evaporation. Off-farm water losses such as seepage and
evaporation from irrigation channels are neglected. The leaching requirement in the SPARE:WATER is
estimated according to the salinity tolerance limits of each crop as defined by Ayers and Westcot [41]
e.g., cotton > 7.7 dS m−1 and wheat > 6 dS m−1 have relatively high tolerance levels whereas sugarcane
> 1.7 dS m−1, rice >3 dS m−1 and vegetables 1.0–2.5 dS m−1 have low salinity tolerance abilities.

2.5. Scenario Evaluation

A number of straightforward scenarios (n = 37) are analyzed to derive optimal cropping sets in
view of available water resources (Table A2). Scenarios are defined on the basis of the SPARE:WATER
results. The year 2016 is considered as a baseline with a harvested area of 18.35 million hectares (49%
Rabi, 48% Kharif and 3% annual crops) and a WFarea of 174 km3 (Figure A1). As can be seen, most
of the water is consumed during the Kharif season with 64% of the annual WFarea. Whereas, Rabi
and annual crops require 30% and 6% of the WFarea, respectively. In the Kharif season, cash crops i.e.,
sugarcane, cotton, and rice are dominating the WFarea by 85% (equal to 57% of the annual WFarea).
Therefore, we developed multiple scenarios by substituting these three most water-intensive crops
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(with regard to their WFarea) in the form of a single crop replacement (or a set of two, and three crops
with others) with other potential Kharif and annual crops (fruits), including other water demanding
cash crops (i.e., sugarcane, cotton, and rice). We kept those water demanding crops in the scenarios to
see potential effects of changes in irrigation efficiency on the total WF in different configurations of
crop patterns. For the scenarios, we assume a constant total harvested area as given in the Baseline
scenario year. For each scenario, the entire cropped area of one of the water-intensive crops is fully
allocated to a single other crop (Table A2). In SET1 (sc1–sc6), sugarcane is replaced six times by another
crop. Similarly, in SET2 (sc7–sc12) and SET3 (sc13–sc18), cotton and rice crops are replaced with other
potential crops respectively. SET4–6 are similar setups but consider two crops to be substituted at a
time allocated to one other crop i.e., sugarcane and cotton in SET4 (sc19–sc23), sugarcane and rice in
SET5 (sc24–sc28) and cotton and rice in SET6 (sc29–sc33). Finally, SET7 (sc34–sc37) includes a full
replacement of all water-intensive crops i.e., sugarcane, cotton, rice with other potential crops.

3. Results

3.1. Model Plausibility

The results of SPARE:WATER are compared with literature data in two ways to test the plausibility
of model. First, we contrast simulated ETc by selecting specific grid cells from SPARE:WATER for which
corresponding published information is available (Figure 2a–d). In a second approach, we compare
our simulations of WFcrop with other simulations (Figure 2e).
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(e) correlation of simulated crop water footprints (WFcrop) with CROPWAT simulations.

A comprehensive dataset of crop evapotranspiration for 8 main crops at 37 sites across the Indus
basin of Pakistan has been published by Ullah et al. [40]. Their results are in line with ours (R2 = 0.93)
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(Figure 2a,b). The RMSE is also low (147 mm) indicating a very good match even for single crops.
We conclude no structural deviation between the two assessments. Shakir et al. [42] have estimated the
crop evapotranspiration for 8 main crops at one site in the Indus basin (Figure 2a,c). These results are
also in the same range as SPARE:WATER, again with a high R2 = 0.97 and a low RMSE = 100 mm.
Part of both high correlations can be explained by similar approaches on how ETc is estimated. Ullah
et al. applied the FAO CROPWATER model that is based on the same FAO56 guideline that we used
to estimate ETc in our SPARE:WATER set up. Similarly, Shakir et al. calculated their ETc values also
on the principle of this guideline, and used—similar to SPARE:WATER—the same crop coefficients
and lengths of growing seasons as presented by Ullah et al. Hence, the differences of ETc are due
to different simulation periods (SPARE:WATER 1997–2016; Ullah et al., 20–25 years average without
information on years; Shakir et al. 1999–2006). The simulation study by Soomro et al. [43] is also well
aligned with the SPARE:WATER estimates given an R2 = 0.89 and RMSE = 139 mm (Figure 2a,d). They
also followed the same FAO56 guidelines but estimated Kc values through a lysimetric approach and
reported good agreement with the empirical values of Ullah et al. The correlation shows that ETc of
rice is partially lower, whereas in the case of Rabi fodder it is somewhat higher than the SPARE:WATER
results. This can be explained by different lengths of the growing season in the model set ups for rice
(SPARE:WATER, Ullah et al. and Shakir et al. 190 days; Soomro et al. 104 days) and for Rabi fodder
(SPARE:WATER 180 days; Soomro et al. 208 days).

With regard to the WFcrop, the SPARE:WATER values highly correlate with results published by
Ghufran et al. [44]. However, the 1:1 line in Figure 2e indicates that the two models systematically
deviate from each other, as the WFcrops reported by Ghufran et al. are always lower. One reason is
that Ghufran et al. have not considered the grey WF in their simulations. Further, it remains unclear
how (and if at all) Ghufran et al. considered irrigation losses as there is no description on how they
set this value in the CROPWAT model (version 8.0) they used. Finally, another reason why absolute
values of WFcrop can differ is the scale of application. SPARE:WATER calculates site specific WFcrop

whereas Ghufran et al. [44] have estimated the WFcrop at the national level. Disregarding the difference
in absolute values, results are highly correlated with R2 = 0.97 and RMSE 2785 m3 t−1. Overall the
plausibility analysis shows that the SPARE:WATER results are comparable with literature data, both
with regard to ETc and WFcrop.

3.2. Average Water Footprint of Crops

The green, blue, grey and total WF of major crops [45] are presented in Table 2 according to
the cropping seasons. In the Kharif season, the highest value of WFcrop is estimated for cotton with
20,690 m3 t−1 because of the high IRR and a low crop yield of 0.53 t ha−1. Other crops such as rice, millet,
sesame and sorghum have a somewhat lower, but still relatively high WFcrops of 7001, 10,240, 17,423
and 8997 m3 t−1, respectively. At the lower end of our estimation are maize, fodder and vegetables
crops (i.e., maize 2969 m3 t−1, fodder 875 m3 t−1, okra 1766 m3 t−1, gourd 1515 m3 t−1, onion 862 m3 t−1

and tomato 1184 m3 t−1). Sugarcane has the lowest WFcrop in the Kharif season with 655 m3 t−1, but it
has the highest IRR. This is due to the high biomass production of sugarcane with 50 t ha−1.

In the Kharif season, the fractions of the blue WFcrops are 58%–78%, and thereby only slightly
lower compared to the Rabi season. The green WFcrop of cotton, rice, maize, fodder, and miscellaneous
crops are larger in the range of 21%–33%, whereas vegetables and sugarcane have low green WFcrops of
8% to 12%, respectively. The grey WFcrop of vegetables and sugarcane are higher in the Kharif season
by 28% and 17%, respectively, whereas all other crops range between 3%–14%.

In the Rabi season, highest WFcrops are calculated for wheat and miscellaneous crops. The values
for vegetables and fodder crops are at the lower range because of the high yields of these crops, with
on average 13 and 31 t ha−1, respectively. The fractions of the blue WF are in the range of 67%–85% and
the green one of 6%–18%. The grey WF fractions are minor for most commodities except for vegetables
(19–26%) and fodder (14%). In the case of annual crop (fruits), banana has the highest WFcrop with
7279 m3 t−1 whereas the WFcrops of other fruits are moderate, ranging between 1822 and 3397 m3 t−1,
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respectively. The blue WF fractions are high in the case of all annual crops with 70%–78%, while green
WF fractions are in the range of 12%–25%. The grey WF fraction is comparatively higher with 6–17%.

Table 2. Average yield and water footprint (WF) for crops in both cropping seasons in the Indus basin
for the period 1997–2016.

Season Category Crops Yield
(t ha−1)

WF (m3 t−1)

Green Blue Grey Total

Kharif

Cereal

Rice 2.1 1488 4971 542 7001
Maize 2.6 839 1706 424 2969

Sorghum 0.7 2981 5763 253 8997
Millet 0.6 3390 6558 292 10,240

Fiber Cotton 0.53 6886 13,315 489 20,690

Sugar Sugarcane 50 76 469 110 655

Oilseed Sesame 0.5 4809 12,086 528 17,423

Fodder Sorghum(Jowar) 12.5 229 616 30 875

Vegetables

Okra 8.3 109 1387 270 1766
Gourd 8.7 104 1186 225 1515
Onion 10.9 73 550 239 862

Tomato 10.3 67 978 139 1184

Rabi

Cereals
Wheat 2.7 381 2083 100 2564
Barley 0.8 621 4432 167 5220

Leguminous Pulses 0.85 1020 6320 964 8308

Oilseed Rapeseed 0.95 750 3151 192 4093

Spice Pepper 1.7 387 4451 1246 6084

Tuber Potato 13.8 56 733 180 969

Fodder Berseem 31 29 185 34 248

Vegetables

Carrot 15.1 15 162 63 240
Spinach 11.2 43 340 118 501
Garlic 7.2 111 906 176 1193
Turnip 17.3 30 265 101 396

Annual Fruits

Banana 4.3 945 5704 630 7279
Citrus 8.7 416 2391 590 3397
Dates 8.7 381 1335 106 1822
Guava 12.2 299 1791 353 2443
Mango 9.6 335 2040 403 2778

3.3. Regional Water Footprint for the Period 1997–2016

Results of the estimation of the WFarea for 1997–2016 is depicted in Figure A2a. There is a
strong inter-annual variation with the lowest WFarea in 1997 (163 km3 yr−1) and the highest in
2014 (201 km3 yr−1). We find an overall negative trend of water productivity (m3 t−1) and water
consumption (m3 ha−1) from 1997–2016 (Figure A2b). The modified Mann–Kendall test revealed that
the trend is significant for water productivity (p = 0.01), but not significant for water consumption
(p = 0.34). The average WFarea is estimated to 182 km3 yr−1, of which the blue WFarea component
accounts for 75% (137 km3 yr−1), followed by the green and grey WFarea of 17% (30 km3 yr−1) and 8%
(15 km3 yr−1), respectively.

On a seasonal basis, the cropped area between the Rabi and Kharif remains stable while the
share of commodities grown differ substantially (Figure 3a). The Rabi season is most important for
wheat production (81% of the total area), which is the major food staple for the Pakistan people. Crop
production is more diversified in the Kharif season with cotton, rice, fodder, and sugarcane sharing
33%, 30%, 12%, and 11% of the harvested area. On an annual basis, production of wheat requires
the largest harvested area (39%) while cash crops (cotton, rice, sugarcane; note that rice is seen as a
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cash crop in Pakistan [46]) and all other crops are grown on 36% and 25% of the area, respectively.
The Kharif crops have the largest share in the annual WFarea with 64%, followed by Rabi crops (30%)
and annual crops with 6% (Figure 3b). Consumption of water in the Rabi season is dominated by
wheat which consumes 79% of the Rabi WFarea. Cash crops consume a large volume of water in the
Kharif season with 28%, 30%, and 27% of the total. On an annual basis, the cash crops consume 57% of
the WFarea, while wheat requires only 24% of the WFarea. The share of all other crops is 19% in the
annual comparison. Note that the seasonal attribution of WF we show here depends on the allocation
of single crops to crop groups. Sorghum, for example, is grown in the Kharif season as a cereal crop
while it is also utilized as a fodder crop in the same season. Shakir et al. [42] have not made this
distinction and thus the cropping patterns they published deviate from ours.
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3.4. Sensitivity Analysis

A sensitivity analysis is performed similar to the one factor at a time methodology, i) to investigate
the dependence of the grey WFarea by changing the salinity of the irrigation water, and ii) to examine
the effect of irrigation efficiency on the blue and grey WFarea. The results indicate that the grey
WFarea increased up to 52% when salinity, expressed as electric conductivity (EC) of irrigation water,
increases by 30%. Similarly, the grey WFarea decreased up to 58% when the EC decreased by 30%
(Figure 4a). However, as the grey WFarea only amounts to 8% of the total WFarea, the effect of accounting
a potentially erroneous salinity of the irrigation water does not change the overall results of our study.

This is different for the second component of our sensitivity analysis. As we have assumed a field
efficiency of the surface irrigation method of 60%, this efficiency was set as a reference. The result
shows that the blue and grey WFarea increased substantially by up to 33% for an efficiency of 45%, and
decreased by 20% when the field efficiency improved from 60% to 75% (Figure 4b). Related to the total
WFarea, such a change would increase/decrease the total WFarea by +24/−19%.
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3.5. Scenario Analysis

Cash crops are high water-intensive crops in the Kharif season, consuming 57% of the annual
water (see baseline in Figure A1). As an alternative, we established in total 37 scenarios by replacing
each cash crop (or two/three cash crops) with a single other crop (Table A2, Figure 5a). Scenarios are
grouped in sets according to the cash crop(s) replaced. As replacing crops, we considered all other
Kharif crops including the cash crops and annual crops (i.e., sugarcane, cotton, rice, maize, fodder,
vegetables, and fruits), but excluded miscellaneous crops. The changes in the WFarea for all scenarios
are presented in Figure 5b. Figure 5c depicts an additional change of the irrigation efficiency and
reduced salinities as outlined in the sensitivity analysis.

In SET1 (sc1–sc6), we substituted sugarcane which leads to a decrease in the WFarea of −4 to −16%.
The largest decrease in sc3 is induced by increasing the cropped area of maize. SET2 (sc7–sc12) focused
on replacing cotton, resulting in a diverse change of the WFarea with an increase of up to 30% (sc7) a
reductions of up to −7% (sc9). The rice scenarios in SET3 (sc13–sc18) lead to increases of 29% (sc13) and
18% (sc18), and reductions of −5% to −12% for all other replacements. The fourth set of scenarios SET4
(sc19–sc23) considers the substitution of sugarcane and cotton with improvements in the WFarea of up
to −23% (sc20) and a single combination with an increasing WFarea of 16% (sc23). SET5 (sc24–sc28)
does not consider sugarcane and rice, achieving improvements of the WFarea by up to −28% (sc25)
when growing maize and an increase when fruits are cultivated (sc28, +14%). The worst results are
found for scenarios of SET6 (sc29–sc33) when sugarcane (+59%, sc29) and fruits (+39%, sc33) replace
both, cotton and rice crops. Again, growing more maize leads to lowering the WFarea by −21% (sc30).
Finally, in SET7 (sc34–sc37) sugarcane, cotton, rice are fully supplanted by maize, fodder, vegetables,
and fruits, yielding reductions of −35%, −18%, −23% and an increase by 35%, respectively.

In all scenarios for which results are given in Figure 5b we assumed the traditional irrigation
method (surface irrigation) as the current practice in Pakistan. To estimate the potential effect of
improved irrigation technologies (i.e., application of drip irrigation for cotton, sugarcane, maize,
vegetables and fruits whereas sprinkler for all other commodities) we re-run all scenarios (Figure 5c).

Water consumption of the current cropping pattern (baseline) can be reduced by −23% through
improved irrigation. The overall highest WFarea reduction of −50% is found for sc34 by substituting
sugarcane, cotton, and rice with maize, followed by sc25 (−44%, sugarcane, and rice substituted with
maize), sc36 (−43%, sugarcane, cotton, and rice substituted with vegetables) and sc27 (−41%, sugarcane
and rice substituted by vegetables). These results confirm that improved irrigation technologies have a
very positive impact on water saving.
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4. Discussion

4.1. Water Consumption and Policy Implication

In 2018, Pakistan’s government has developed a water policy to ensure water and food security
for the growing population. It specifies that future cropping patterns should be adjusted at the low
delta crops through improved irrigation technologies. This policy has been established at the federal
level as a national framework and it has been directed to provinces to make a master plan for the
management of water resources. This study support the development of alternative water management
strategies, through the evaluation of the water footprint. Numerous studies have suggested that a
WF assessment can be a useful approach to evaluate management practices [47–49]. It has been also
discussed as a tool for policy implication in various regions. Spain’s government has officially linked
the WF analysis to decision making for new developing projects [50,51]. Liu et al. [52] argued that
current water policies of China are based on blue water consumption. However, it should be revised
to take green water into account to further improve the water use efficiency. The potential of WF
assessment as a performance indicator was also discussed by Dong et al. [53] for policy implication in
the Liaoning province of China.

Here we analyzed the WF of Pakistan’s agriculture to estimate the volume of water used during
1997–2016 to produce crops. Such type of analysis is useful to derive how much green versus blue
water is needed for crop production [54]. According to our estimates, the average water consumption
in the study area is 182 km3 yr−1, of which 75% are allocated to blue water, 17% to green water and 8%
to grey water, respectively. Sugarcane, cotton, and rice (cash crops) in Kharif and wheat in the Rabi
season are the most commonly grown crops. Among them, sugarcane is the most water-intensive crop,
followed by rice and cotton. These three crops are cultivated on 36% of the annual harvested area in the
Kharif season, but consume about 57% of the annual WFarea. Wheat is cultivated as a food crop on 39%
of the annual harvested area in the Rabi season. However, it consumes only 24% of the annual WFarea.
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4.2. Alternative Water Management Practices

In line with Pakistan’s ambition to reduce water consumption, we analyzed a number of simply
water-saving strategies, i.e., by optimization of cropping patterns and through improvements of
applied irrigation technologies. Adjusted cropping pattern allow to reduce the WFarea by up to −35%
(sc34) through substituting the cash crops (i.e., sugarcane, cotton, and rice) with maize, while keeping
the total cropped area constant. Apart from this ultimate scenario, sc1 (i.e., substitute sugarcane with
cotton) and sc24 (i.e., substitute sugarcane and rice with cotton) are more balanced cropping patterns
which reduce the water consumption by −13% and −18%, respectively. In light of these findings,
we recommend to grow cotton in the harvested area of all cash crops if the absolute termination of all
cash crops is not applicable. Various other studies conducted in different regions also indicate that the
optimization of cropping patterns is a key approach to reduce the WF of a region or catchment [55–57].
Ghasemi et al. [58] showed that the redistribution of cropping patterns can be linked to the effective
use of water resources in Iran. Zheng et al. [59] confirmed that the adjustment of cropping pattern is a
key solution for water management of arid and semi-arid regions.

In the second part, we investigated the impact of optimal cropping patterns along with
improvements of irrigation technologies. The results indicate that water consumption of the baseline
cropping pattern (2016) can be reduced by up to −23 % through technological optimization alone.
The WFarea of scenarios can even be decreased by up to −50% through the combined implementation
of optimal cropping patterns and improved irrigation technologies. The technology changes lead to a
decrease in water consumption for all cropping scenarios except for sc29 (i.e., cotton and rice replaced
with sugarcane) as compared to the baseline cropping pattern at current irrigation settings. The benefits
of improved irrigation have been also discussed in other studies. For examples, Maisiri et al. [60]
investigated the impact of irrigation technologies on maize and vegetable crops at an experimental
site in the Limpopo basin of Zimbabwe, and Liu et al. [61] found that less water was consumed when
wheat was irrigated with sprinkler than surface irrigation in North China.

In Pakistan, most agricultural fields are irrigated with surface irrigation methods [62]. Although
various efforts have been made over the last three decades to introduce more efficient irrigation
technologies, the results are not remarkable [63,64]. The high initial cost is one of the main reasons
for the adoption of these technologies [65]. Rodrigues et al. [66] studied the economic impacts of
drip and sprinkler irrigation on maize crops in southern Brazil and concluded that the comparative
advantages of water-saving are insufficient to recover the initial cost of the system. The Punjab
government and World Bank have introduced a joint project (PIPIP, 2012–2021) on a subsidy basis to
install high-efficiency irrigation systems on approximately 50,000 hectares in the Punjab province [67].
Such types of projects can help to promote irrigation technologies among farmers by reducing the
initial investment. Qamar et al. [68] investigated the implementation strategies in the Punjab province
for the sustainability of irrigation systems and recommended that water prices need to be sufficiently
high to promote water-saving technologies among farmers. In another study, Kahlown et al. [69] do
not expect an adaptation of irrigation technologies in the Indus basin command areas due to the low
price of water. However, further investigation should be conducted on water price formulation to
encourage the farmers for improvements of irrigation technologies.

5. Conclusions

In this paper, we have evaluated a number of water-saving strategies in the irrigated areas
of the Punjab and Sindh provinces in Pakistan. We have shown that substantial reductions in
water consumption are possible through changes in cropping patterns. In the scenarios of changing
cropping patterns, we substituted water-intensive cash crops (i.e., sugarcane, cotton, rice) with
less water-intensive crops (i.e., maize, fodder, and vegetables) or replaced comparatively high
water-intensive cash crops with less water-intensive cash crops. We further show that water savings are
possible by shifting the irrigation method from surface irrigation to improved irrigation technologies
(sprinkler and drip irrigation).
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Additionally, socio-economic aspects may have an important role in the adoption of alternative
management practices. Abdulai et al. [70] showed that the household and farm characteristics such as
age, education, income, loan accessibility, farm size, and location of the irrigation sources played a vital
role in south Ghana for the selection of irrigation technologies and cropping patterns. Rehman et al. [71]
investigated the economic impact of major crops on the GDP of Pakistan and indicated that cotton,
wheat, rice, and maize crops have a positive relationship with GDP while sugarcane crops have a
negative effect. In another study, Mujtabai et al. [72] recognized that stopping the exports of agriculture
commodities is not a wise decision for the economic perspective of a country, so net benefits of
alternative cropping patterns should be close to the current benefits. Aldaya et al. [50] highlighted that
‘more crop per drop’ investigation should also consider economic aspects to achieve ‘more cash per
drop’ at the same time.

Apart from economic considerations, the impact of future climate changes in the Indus basin
should also be considered. Rasul et al. have shown that these changes can reduce crop productivity
and degrade the available water resources in upcoming years due to spatial and temporal changes
in temperature and rainfall [73]. Awan et al. [74] predicted that climate changes will cause to rise
the irrigation requirements by 7%–11% in the region due to fluctuations in temperature and rainfall.
Henceforth, we propose that joint social, economic and climate change impacts of alternative practices
should be assessed in future studies to achieve sustainable development in water policy implications.

The current study is conducted to evaluate the water-saving strategies at the basin-level by
choosing a random combination of crops. Future optimization strategies should include spatially
adapted crop combinations, preferably in dependence of localized accessibility of groundwater and
its quality. Multsch et al. [36] have shown the value of such an optimization tool for the use of a
limited water resource obtained from desalination in Saudi-Arabia. In addition, a similar type of a
user-friendly decision support tool could be developed for field level application. Such a tool could
provide farmers directly with information on optimal cropping patterns. We also recommend that
apart from the proposed water-saving strategies, other alternative management techniques, directed to
off-farm (i.e., improved infrastructure to reduce water losses due to poor conveyance efficiency) and
on-farm (e.g., deficit irrigation or soil mulching) management, should be evaluated in future studies to
develop a comprehensive water policy for Pakistan.
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Table A1. Crop coefficients (Kc) used in this study.

Category Crops Crop Coefficients Source

Kc in Kc mid Kc end

Cereal

Maize 0.15 0.82 0.47

Ullah et al. [40]

Rice 0.28 1.26 0.44
Sorghum 0.23 0.92 0.52

Wheat 0.36 1.16 0.40

Fiber Cotton 0.44 1.11 0.38

Sugar Sugarcane 0.52 1.17 0.88

Oilseed Rapeseed 0.25 0.97 0.32

Leguminous Pulses 0.37 0.95 0.34

Cereal
Barley 0.30 1.15 0.25

FAO Dataset [32]

Millet 0.30 1.00 0.30

Vegetables

Carrot 0.70 1.05 0.95
Garlic 0.70 1.00 0.70
Gourd 0.50 1.00 0.80
Onion 0.70 1.05 0.75
Okra 0.70 1.05 0.95

Spinach 0.70 1.00 0.95
Tomato 0.60 1.15 0.70
Turnip 0.50 1.10 0.95

Spice Pepper 0.60 1.05 0.90

Tuber Potato 0.50 1.15 0.75

Oilseed Sesame 0.35 1.15 0.35

Fodder Berseem 0.40 0.90 0.85

Fruits

Banana 1.00 1.20 1.10
Citrus 0.75 0.70 0.75
Dates 0.90 0.95 0.95

Mango 0.60 0.80 0.60
Guava 0.80 1.00 0.80
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Table A2. Harvest area of the baseline year 2016 and the 37 cropping scenarios.

Harvested Area (Million Hectares yr−1)

SET Scenarios Kharif Season Crops Annual Crops Rabi Season Crops

Sugarcane Cotton Rice Maize Fodder Vegetables Miscellaneous Fruits Wheat Fodder Vegetables Miscellaneous

Baseline 1.09 2.43 2.92 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
SET1 sc1 0 3.52 2.92 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20

sc2 0 2.43 4.01 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc3 0 2.43 2.92 1.71 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc4 0 2.43 2.92 0.62 2.12 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc5 0 2.43 2.92 0.62 1.02 1.22 0.71 0.46 7.41 1.10 0.27 0.20
sc6 0 2.43 2.92 0.62 1.02 0.12 0.71 1.55 7.41 1.10 0.27 0.20

SET2 sc7 3.52 0 2.92 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc8 1.09 0 5.34 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc9 1.09 0 2.92 3.04 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc10 1.09 0 2.92 0.62 3.45 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc11 1.09 0 2.92 0.62 1.02 2.55 0.71 0.46 7.41 1.10 0.27 0.20
sc12 1.09 0 2.92 0.62 1.02 0.12 0.71 2.88 7.41 1.10 0.27 0.20

SET3 sc13 4.01 2.43 0 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc14 1.09 5.34 0 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc15 1.09 2.43 0 3.53 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc16 1.09 2.43 0 0.62 3.94 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc17 1.09 2.43 0 0.62 1.02 3.04 0.71 0.46 7.41 1.10 0.27 0.20
sc18 1.09 2.43 0 0.62 1.02 0.12 0.71 3.37 7.41 1.10 0.27 0.20

SET4 sc19 0 0 6.43 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc20 0 0 2.92 4.13 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc21 0 0 2.92 0.62 4.54 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc22 0 0 2.92 0.62 1.02 3.64 0.71 0.46 7.41 1.10 0.27 0.20
sc23 0 0 2.92 0.62 1.02 0.12 0.71 3.98 7.41 1.10 0.27 0.20

SET5 sc24 0 6.43 0 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc25 0 2.43 0 4.63 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc26 0 2.43 0 0.62 5.03 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc27 0 2.43 0 0.62 1.02 4.13 0.71 0.46 7.41 1.10 0.27 0.20
sc28 0 2.43 0 0.62 1.02 0.12 0.71 4.47 7.41 1.10 0.27 0.20
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Table A2. Cont.

Harvested Area (Million Hectares yr−1)

SET Scenarios Kharif Season Crops Annual Crops Rabi Season Crops

SET6 sc29 6.43 0 0 0.62 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc30 1.09 0 0 5.96 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc31 1.09 0 0 0.62 6.37 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc32 1.09 0 0 0.62 1.02 5.47 0.71 0.46 7.41 1.10 0.27 0.20
sc33 1.09 0 0 0.62 1.02 0.12 0.71 5.80 7.41 1.10 0.27 0.20

SET7 sc34 0 0 0 7.05 1.02 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc35 0 0 0 0.62 7.46 0.12 0.71 0.46 7.41 1.10 0.27 0.20
sc36 0 0 0 0.62 1.02 6.56 0.71 0.46 7.41 1.10 0.27 0.20
sc37 0 0 0 0.62 1.02 0.12 0.71 6.89 7.41 1.10 0.27 0.20
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