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Abstract: The harvesting of plant biomass is usually implemented as an effective tool for plant
management and removing the nutrients absorbed in plant tissues. Here, the influence of harvesting
different biomasses (50%, 33%, 25%, and 0% (no harvest)) of watercress (Nasturtium officinale) was
investigated in integrated recirculating aquaponic systems (IRASs) for rearing common carp (Cyprinus
carpio). Twelve independent IRASs were designed (4 × 3); each system consisted of a fish rearing
tank, a waste collection tank, and a hydroponic bed. Water quality parameters and the growth of
both fish and plants were measured in all the systems, and then the nutrient removal capacities of
the hydroponic beds were calculated. The results revealed that increasing the biweekly harvested
biomass of the plants decreased the growth of the watercress, while it did not affect the growth of the
common carp. Increasing the harvested biomass of the plants also decreased the nitrate nitrogen and
orthophosphate removal efficiencies of the aquaponic systems, while it did not affect the ammonia
and nitrite nitrogen removal efficiencies. Therefore, a biweekly harvesting of less than 25% of the
biomass of the growing watercress is recommended for efficient nutrient removal and the sustainable
growth of both watercress and the common carp in aquaponic systems.

Keywords: biomass harvesting; common carp; integrated recirculating aquaponic system; nutrients
removal; watercress

1. Introduction

Aquaponic systems are the integrated recirculating aquaculture systems (IRASs) that combine
aquaculture and hydroponics [1,2]. These systems are gaining popularity because they offer many
advantages in terms of reducing water consumption, increasing the profitability of primary and
secondary products, recycling nutrients, and reducing the environmental impacts of aquaculture [3,4].
Aquaponics is a symbiotic production system between fish, microbes, and plants. After fish digest
food, ammonia nitrogen is excreted into the water, and high levels of ammonia can negatively affect
fish growth and survival. Nitrifying bacteria can utilise ammonia nitrogen and convert it into nitrite
and then to nitrate. Finally, plants can absorb and utilise nitrate for growth [3].

Among the most economical plant species that can grow in the aquaponic systems are leafy greens
such as basil, spinach, chives, mint, and watercress [5]. Watercress (Nasturtium officinale) is an aquatic,
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perennial herb consumed by humans as a salad green and medicinal herb. The plant has relatively
large quantities of beta carotene (vitamin A), ascorbic acid (vitamin C), folic acid, iron, iodine, calcium,
and phosphorous. It also contains a high level of amino acids (arginine, glycine, lysine and tryptophan)
and antioxidants [6]. Watercress is in high demand and has a high economic value in urban areas,
which makes it a very suitable crop for commercial or small scale farming. The demand for watercress
is greater than the amount that business can supply to the market [5].

The common carp (Cyprinus carpio L.) was also chosen as a model species in the current
study because it has a wide distribution throughout the world and can survive in poor water
quality. The majority of carp production in Central and Eastern Europe comes from extensive and
semi-intensive fishpond operations, where untreated pond water discharged into the environment
causes environmental problems [7]. In response to the increasingly strict environmental regulations
in the region, improving carp farming practices and reducing their environmental impact would be
a new desirable trend for ecological approaches and sustainability.

In aquaponic systems, three strategies have been adopted for producing crops: staggered cropping,
intercropping, and batch cropping [1]. A staggered production system is one where a group of plants
are harvested at different stages of growth. This allows the crop to be harvested repeatedly and keeps
the nutrient uptake in the culture system relatively constant. This system is most effective for crops that
can be grown continuously such as leafy green vegetables and herbs [1]. However, if the harvesting of
the plants is too much, the number of plants in the bed will reduce and the uptake of the nutrients in
the aquaponic system may decrease, resulting in nutrient accumulation and, eventually, fish mortality.
Therefore, the selection of the appropriate biomass of plants to be harvested can optimise nutrient
uptake efficiency and sustain plant development in aquaponic systems.

Additionally, several studies have suggested that overall nutrient removal could be improved if
a harvesting regime is applied [8–10], but others reveal that harvesting can negatively affect nutrient
removal [11–13]. The importance of harvest management for the nutrient removal, as well as the growth
and development of plants, has always been highly controversial [8,13–16]. Despite the idea of nutrient
reduction through harvesting having gained more attention over the last decade [17], little published
information is available on the requirement of the optimum harvesting of the biomass of plants in
integrated recirculating aquaponic systems. Therefore, this study aimed to investigate the effects of
harvesting different biomasses of watercress on water quality, nutrient removal efficiency, and the
growth of both watercress and the common carp in an integrated recirculating aquaponic system.

2. Materials and Methods

2.1. Experimental Fish and Plants

A total number of 144 common carp (C. carpio L.) with an average weight of 33.67 ± 0.012 g were
used for the experiment. Fish were collected from a stock tank at the Aquaculture Laboratory of
Debrecen University (ALDU), Hungary. Watercress (N. officinale) was also taken from a growing
hydroponic bed in an operating aquaponic system at ALDU. Healthy seedlings (144 seedlings) that
already had white roots with an average height of 6 cm and a weight of 20 g were transplanted into
12 hydroponic units. Each hydroponic unit was stocked with twelve seedlings of watercress.

2.2. Design of Systems

The trial comprised 12 independent experimental systems; each system consisted of a 200 L fish
tank, a 20 L waste collection tank, and a 0.086 m3 hydroponic unit with expanded clay. The fish and
waste collection tanks were placed on the floor, while the hydroponic unit was installed on a plastic
stand to elevate it above the fish tank. Water from the waste collection tank was pumped through
a plastic tube at a flow rate of 3 L/min to the hydroponic unit by a submerged pump. Water from the
hydroponic unit was circulated to the fish tank and then returned back through a PVC pipe to the
waste collection tank by gravity (Figure 1). The outlet of each hydroponic unit was constructed as
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a bell siphon with a maximum water level of 15 cm and an auto-mechanical water out movement,
initiating the ebb under water pressure. The water volumes in the fish and waste collection tanks
were maintained at 100 L, and 17 L, respectively. The fish tank was supplied with one air stone to
provide dissolved oxygen for the fish, and a polyethylene mesh was put above the fish tank to prevent
the fish from jumping outside. All the experimental systems were operated with fish and plants
for four days before the commencement of the experiment to acclimate the fish and plants to the
experimental systems.
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2.3. Experimental Setup and Rearing Conditions

The trial was conducted for 58 days in an insulated greenhouse at ALDU, and only natural light
was used to provide uniform conditions for fish and plant growth. Initially, 12 seedlings of plants
with a total biomass of 240 g were transplanted into each hydroponic unit (0.43 m2 surface area).
The effect of harvesting different biomass ratios of above-ground plants was evaluated by a random
design with three replicates. There were four treatments: harvesting 0%, 25%, 33%, and 50% of plants
biweekly from the surface area of each hydroponic bed. Harvesting was carried out in such a way
that the five centimetre above-ground portion of the plants remained in place to allow the plants to
regrow again. The fish were initially stocked at 2.02 kg/m3, and the total biomass was approximately
404 g/tank. The feeding rate for the fish was 2% of body weight per day, and all the fish were fed by
hand twice a day at 09:00 and 15:00 hours with the commercially formulated feed (pellet size 2 mm)
Aller Master (35% crude protein, 9% crude fat, 4.7% crude fibre, 7% crude ash, and 1.1% P) (Aller Aqua
Group, Allervej, Christiansfeld, Denmark). The uneaten feed and faeces were siphoned out daily
before feeding and separated from the siphoned water by a 100 µm mesh size net, and then the water
was returned back into the fish tank of the same system. Depending on the loss of technological water,
the necessary amount of new water was added (~20–30 L) every ten days (including the water to
compensate that lost by evaporation).

2.4. Water Quality Parameters

The dissolved oxygen (DO), temperature, and pH were measured in the fish tanks and hydroponic
beds once a day before feeding using a Hach HQ30d portable meter (HACH CO., Loveland, Colorado,
USA). Triplicate water samples were collected every 10 days from the fish tanks, as were the influent and
effluent waters of each hydroponic unit to determine the nutrient removal rates. Ammonia nitrogen
(NH3-N), nitrite nitrogen (NO2-N), nitrate nitrogen (NO3-N), orthophosphate (PO4-P), and total
phosphorus (TP) were measured with the HACH Lange DR/3900 spectrophotometer (HACH CO.,
Loveland, Colorado, USA), using spectrophotometric methods outlined by the HACH company.
The levels of NH3-N, NO2-N, and NO3-N were determined using the Nessler method (Method 8038),
diazotisation method (Method 8507), and cadmium reduction method (Method 8039), respectively [18].
The TP and PO4-P were determined by the phosphor-molybdenum blue method (HACH, Lange,
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LCK349, Phosphate Ortho/Total cuvette test), according to the ISO 6878_2004, DIN EN 6878/D11
standard [18].

The nutrient removal rates (NRR) were used to determine the nutrient removal cycle in each
system. The nutrient removal rate (NRR%) was calculated using the following equation [19]:

NRR% = [(CI − CE)/CI] × 100 (1)

where CI and CE are the concentrations of a particular nutrient in the influent and effluent waters of
the grow beds, respectively.

2.5. Fish and Plant Growth Parameters

The growth and survival rates of the fish were recorded at the end of the experiment for each tank.
The specific growth rates (SGR), fish weight gain (WG), feed conversion ratio (FCR), and survival rates
were calculated using the following formulas:

SGR (%/day) = 100 × (lnWt − lnW0), (2)

WG = Wt −W0, (3)

FCR = WF (g)/WG (g ), (4)

Survival rate (%) = 100 × (nt/n0), (5)

where Wt and W0 are the weights of fish at the end and the start of the trial, respectively, and (t) is the
number of rearing days. The WF is the weight of feed given to the fish (g), and WG is the weight gain
of the fish (g). The nt and n0 are the numbers of fish at the end and the start of the trial, respectively.

At the end of the experiment, all the plants were harvested from the hydroponic beds and the
weight of the plants was recorded. The final biomass (FB), biomass gain, and specific growth rates of
plants (SGRP) were calculated using the following equations:

Final biomass production of plants (FB) = Cumulative amount of plants harvested during
the harvestings throughout the trial (g),

(6)

Biomass gain of plants (g) = FB − IB, (7)

SGRP (%/day) = 100 × (lnFB − lnIB)/t, (8)

where FB and IB are the final biomass of the plants and the initial stocked biomass, respectively, while
t is the number of rearing days.

2.6. Statistical Analysis

All statistical analyses were performed using SPSS version 22.0 for windows. All the data
obtained were tested for normality of distribution and homogeneity of variance. One-way analysis of
variance (ANOVA) was conducted to test the differences between the parameters amongst treatments.
Significant ANOVAs were followed by Duncan’s multiple range tests to recognise specific differences
amongst treatments. A p < 0.05 was considered significant for all analyses.

3. Results

3.1. Water Quality Parameters in Fish Tanks

The means for all the water quality parameters in the fish tanks were similar (p > 0.05) amongst
the treatments except for PO4-P and TP (Table 1). The lowest means for PO4-P and TP were recorded
in the fish tanks of the unharvested systems (0%), which significantly differed (p < 0.05) from those of
the other three treatments (Table 1). The dissolved oxygen in all the treatments never dropped below
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7 mg/L, whereas the temperature decreased as the trial progressed from 16.7 ◦C to 11.5 ◦C. The mean
pH values fluctuated in all the treatments between 7.01 and 7.65. The mean NH3-N concentrations
decreased in all the treatments as the trial progressed, while the mean NO2-N concentrations fluctuated
over time (Figure 2a,c). The means for NO3-N increased in all the treatments during the first 30 days
and decreased after that, with the highest means in the 33% and 50% harvested systems (Figure 2d).
The mean PO4-P and TP concentrations for all the treatments decreased as the trial progressed, and the
highest means were recorded at the early stage of the culture period (Figure 2e,f).
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Figure 2. Concentrations of (a) ammonia nitrogen; (b) un-ionised ammonia; (c) nitrite nitrogen;
(d) nitrate nitrogen; (e) orthophosphate; and (f) total phosphorus (TP) in tanks of Cyprinus carpio reared
in an integrated recirculating aquaponic system for a 58 day trial (data are the means of three replicates
(n = 3), and error bars indicate the standard errors).
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Table 1. Overall mean water quality parameters in the fish tanks and hydroponic units of aquaponic
systems under different plant harvesting regimes.

Water Parameters
Harvested Biomass

0% 25% 33% 50%

Fish Tanks

NH3-N (mg/L) 0.56 ± 0.08 a 0.52 ± 0.06 a 0.58 ± 0.07 a 0.53 ± 0.05 a

NH3 (mg/L) 0.005 ± 0.001 a 0.004 ± 0.001 a 0.005 ± 0.001 a 0.004 ± 0.001 a

NO2-N (mg/L) 0.25 ± 0.05 a 0.20 ± 0.05 a 0.21 ± 0.04 a 0.22 ± 0.04 a

NO3-N (mg/L) 16.71 ± 1.68 a 17.87 ± 3.1.98 a 19.86 ± 2.17 a 19.87 ± 2.12 a

PO4-P (mg/L) 0.18 ± 0.02 b 0.27 ± 0.01 a 0.29 ± 0.02 a 0.32 ± 0.01 a

TP (mg/L) 0.25 ± 0.04 b 0.36 ± 0.04 a 0.39 ± 0.03 a 0.40 ± 0.03 a

Dissolved oxygen (mg/L) 8.16 ± 0.07 a 8.19 ± 0.06 a 8.24 ± 0.06 a 8.34 ± 0.06 a

pH 7.41 ± 0.02 a 7.35 ± 0.04 a 7.37 ± 0.03 a 7.40 ± 0.04 a

Temperature (◦C) 14.71 ± 0.35 a 14.45 ± 0.34 a 14.29 ± 0.33 a 14.21 ± 0.33 a

Bed Units

Dissolved oxygen (mg/L) 8.16 ± 0.07 a 8.15 ± 0.07 a 8.22 ± 0.07 a 8.20 ± 0.08 a

pH 7.41 ± 0.03 a 7.38 ± 0.04 a 7.37 ± 0.04 a 7.40 ± 0.04 a

Temperature (◦C) 14.44 ± 0.34 a 14.37 ± 0.34 a 14.26 ± 0.33 a 14.16 ± 0.33 a

Values (means ± SE) in the same row with different superscript letters (a, b . . . .) are significantly different (Duncan
test; p < 0.05); data are the means of three replicates (n = 3).

3.2. Nutrient Removal Rates

There were no significant differences (p > 0.05) in the mean removal rates for NH3-N and NO2-N
amongst any of the treatments (Table 2). The mean NH3-N and NO2-N removal rates increased in
all the treatments over time (Figure 3a,b). The highest removal rates for NO3-N, PO4-P, and TP were
calculated in the unharvested system, which significantly differed (p < 0.05) from those in the 33%
and 50% systems (Table 2). However, the mean NO3-N, PO4-P, and TP removal rates in the 25%
harvested systems were comparable with those in the unharvested and 33% harvested systems (Table 2).
The mean NO3-N removal rates in the unharvested systems increased over time, while the means
for the other three treatments slightly decreased at the later stage of the culture period (Figure 3c).
The mean PO4-P and TP removal rates increased in all treatments over time (Figure 3d,e).

Table 2. Overall mean nutrient removal efficiency for each treatment during the 58 day trial.

Removal Rates
Harvested Biomass

0% 25% 33% 50%

NH3-N (%) 36.20 ± 3.19 a 35.06 ± 3.82 a 31.80 ± 2.74 a 31.88 ± 2.93 a

NO2-N (%) 42.43 ± 3.24 a 41.67 ± 3.96 a 47.14 ± 3.10 a 42.58 ± 4.23 a

NO3-N (%) 63.58 ± 2.36 a 59.67 ± 2.78 ab 54.26 ± 2.33 bc 49.49 ± 2.78 c

PO4-P (%) 31.09 ± 1.19 a 28.44 ± 0.94 ab 26.33 ± 1.34 bc 24.97 ± 1.13 c

TP (%) 47.31 ± 1.25 a 46.56 ± 0.93 ab 44.76 ± 0.83 b 43.06 ± 1.17 b

Values (means ± SE) in the same row having different superscript letters (a, b, c . . . .) are significantly different
(Duncan test; p < 0.05); data are the means of three replicates (n = 3).
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3.3. Concentrations of Nutrients Before and After Harvesting Plants

The concentrations of NO3-N and PO4-P in the outlet of the bed units increased after two days of
harvesting compared to the levels before two days of harvesting (Figure 4b,c), while the concentration
of NH3-N started to increase after two days of the second harvesting (Figure 4a).
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Figure 4. Concentrations of (a) ammonia nitrogen; (b) nitrate nitrogen, and (c) orthophosphate at the
outlet of the hydroponic beds before and after two days of harvesting plants (data are the means of
three replicates (n = 3), and error bars indicate the standard errors).

3.4. Fish and Plant Growth Performance

After the experimental period, the growth rate of the common carp increased in all the treatments.
The mean biomass gain, SGR, individual weight gain and FCR of the fish did not differ significantly
(p > 0.05) amongst any of the treatments (Table 3). The survival rates were also similar (p > 0.05) in all
treatments, and no mortality was recorded in any system (Table 3).
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Table 3. Growth performance of Cyprinus carpio reared for 58 days in integrated recirculating aquaponic
systems under different plant harvesting regimes.

Growth Parameters
Harvested Biomass

0% 25% 33% 50%

Initial fish weight (g/fish) 33.71 ± 0.10 a 33.75 ± 0.08 a 33.64 ± 0.04 a 33.55 ± 0.99 a

Final fish weight (g/fish) 60.20 ± 0.83 a 60.37 ± 1.42 a 61.35 ± 1.68 a 60.63 ± 1.13 a

Fish weight gain (g/fish/58 days) 26.49 ± 0.73 a 26.62 ± 1.39 a 27.70 ± 1.71 a 27.07 ± 1.03 a

Specific growth rate (%/day) 1.00 ± 0.02 a 1.00 ± 0.04 a 1.03 ± 0.05 a 1.02 ± 0.03 a

Feed consumption (g/fish/day) 0.67 ± 0.00 a 0.67 ± 0.00 a 0.67 ± 0.00 a 0.67 ± 0.00 a

Fish weight gain (g/fish/day) 0.46 ± 0.01 a 0.46 ± 0.03 a 0.48 ± 0.03 a 0.47 ± 0.02 a

Feed conversion ratio 1.46 ± 0.04 a 1.46 ± 0.07 a 1.40 ± 0.08 a 1.43 ± 0.06 a

Survival (%) 100 ± 0.00 a 100 ± 0.00 a 100 ± 0.00 a 100 ± 0.00 a

Values (means ± SE) in the same row with the same superscript letters are not significantly different (Duncan test;
p < 0.05); data are the means of three replicates (n = 3).

The mean biomass gain and specific growth rates of the plants (SGRP) in the 0% systems were
significantly higher (p < 0.05) than the values for the 33% and 50% harvested systems (Table 4).
However, the mean biomass gain and SGRP of the 25% system were similar to the values for the
unharvested and 33% harvested systems (Table 4). The amount of harvested plants for the treatments
increased during the harvesting times, except for the decrease in the 50% harvested system at the third
and fourth harvestings (Figure 5a).

Table 4. Growth performance of Nasturtium officinale in integrated recirculating aquaponic systems
under different harvesting regimes.

Growth Parameters
Harvested Biomass

0% 25% 33% 50%

Stocking biomass (g) 240 ± 0.00 a 240 ± 0.00 a 240 ± 0.00 a 240 ± 0.00 a

Final biomass (g) 2580.00 ± 180.00 a 2110.14 ± 8.36 ab 1865.97 ± 71.67 bc 1556.90 ± 187.95 c

Biomass gain (g) 2340.0 ± 180.0 a 1870.14 ± 8.36 ab 1625.97 ± 71.67 bc 1316.90 ± 187.95 c

Specific growth rate of the plants (%/day) 4.090 ± 0.120 a 3.745 ± 0.005 ab 3.535 ± 0.065 bc 3.210 ± 0.210 c

Values (means ± SE) in the same row with different superscript letters (a, b . . . ) are significantly different (Duncan
test; p < 0.05); data are the means of three replicates (n = 3).
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Figure 5. Harvested biomass of Nasturtium officinale in aquaponic systems under different harvesting
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production in each treatment (data are the means of three replicates (n = 3), and error bars indicate the
standard errors).
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4. Discussion

The aquaponic systems designed with watercress plants (N. officinale) in this study were efficient in
removing nutrients because the plants take up the waste generated by the fish. The growth rate of the
watercress increased exponentially in all treatments. However, our results showed that an increase in
the harvested biomass of plants negatively affected the final biomass production (Table 4). Information
relating to the influence of harvesting biomass on the growth performance and nutrient removal
efficiency of plants in aquaponic systems is very limited; however, a very recent study found harvesting
can cause damage to the plant tissues and that the plants after harvesting would not have the ability to
transport nutrients and nonstructural carbohydrates from the stems and leaves to the storage organs,
which could support the growth of new buds [16]. Several studies with different plant species also found
that repeated aboveground harvesting can slow down plant biomass development because harvesting
does not allow sufficient opportunity for plants to absorb more nutrients for growth, consequently
leading to very low biomass production compared to that in those not harvested [10,11,20,21]. In the
present study, the amount of harvested plants in the 50% harvested system decreased at the third and
fourth harvestings (Figure 5a), suggesting that harvesting can affect nutrient storage in plant tissues.
Harvesting can alter the storage of rhizome carbohydrates needed for early growth and stand strength,
depending on the time of harvest and the type of biomass harvested [20]. Our results are in agreement
with the results obtained by [10], who found that increasing harvesting frequency had a large effect
on Myriophyllum spicatum cover, height, composition, and abundance. On the other hand, [13] found
that harvesting plants improved shoot density and the biomass of plants in the system compared with
those in the unharvested system, while [8] found that the aboveground biomass was nearly identical at
one and two time harvests.

After harvesting plants, the concentrations of NH3-N, NO3-N, and PO4-P in the outlet of the bed
units were higher compared to the levels before two days of harvesting (Figure 4a–c), and this was
probably due to a temporary reduction in the nutrient removal capacity of the system. The purification
in rearing systems could be mediated by different mechanisms such as nitrification, denitrification,
microbial assimilation, sedimentation, and plant uptake [22]. Plant uptake is one of the pathways
for nutrient removal. When the plants are harvested, the microenvironment of the plant rhizosphere
will be affected, leading to a decrease in the uptake of nutrients [16]. This is the one reason why the
concentrations in the effluents of the bed units temporarily increased after two days of harvesting
plants, especially for NO3-N and PO4-P (Figure 4). Similarly, [16] reported that the concentrations of
NO3-N and NH4-N in the effluents increased temporarily after harvesting plants, and the effect on
NO3-N was greater than that on NH4-N, demonstrating that the harvesting of plant shoots would
reduce the root exudates of the plants.

In aquaponic systems, nutrient removal capacity is influenced by the growth stage of the plants,
nutrient needs of the plants, and activity of nitrifying bacteria [3,4,19]. Our results indicated that
increasing the aboveground harvested biomass of plants had no effects on the ammonia and nitrite
nitrogen removal efficiencies (Table 2), and this could be due to the activity of the nitrifying bacteria
in the systems. It is reported in [3] that nitrifying bacteria are responsible for the major removal
of ammonia and nitrite nitrogen in media-based aquaponic systems. Therefore, the activity of the
nitrifying bacteria can describe the ammonia and nitrite nitrogen removal trends by all treatments in the
present study. The increasing trends with the treatments were possibly due to the boost in the number
of nitrifying bacteria in response to the rise in ambient ammonia concentrations as a consequence of
the increasing fish biomass. At the early stage of the trial, there were not enough nitrifying bacteria
to perform the nitrification process efficiently [4,23,24]. Similar findings were reported by [13], who
found that the NH3-N and NO2-N removal efficiencies were comparable between the harvested and
unharvested wetlands, and both wetlands in the second year showed higher nutrient removal than in
the first year. On the other hand, [10] found that harvesting two times per growing season removed
the highest amount of nitrogen from the system compared with the five times harvesting system.
The results of another study revealed that harvesting during winter decreased NH4-N removal [12],
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while the results obtained by [9] revealed that the harvesting of shoots during summer could improve
ammonia nitrogen removal.

Nitrates in aquaponic systems are taken up by plants as the main nitrogen source, and higher plant
biomass translates to a higher plant uptake rate, resulting in a higher nitrate removal efficiency [3,25].
In the current study, the unharvested treatment had the highest plant biomass production (Figure 5b),
resulting in the highest NO3-N removal efficiencies, which tended to increase as the plant biomass
increased over time (Figure 3c). By contrast, the decreasing trends at the later stage of the experiment
with the other treatments could be related to differences in the growth performance of plants, cover,
and abundance of plants in the bed unit after harvesting. It was concluded in [10] that an increase
in harvesting frequency negatively affected macrophyte cover, height, abundance, and biomass
production, as well as total nutrient removal from the system. They found that an increase in the
harvesting of plants up to five times removed a lower amount of nutrients from the system compared
to the system of harvesting two times per growing season. Furthermore, it should be mentioned that
an increase in the dissolved oxygen in the water to more than 4 mg/L can inhibit the denitrification
process [13]. In our study, the dissolved oxygen in the hydroponic beds of all the treatments never
dropped below 7.73 mg/L, and this may provide further evidence that nitrates are directly taken up by
plants as a nitrogen source and are incorporated into the plant biomass [26].

The removal of phosphorus can be mediated through plant uptake and the mechanism of
sedimentation [27]. In [28], it is reported that over half of the phosphorus inputs are bound in the
soils of the pond bottom in a relatively insoluble form. In the present study, the artificial feed was
the only source of phosphorus, and a large part of it was removed by the removal of uneaten food
and fish faeces, which resulted in a large portion of soluble phosphorus and suspended particles in
the water column. Our results indicated an inverse relationship between the harvested biomass of
plants and the PO4-P and TP removal capacities (Table 2). This was primarily due to the smaller
plant biomass production in the systems (0% > 25% > 33% > 50%), as a result of the slow recovery of
the plants and regrowth of biomass after harvesting (Figure 5a,b). The lower PO4-P and TP removal
rates for all treatments at the beginning of the experiment could be attributed to the lower nutrient
needs for the plants as a consequence of the smaller biomass of the plants (Figure 3d,e). In [29], it
is reported that young plants have low nutrient requirements, which increase during the vegetative
growth. Our findings were comparable to the findings reported by [11], who found the productivity of
macrophytes to be affected significantly by harvesting, and this resulted in lower phosphorus removal
compared to that in systems that were not harvested. It is also reported in [10] that harvesting two
times per growing season removed the highest amount of phosphorus from the system compared with
the five times harvesting system.

In the present study, all the water quality parameters in the fish tanks of the systems remained
within the tolerance range for common carp growth and survival [30,31]. This was due to the effects of
the nitrification process and plant uptake. The maximum value of NH3 (0.017 mg/L) at the beginning of
the experiment (Figure 2b) was lower than the concentrations reported by [32], who concluded that the
common carp has three different concentration levels of NH3: a favourable concentration (0.0286 mg/L),
growth-inhibiting concentration (0.034 mg/L), and lethal concentration (0.043 mg/L). The maximum
NO2-N concentration of 0.58 mg/L in the current study was much lower than the values reported
by [33], who concluded that the common carp has three different concentration levels of nitrite: the
lethal concentration (88 mg/L), that of lowest effect (28 mg/L), and that of no observed effect (7 mg/L).
Furthermore, the maximum observed NO3-N concentration (33.2 mg/L) was much lower than lethal
values of 865 mg/L reported by [34] for the common carp. Phosphate has no toxic effects on aquatic
organisms [35,36]. However, [37] recommended that the orthophosphate concentration should be less
than 15 mg/L in a closed recirculating system. In the present study, the levels of ammonia nitrogen,
nitrite nitrogen, and nitrate nitrogen (Table 1) were within the acceptable levels for recirculating
aquaculture systems [31] and aquaponic systems [38]. These concentrations were in agreement with
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the ranges of water quality variables achieved by [38] during the staggered culture of basil production
in aquaponics.

Our results also revealed that an increase in the aboveground harvested biomass of plants did not
affect the common carp growth and survival in aquaponic systems. The growth and survival of fish are
influenced by water quality parameters in the culture system [3,4,24,39,40]. Thus, the similar growth
performance between the fish in all the treatments was probably due to the equivalent water quality
parameters during the study period, particularly the ammonia and nitrite concentrations. The SGRs of
common carp in the present study, ranging from 1.00% to 1.03%, were higher than the 0.39% reported
by [23] and the 0.79% obtained by [41] for the common carp in different media-based aquaponic
systems. Our results also were higher than the 0.841% and the 0.83% obtained by [42,43] for koi carp
(Cyprinus carpio var. koi) fed with 2% body weight in aquaponic systems. However, the SGRs of the
fish were lower than those (5.41%–5.50%) achieved by [44,45] for common carp reared in aquaponic
systems. The lower SGRs may be related to the different temperature (14.14 ◦C), feeding rates (2%),
and stocking density of the fish (2.02 kg/m3) used in this study compared to those used by [44,45]
(25.78 ◦C, 5% body weight and 0.090 kg/m3, respectively).

5. Conclusions

This study aimed to evaluate the effects of harvesting plants on the nutrient removal capacity and
growth of watercress in an aquaponic system. The findings of this paper reveal that increasing the
biweekly harvested biomass of plants had negative effects on the growth performance of watercress in
aquaponic systems, while it had no effects on the growth of common carp. The 0% and 25% systems
were recorded to have the highest plant biomass production. In this study, watercress plants were
efficient in removing nutrients generated by fish in aquaponic systems. However, increasing the
harvested biomass of the plants had negative effects on the NO3-N and PO4-P removal efficiencies,
while it had no effects on the NH3-N and NO2-N removal efficiencies. In the current study, the 0% and
25% systems were recorded to have the highest NO3-N and PO4-P removal efficiencies. The present
study suggests that a biweekly harvesting of less than 25% of the growing area of watercress is
recommended for improving nutrient removal efficiency and sustaining the growth of both fish and
plants in aquaponic systems.
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