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Abstract: In this study, the capabilities of a coupled KBC-free surface model to deal with fluid solid
interactions with the slamming of rigid obstacles in a calm water tank were analyzed. The results
were firstly validated with experimental and numerical data available in literature and, thereafter,
some additional analyses was carried out to understand the main parameters’ influence on slamming
coefficient. The effect of grid resolution and Reynolds number were firstly considered to choose the
proper grid and to present the weak impact of such a non-dimensional number on process evolution.
Hence, the influence of Froude number on fluid-dynamics quantities was pointed out considering
vertical impacts of both cylindrical, as in the references, and ellipsoidal obstacles. Different formulations
of slamming coefficient were used and compared. Results are pretty encouraging and they confirm
the effectiveness of lattice Boltzmann model to deal with such a problem. This leaves the door open to
additional improvements addressed to the study of free buoyant bodies immersed in a fluid domain.
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1. Introduction

Recently, always increasing attention has been addressed to the analysis of fluid structure
interaction (FSI) between solid and fluid in relative motion. Such a problem is ubiquitous and present in
a large number of engineering applications, which span from naval [1–3], to energy harvesting [4] and
from to bio-engineering [4] to micro-mechanical problems [5]. To this aim, many models have already
been developed both in traditional Navier–Stokes framework [6–10] and in alternative environments
such as SPH [11,12] or lattice Boltzmann [13,14]. All these numerical models have been constantly
compared and validated with the large number of experimental data available in literature, which,
again, cover a wide range of applications [4,15–18].

It is worth highlighting how, in the recent past, due to the increased computational power availability,
many efforts have been devoted in defining models for the contemporary solution of both fluid and solid
motion/deformation [19]. In naval application, this reflects always increasing attention to the analysis
of impulsive loads due to slamming of rigid/deformable wedges/obstacles [20,21]. With respect to
lattice Boltzmann method (LBM), many studies have already been carried out considering both rigid and
flexible obstacles interacting with fluid flows [22]. The majority of them treat a single phase fluid (i.e.,
air) without considering multiphase flows interactions, which may play a relevant role in phenomenon
evolution. Recently, some authors have deeply analyzed the FSI problems dealt with LBM: De Rosis et al.
studied both rigid and flexible obstacles in different engineering applications with particular focus on
lamina-shaped obstacles and on coupling of different solvers [23–25]; Zarghami et al. studied the water
entry problems of rigid obstacle with coupling standard Bhatnagar–Gross–Krook (BGK) operator and
free-surface model [26]; and Dorschner et al. deeply investigated the entropic framework with advanced
treatment of moving and deformable boundaries [27–29].
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In this paper, the LBM with Karlin–Bösch–Chikatamarla (KBC) implementation [28,30] is coupled
with a free-surface approach for dealing with multiphase interactions [31], including obstacle motion
managed through Grad’s approximation [27]. Constant obstacle velocity was imposed during
the simulation and the hydrodynamic force exchanged between fluid and obstacle was constantly
evaluated during evolution. The coupled algorithm was first validated with some experimental
and numerical findings [32,33], thus carefully compared with traditional BGK collision operator
coupled with Smagorinsky sub-grid turbulence model [34,35]. The influence of both Reynolds and
Froude non-dimensional numbers was analyzed considering the time evolution of slamming coefficient.
The KBC framework was also used for the analysis of vertical impacts of differently shaped obstacles.

The paper is organized as follows. In Section 2, the numerical algorithm is presented with referring
to all the implemented sub-systems, namely the LBM with BGK in Section 2.1, the KBC model in
Section 2.2, the force evaluation and obstacle motion in Section 2.3, and the free-surface algorithm
in Section 2.4. In Section 3, the developed model is validated with respect to both experimental and
numerical data. In Section 4, the results for different object geometries are presented and commented.
In Section 5, some conclusions and future work are summarized.

2. Numerical Model

In this section, a short overview of the numerical model adopted is briefly presented, starting from
a general description of LB model to the boundary condition for moving obstacles.

2.1. Lattice Boltzmann Method

During the last decades, the lattice Boltzmann method has gained an important role in the
computational fluid dynamics panorama, thanks to its simplicity in implementation [36–38] and the
possibility to deal with a large range of applications (non-Newtonian [39], fluid–structure interaction [40,41],
turbulent flows [29], etc.). The governing Boltzmann equation in discrete space of velocities reads
as follows:

∂ fi (x, t)
∂t

+ ci · ∇ fi (x, t) = − 1
τ

[
fi (x, t)− f eq

i (x, t)
]

(1)

where x represents the position of the particle, t is time, fi (x, t) are the particle distribution functions,
ci are the discrete speeds representative of directions along which particles can move, and τ is the
relaxation time used to discretize the collision operator as described below in the text. It is clarified
below how the left-had side (LHS) of Equation (1) represents the streaming step, while the right-hand
side (RHS) the collision one. The former can be linearly solved in both time and space, while the latter
needs some special treatment to be linearized. By explicitly solving the time derivative present in
Equation (1), one can obtain:

fi (x + ci∆t, t + ∆t)− fi (x, t) = −∆t
τ

[
fi (x, t)− f eq

i (x, t)
]

(2)

which represents the commonly named discrete Boltzmann Equation (DBE), in the finite time ∆t.
More specifically, the left-hand side of Equation (2) represents the streaming step, while the right-hand
side is the collision operator, linearized as per the (BGK) approximation [42]. In many applications,
this equation is solved within a uniform structured Cartesian grid. In the available literature, there are
many studies focused on finding the optimal number of discrete velocities where the particles can move
along to maintain the isotropy [43]. The simulations carried out in this study used a two-dimensional
stencil with nine allowed particle directions, namely the D2Q9, where D is the number of dimensions
and Q is the number of allowed moving directions. With respect to the collision operator presented
in Equation (2), the nonlinear terms are embedded in the equilibrium distribution functions f eq

i (x, t),
defined as follows:
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f eq
i (x, t) = wiρ (x, t)

{
1 +

ci · u (x, t)
c2

s
+

[ci · u (x, t)]2

2c4
s

− [u (x, t)]2

2c2
s

}
(3)

where cs is the lattice speed of sound, wi is a set of weights normalized to unity, and ρ (x, t) and u (x, t) are
the macroscopic fluid density and velocity. To retrieve macroscopic quantities from particles distributions,
the first two moments of distribution functions are considered:

ρ (x, t) =
Npop−1

∑
i=0

fi (x, t)

ρ (x, t)u (x, t) =
Npop−1

∑
i=0

ci fi (x, t)

(4)

where Npop refers to the number of distribution functions Q. For weakly compressible flows, in the
limit of small Knudsen numbers, Equation (2) recovers the Navier–Stokes equations with pressure
given by p = ρc2

s and kinematic viscosity ν linked to relaxation time τ:

ν = c2
s

(
τ − ∆t

2

)
(5)

In the adopted stencil, the speed of sound cs is equal to 1/
√

3 and the relaxation time τ has to be
in the range 0.5 < τ ≤ 1 to assure method stability [38], while ∆x = ∆y = ∆t = 1.

The Smagorinsky Subgrid Model

With respect to the turbulence model, as introduced in Section 1, the Smagorinsky model is
considered here. Synthetically, this is based on the evaluation of the local stress tensor, easily manageable
in the LBM framework by means of the non-equilibrium distribution function [34,35]. The three (in 2D)
stress tensor components

(
Παβ

)
can be evaluated as follows:

Πxx =
Npop−1

∑
i=0

cx,icx,i f neq
i

Πxy =
Npop−1

∑
i=0

cx,icy,i f neq
i

Πyy =
Npop−1

∑
i=0

cy,icy,i f neq
i

(6)

being cx,i and cx,i the two components of the discrete speed ci, and f neq
i = fi − f eq

i , as in [42],
the non-equilibrium distribution function. The three components evaluated in Equation (6) can
be used in the sub-grid scale relaxation time τsgs:

τsgs =

−τ +

√
τ2 +

18 (CS∆̄)2√2ΠαβΠαβ

ρ

2
(7)

being τ the relaxation time evaluated by Equation (5), CS the Smagorinsky constant, here assumed equal
to 0.15, and ∆̄ the sub-grid filter size, here assumed ∆̄ = ∆x = ∆y = 1, as in [44]. Finally, the effective
relaxation time can be written as follows and afterwards used in Equation (2):

τe f f = τ + τsgs (8)
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The turbulence model presented thus far allows locally adjusting the relaxation time with introducing
a fictitious numerical viscosity.

2.2. The KBC Model

To overcome the limitations characteristic of LBM, during recent years, the so-called KBC model
has been developed and fruitfully employed in different applications characterized by relatively high
Reynolds numbers [28,45]. One of the major advantages of the KBC is that it may solve transitional
flows with highlighting the area where the solver is under-resolving without the need of additional
turbulence models. Starting from the general form of the lattice Boltzmann equation (Equation (1)),
one can reshape it into a more general form as follows:

fi(x + ciδt, t + δt) = (1− β) fi(x, t) + β f mirr
i (x, t), (9)

where f mirr
i is the mirror state and β is the relaxation parameter. Referring again to the BGK

approximation, the mirror state is given by:

f mirr
i = 2 f eq

i − fi, (10)

where the equilibrium distribution function is expressed as in Equation (3). Similar to BGK, the macroscopic
variables are calculated from the first two moments of the distribution functions, as in Equation (4). In this
case, the lattice Boltzmann Equation (9) recovers Navier–Stokes equations for isothermal flow with the
kinematic viscosity:

ν = c2
s

(
1

2β
− 1

2

)
∆t. (11)

For the KBC model, the populations fi are described in terms of moments, using the following
decomposition:

fi = ki + si + hi, (12)

where ki corresponds to the kinematic part, si is the shear part, and hi represents the remaining
higher-order moments. This decomposition allows rewriting the mirror state as follows:

f mirr
i = ki + (2seq

i − si) + [(1− γ)hi + γheq
i ], (13)

where seq
i and heq

i are the shear and the higher-order moments at equilibrium, respectively, while γ

represents the relaxation of the higher-order moments. In the limit case of γ = 2, the KBC model
collapses into the more traditional BGK one. On the other hand, in the KBC model, the minimization
of discrete H-function at collision state allows retrieving the local γ. This yields to the following
expression:

γ =
1
β
−
(

2− 1
β

)
〈∆s | ∆h〉
〈∆h | ∆h〉 , (14)

where the entropic scalar product is defined as:

〈X | Y〉 =
Q

∑
i=1

XiYi

f eq
i

, (15)

with ∆si = si − seq
i and ∆hi = hi − heq

i . For the KBC realization used in this work, the populations fi
are represented in terms of their central moments, as described in [45]. As demonstrated by many
authors, this models can deal with transitional flows [46,47], with the possibility of locally solving
high order moments, which would not be solved in the traditional BGK framework. Some authors
have intensely used such an approach to deal with aerodynamics [29,46,47], with appreciable results
despite reducing the computational speed due to numerical overhead. Nonetheless, the computational
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time of KBC solver is usually shorter than the traditional DNS solvers while solving comparable test
cases. Moreover, fully turbulent flows have been successfully solved through KBC in engine-like test
cases [47], but, in that case, a fine grid sensitivity has to be carried out to define the proper element
size near the boundaries. The value of γ can give important feedback about the quality of the adopted
mesh, giving some information about the under-resolution level; when it is different from equilibrium
value of γ = 2.0, the method is locally under-resolving.

2.3. Fluid Structure Interaction and Moving Boundary Treatment

In this section, a brief description of common features to both BGK and KBC approaches is
presented. Firstly, the external forcing to fluid domain (in this case, only the gravity is active) has
to be included in both the above presented formulations. In this paper, external forces are included
through the so-called Exact Difference Method (EDM) approach, presented in [48]. Generally speaking,
external forcing can be included in both LBM formulations of Equations (2) and (9) through a ∆ fi. By
means of EDM, such a term can be evaluated as:

∆ fi = f eq
i (ρ, u + ∆u)− f eq

i (ρ, u) (16)

where the velocity shift ∆u is equal to F∆t/2, being F the external forcing. This forcing scheme needs to
be reinforced at macroscopic quantities evaluation to be hydro-dynamically consistent. This reflects to the

first order momentum, which becomes: ρu = ∑
Npop−1
i=0 ci fi + F∆t/2.

There are many approaches which allow dealing with moving boundaries in LB framework. Here,
the one proposed in [49] and further developed in [27] is adopted. This method allows a precise
reconstruction of the near-boundary fluid-dynamics fields via reconstructing missing populations
through local conserved quantities, such as density ρ and flux j = ρu, as well as pressure tensor P.
Figure 1 helps in defining all the missing quantities and catching the populations to be reconstructed
at near-boundary fluid nodes.

Figure 1. Obstacle definition into fluid domain. Empty squares represent the fluid nodes, filled squares
belong to the obstacle; the red filled circle represents the exact wall position along the ith lattice
direction. Continuous red arrows represent the known populations, while the dashed ones represent
the ones to be reconstructed before streaming.

For every fluid node xb lying near a solid one, one can determine the subset of D̄ velocities which
point from the solid to the fluid and, by means of the Grad’s approximation, one can reconstruct
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missing distribution functions needed during streaming phase. The set of missing populations to be
reconstructed before streaming can be defined as follows:

f̃i (ρ, j, P) = wi

[
ρ +

jαci,α

c2
s

+
1

2c4
s

(
Pαβ − ρc2

s δαβ

) (
ci,αci,β − c2

s δαβ

)]
(17)

where the pressure tensor Pαβ can be expanded in its two parts, equilibrium and non-equilibrium,
defined as follows:

Peq
αβ = ρc2

s δαβ + ρuαuβ

Pneq
αβ = −ρc2

s
2β

(
∂uα

∂xβ
+

∂uβ

∂xα

)
(18)

where the equilibrium part is evaluated by means of the target quantities introduced below while the
non-equilibrium may be evaluated by means of velocity gradient referred to the previous iteration.
The target velocity can be retrieved by means of a linear interpolation based on neighbor-fluid node
x f ,i velocity and on wall velocity at intersection point xw,i, as in Equation (19):

utgt =
1

nD̄
∑
i∈D̄

∆iu f ,i + uw,i

1 + ∆i
(19)

being nD̄ the number of unknown populations at boundary fluid node, u f ,i the fluid velocity at node

xb + ci, uw,i the solid wall velocity, and ∆i the fluid-wall normalized distance ∆i =
‖ xb − xw,i ‖
‖ xb − xs,i ‖

.

Finally, the target density can be written as the sum of two contributions; the former is related to the
standard bounce back rule and the latter related to the solid wall motion:

ρtgt = ρbb + ρmv (20)

where ρbb and ρmv are defined as follows:

ρbb = ∑
i/∈D̄

fi + ∑
i∈D̄

f ī

ρmv = ∑
i∈D̄

6wiρ0ci · uw,i
(21)

being f ī bounced-back distribution functions with cī = −ci and ρ0 a reference density commonly set
equal to the unity. Obviously, in the case of stationary walls, the second row of Equation (21) vanishes
to zero, and the target density may be obtained only through a "bounce-back" approach.

It is worth noting that, during obstacle motion, some nodes can be covered/uncovered by the
obstacle passage. In the case of covered node, a fluid node is converted into solid one and no particular
treatment is needed for this transformation. On the contrary, when a solid node is uncovered by
the obstacle, it has be converted into a fluid one and some handling is needed. More specifically,
the so-called refilling procedure can be adopted where density is inherited from a donor fluid node
and velocity from moving obstacle, as synthetically reported in Figure 2, and distribution functions are
assumed to be equal to equilibrium ones.
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Figure 2. Schematic representation of refilling procedure. The obstacle, initially located at the dashed
cyan line (new position is the solid cyan line) frees some nodes, the gray filled ones, which belonged to
the solid. Their new fluid-dynamics properties are copied from both red filled fluid node x f and solid
one xs.

Once having clarified the moving boundary treatment, it is important to point out how the FSI
interaction is evaluated via integrating the stress tensor along the wetted surface. Thus, the wetted
obstacle node stress tensor is evaluated via averaging its value on the neighbor fluid/interface nodes,
as in Equation (22).

Tw,i =
∑K

j=1 Tj (x)

K
(22)

being Tw, i the stress tensor at ith wetted solid node, K the number of fluid/interface donor nodes,
and Tj the stress tensor at donor node x. Finally, the horizontal and vertical components of the forces
are the are evaluated as in Equation (23).

Fx =
W

∑
i=1

Txx
w,i · ξx,i

Fy =
W

∑
i=1

Tyy
w,i · ξy,i

(23)

where W is the total number of obstacle wetted nodes, Txx and Tyy are the stress tensor components
along the two main directions, and ξx,i and ξy,i are the Lagrangian lengths at the obstacle wetted
surface projected along the two main directions x and y. The three stress tensor components can be
evaluated in the LBM grid, before the averaging on the obstacle nodes, as in Equation (24):

Txx (x) = p (x)−
[

1− 1
2ω (x)

] Npop−1

∑
i=0

cx,icx,i f neq
i (x)

Tyy (x) = p (x)−
[

1− 1
2ω (x)

] Npop−1

∑
i=0

cy,icy,i f neq
i (x)

Txy (x) = −
[

1− 1
2ω (x)

] Npop−1

∑
i=0

cx,icy,i f neq
i (x)

(24)

2.4. The Free-Surface Model

With the aim of considering the multiphase flows of two immiscible fluids with high density
ratio, the free surface model is here considered. Throughout this approach, only the denser (and
heavier) phase is solved solved within the LB framework (both for BGK and KBC). The two phases
interaction are incorporated through specific treatments at interface cells, as explained below. Recently,
different free-surface approaches have been developed for LBM [50–53]. In this work the one developed
by Thürey and Rüde [51] is adopted. Thus, with the aim of simulating free-surface evolution, a flag



Water 2020, 12, 1212 8 of 23

field is introduced to track fluid, interface, and empty cells. For the sake of clarity, the passage from
continuous description to the discrete one is briefly reported in Figure 3, where the three considered
states are highlighted, namely fluid (F), interface (IF), and gas (G).

Figure 3. Three states treatment for free-surface model: fluid, interface, and gas.

Being interface cells partially filled by fluid, the fluid fraction ψ is introduced and defined as
ψ = m/ρ, where m is the local mass. Trivially, ψ can range from 0 (gas cells) to 1 (fluid cells). Synthetically,
the tracking of the free-surface consists of three steps to be embedded into LB algorithm: (1) computation
of the interface motion; (2) boundary conditions at the interface; and (3) re-initialization of the flag field.
The first step, the computation of the interface motion, is based on the evaluation of the mass exchanged
in between two cells along the allowed directions ∆mi; this quantity is proportional to the difference of
distribution functions along the involved direction multiplied by a factor defined according to the donor
cell type:

∆mi (x, t + ∆t) = fi (x + ci∆t, t)− fi (x, t)


1 if x + ci∆t = fluid
ψ(x+ci∆t,t)+ψ(x,t)

2 if x + ci∆t = interface
0 if x + ci∆t = empty

(25)

All the contributions evaluated according Equation (25) represent the mass variation of the specific
interface cell m and they can be summed over the whole set of allowed directions:

m (x, t + ∆t) = m (x, t) +
Npop−1

∑
i=1

∆mi (x, t + ∆t) , (26)

After performing the mass exchange process, before the streaming phase, a fictitious boundary
condition at interface cells has to be introduced. As stated above, no computations are performed
for the empty cells; nevertheless, the interactions between the two phases are included in this step
and information coming from the empty cells are supposed to reach the interface cells, where the
streaming has to be performed. Therefore, for those cells, starting from the atmospheric reference
density (ρ0 = 1), the missing distribution functions can be computed, at each time step, as follows:

f ′ī (x, t + ∆t) = f eq
i (ρIF, u) + f eq

ī (ρIF, u)− fi (x, t) , (27)

where subscript ī indicates the lattice direction corresponding to the stencil velocity cī = −ci and
ρIF indicates the interface density evaluated as ρ0 + 6σκ, with σ the surface tension and κ the local
interface curvature. Namely , the interface density is the sum of two contributions, the one related
to atmospheric pressure and the one from curvature (Laplace law): pG = pV + ∆pσ, where pV is the
ambient pressure and ∆pσ = 2σκ is the Laplace contribution [52,54]. One can now recall the weakly
compressible framework where the LB acts and the pressure and density are linked through the speed
of sound: p = ρc2

s . Thus, with writing the previous equation in terms of density, one can obtain

ρIF = ρ0 +
∆pσ

c2
s

. Equation (27) has to be evaluated for all interface cells which have an empty neighbor

along the ith direction. After this reconstruction step, the unknown incoming distribution functions are
further reinforced by means of the local free-surface orientation throughout the local normal. After this
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reconstruction step, the streaming phase is performed for both fluid and interface nodes. Additionally,
after the collision phase, every interface cell can be filled or emptied. Thus, the excess/lack of mass
occurring at these cells must be computed and redistributed to the neighbor cells. An interface cell is
filled and transformed into fluid if the fluid fraction ψ results greater than 1 at the end of the loop, while,
on the contrary, it is emptied and converted into gas if this quantity drops below 0. For a filled/emptied
cell, the mass excess can be evaluated as follows:

mex (x, t) = [ψ (x, t)− 1] ρ (x, t) if ψ ≥ 1 + ε→ filled
mex (x, t) = [ψ (x, t)] ρ (x, t) if ψ ≤ −ε→ emptied

(28)

with ε a tolerance chosen at the beginning of the simulation and fixed to 10−3, as in [55].
From Equation (28), one can notice how the mass excess is positive in the case of filled cell, while it is
negative for an emptied cell. Finally, the so-computed mass excess has to be distributed to the neighbors
by accounting for the direction of the interface normal as a weight:

m (x + ci∆t, t + ∆t) = m (x + ci∆t, t + ∆t) + mex (ηi/ηtot) , (29)

where ηtot is the sum of all the weights ηi, defined as the scalar product | n · ci |. The free-surface normal

n can be evaluated by means of the fluid fraction gradient, n =
∇ψ

| ∇ψ | . After the mass redistribution

process, the flag of emptied/filled interface cells has to be updated before starting a new time step.
The basic principles of free-surface algorithm are synthetically depicted in Figure 4.

Figure 4. Schematic of the free-surface update cell procedure.

3. Model Validation

The two developed solvers were compared with results experimentally retrieved in [32] and
later numerically replicated in [33]. The test case is a three-dimensional circular cylinder immersed at
constant velocity in a calm water tank. The dimensions of the specimen and of the tank are synthetically
reported in Table 1 and depicted in Figure 5.

Table 1. Input parameters for model validation.

D [m] W [m] H [m] h0 [m]

0.125 28.0 2.5 1.0
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Figure 5. Representation (not to scale) of the computational domain used for validation.

D is the specimen diameter, h0 is the calm water height, H is the tank height, and W is the tank
width. The input parameter is the constant speed of the impacting cylinder, which varies in the range
summarized in Table 2 together with the corresponding Reynolds and Froude numbers, defined as per
Equation (30).

Re =
cD
ν

Fr =
c√
gD

(30)

with D the impacting cylinder diameter, c the submerging speed, ν the water kinematic viscosity,
and g the gravitational acceleration.

Table 2. Cylinder velocity and corresponding Reynolds and Froude numbers.

Case c [m/s] Re Fr

1 0.5124 64050 0.4628
2 0.6390 79875 0.5772
3 0.7600 95000 0.6865

The results were compared in terms of slamming coefficient defined in [32] as the ratio between
the vertical force and the inertia:

Cs =
Fy

1
2

ρc2D
(31)

Thus, some preliminary considerations about LB simulations had to be carried out. All the
methods here presented are based on a non-dimensional approach; thus, every physical quantity has to
be converted according to some conversion factors defined at the beginning of the simulation. For this
specific test case, the reference quantities used to define conversion factors are the obstacle diameter D,
the water kinematic viscosity νwater, and the water density ρwater. The first allows defining the length
conversion factor, the second the time one, and the third is used to define the mass conversion factor.
Once such quantities were defined, the derived ones could be evaluated accordingly. For example,
the calm water height h0 can be written in Lattice Units (LU) starting from the number of points

used to discretize the obstacle h0 [LU] = h0 [m]
D [LU]

D [m]
. The computational domain here simulated

perfectly replicates the physical one presented in [32]; however, it can be determined only after having
fixed the number of computational points used to discretize the obstacle. After defining the length
conversion factor, all lengths could be converted accordingly into the non-dimensional framework.
As stated above, the kinematic viscosity in LU, used in LB framework to define the relaxation time τ

as per Equation (5), allows defining the conversion factor for time. Thus, the constant impact speed
can be converted into non-dimensional units by means of the two conversion factors defined thus
far, the one related to length and the one to time, respectively. It is important to point out that all
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the non-dimensional numbers such as Re and Fr are not influenced by this change of units; thus,
they assume the same value referring to both the physical world and the LB one. Before presenting
the results, some more detail about simulation setup are given in the following. Being the obstacle
motion driven during the whole simulation, to save computational time, the cylinder was placed
one computational grid point above the calm water level. Then, the computational time started and
iterations were executed by performing both LBM (either BGK or KBC) and free-surface algorithms.
The computational grid was characterized by a set of Cartesian–Eulerian points where the obstacle,
defined as a series of Lagrangian points, could move according to the imposed equation of motion.
In this specific test case, the obstacle moved at constant vertical speed from the calm water height h0

towards the bottom of the domain. During the simulation, the FSI, which consisted here in evaluating
the exchanged forces at boundary in between solid and fluid, was performed every iteration, and after
it was sampled with a frequency of 100 Hz during the post processing phase. The stress tensor
components were locally evaluated along the contact line and integrated along the whole wetted
line to compute the slamming coefficient defined in Equation (31). For the KBC model, both grid
sensitivity and Re influence were carried out. Different resolutions were used for the cylinder diameter
to highlight the effect of sizing on results, while the Reynolds number was limited definitely below the
target one, reported in Table 1. In fact, it was already shown by Zhu et al. [33] that the Re number
does not influence the above-mentioned coefficient during process evolution. Moreover, despite being
the reference a three-dimensional test case, it was treated in a two-dimensional framework. Table 3
presents the parameters used for the sensitivity analysis.

Table 3. Test matrix for sensitivity analysis at constant Fr = 0.4628. [LU] means that all the quantities
are expressed in non-dimensional units characteristic of the LB framework.

Simlation No. D [LU] W × H [LU] ν0 [LU] Re

1 50 11,200 × 1000 0.00440 366
2 50 11,200 × 1000 0.00044 3660
3 100 22,400 × 2000 0.00880 366
4 100 22,400 × 2000 0.00088 3660
5 150 33,600 × 3000 0.01320 366
6 150 33,600 × 3000 0.00132 3660
7 200 40,000 × 4000 0.01760 366
8 200 40,000 × 4000 0.00176 3660

Figure 6 depicts results of slamming coefficient as a function of non dimensional time defined as

t? =
ct
R

, with t the time, c the submerging speed, and R the cylinder radius, expressed in LU.
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Figure 6. Slamming coefficient as a function of non-dimensional time for the sensitivity matrix reported
in Table 3. Black curves are related to low Re, gray ones to high Re. Solid line refers to D = 50LU,
dashed ones to D = 100LU, dotted ones to D = 150LU, and dash-dotted ones to D = 200LU.
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It is worth noting how both Reynolds number and grid resolution slightly affect the slamming
coefficient evolution, sampled with a frequency of 100 [Hz]. However, as easily predicted, the finer
is the grid, the better are the results. Referring to Figure 6, the wrinkling tends to vanish with
increasing the resolution. For a better understanding of the grid resolution influence, one can consider
a magnification of Figure 6 where the first phases of the impact are reported and graphed in Figure 7.
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Figure 7. Magnification of Figure 6 referring to the first impact phases. Black curves are related to low
Re, gray ones to high Re. Solid line refers to D = 50LU, dashed ones to D = 100LU, dotted ones to
D = 150LU and dash-dotted ones to D = 200LU.

In Figure 7, one can note how the coarser grid tends to underestimate the first peak with respect to
the two finer ones, despite being qualitatively comparable when observing the overall trend. Hereafter,
the chosen resolution is the one where D = 100LU, which allows achieving appreciable results with
saving computational time. To further assess the results, the vorticity plot at t? = 1.0 for Re = 3660 is
reported in Figure 8.

(a) D = 50 (b) D = 100

(c) D = 150 (d) D = 200

Figure 8. Vorticity plot for different resolution at t? = 1.0 for Re = 3660: (a–d) the obstacle diameter
from 50LU to 200LU, respectively.

In Figure 7, one can observe how the last two subplots, namely D = 150LU and D = 200LU,
practically present the same vorticity distribution in terms of both silhouette and magnitude. Thus,
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comparing Figures 7 and 8, one can conclude that the wrinkling weakening can be imputed both at
the resolution used and to the vorticity level. Moreover, in Figure 8, one can also observe how the
last two resolutions present some details in the free-surface silhouette which cannot be highlighted in
the reference resolution D = 100LU; nevertheless, with respect to slamming coefficient, no particular
differences arise while considering D = 100LU or D = 200LU, as shown in Figure 6. Thus, in the
following analysis, D = 100LU is considered as a reference. In Figures 9–11, the computed slamming
coefficient is compared with experimental findings in [32] according to operating conditions listed
in Table 2. The Reynolds number was reduced by a factor of five to guarantee solver stability. Re
independence was already demonstrated, as shown in Figures 6 and 7 and in the literature by [33];
thus, the simulated Re spanned about 12,000–19,000 instead of 64,000–95,000, while no modifications
was done with respect to Fr number, which represents the ruling parameter. In other words, to keep the
Froude number unchanged, the kinematic viscosity of water can be artificially modified by modifying
the Reynolds number.
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Figure 9. Comparison between experimental results presented by [32] and numerical model at
Fr = 0.4628. Black dotted line represents experimental findings, solid red line the KBC results,
magenta line the BGK without turbulence model, and the blue curve represents the BGK with
Smagorinsky sub-grid model.
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Figure 10. Comparison between experimental results presented by [32] and numerical model at Fr = 0.5772.
Black dotted line represents experimental findings, solid red line the KBC results, magenta line the BGK
without turbulence model, and the blue curve represents the BGK with Smagorinsky sub-grid model.
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Figure 11. Comparison between experimental results presented by [32] and numerical model at Fr = 0.6865.
Black dotted line represents experimental findings, solid red line the KBC results, magenta line the BGK
without turbulence model, and the blue curve represents the BGK with Smagorinsky sub-grid model.

In Figures 9–11, one can observe how the coupled free surface-KBC model results well match the
experimental ones presented in the literature; some deviations from experimental data are still present
but they can be justified by the use of a two-dimensional stencil, the phenomenon is three-dimensional
in principle but it has already been treated in a two-dimensional framework in recent works [33]. It is
worth noting how the standard BGK solver without any turbulence model shortly exhibits unstable
behavior, without reaching the final time steps, due to the moderate Re regime characteristic of
the impact, while the implementation of a Smagorinsky sub-grid model helps in solving this issue
with results practically overlapped with the KBC model. Moreover, to better compare results for
the two considered solvers, namely KBC and BGK plus Smagorinsky, it is useful to present values
for γ and ω which are locally adjusted according to flow conditions in the two above mentioned
algorithms. More specifically γ parameter rules the collision phase in the KBC model, according to
Equations (13) and (14), while ω rules the collision operator for the BGK-Smagorinsky model, as per
Equations (2) and (8).

Figures 12 and 13 depict similar free-surface distributions, except for some minor discrepancies
which arise from an imperfect method matching, and it can be also highlighted how the two turbulence
“limiters”, namely γ and ω, act on the system. The former shows a non-uniform distribution along the
whole domain portion represented in Figure 12, while the latter shows an intensification of sub-grid
model influence through τsgs in a narrowed area around the obstacle. Moreover, the former varies in a
wider range with respect to the latter, which is practically centered around the bulk τ value defined
according the bulk fluid viscosity. Obviously, the twos have a different physical meaning, thus no
additional comparison in terms of magnitude values can be performed.

Figure 12. γ parameter when the obstacle is completely submerged at t? = 2.4850 for Fr = 0.5772.
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Figure 13. ω parameter when the obstacle is completely submerged at t? = 2.4850 for Fr = 0.5772.

In Figures 14 and 15, one can observe how the two vorticity profiles are practically overlapped,
despite being the KBC one “more symmetrical” than the BGK one; white areas included in the fluid
domain are representative of the gas phase, which is not solved in the free-surface model, thus no
details about vorticity are present. It is worth noting how the magnitude of KBC vorticity is slightly
larger than the one of BGK, due to the different approach used while solving turbulent structures.
After validating the KBC-free surface and comparing it with a BGK-Smagorinsky solver, as shown in
Section 4, a sensitivity analysis was carried out.

Figure 14. Vorticity profile for KBC method when the obstacle is completely submerged at t? = 2.4850
for Fr = 0.5772.

Figure 15. Vorticity profile for BGK method when the obstacle is completely submerged at t? = 2.4850
for Fr = 0.5772.

4. Results

After validating the proposed method, a sensitivity analysis of slamming coefficient to obstacle
aspect ratio was carried out. More specifically, for a circular object such as the one in Section 3,
the horizontal radius Rx is equal to the one along the vertical axis Ry. Thus, the effect of the aspect
ratio Ry/Rx was analyzed and commented to understand the behavior of an impacting ellipsoidal
obstacle. The simulation test matrix is reported in Table 4, where Case 3 represents the circular object
already analyzed in the previous section. A schematic of the geometrical parameters is reported in
Figure 16 where the two radii Ry and Rx are highlighted.



Water 2020, 12, 1212 16 of 23

Table 4. Aspect ratio configurations for ellipsoidal obstacle: Fr = 0.6865 and Re = 1000.

Simulation No. Ry/Rx

1 0.25
2 0.50
3 1.00
4 2.00
5 4.00

Figure 16. Schematic representation of the ellipsoidal obstacle with the sensitivity analysis parameters.

The results in terms of slamming coefficient as a function of the ellipse aspect ratio are briefly
reported in Figure 17. It is worth noting how the aspect ratio deeply influences the vertical force
component exchanged between the fluid and solid.
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Figure 17. Slamming coefficient as a function of the ellipse aspect ratio. Solid black line represents
aspect ratio of 0.25, dotted black line 0.5, dashed black line the circular obstacle with Ry/Rx = 1.0,
solid light gray line the aspect ratio of 2.0, and dotted light gray line the largest aspect ratio of 4.0.

In Figure 17, one can notice how, for horizontally aligned ellipses (when Ry/Rx ≤ 1.00),
the slamming coefficient has a really comparable trend except for the initial values and for oscillations
amplitude. The asymptotic Cs value, after the fully submerged wedge time—represented by the second
peak—tends to be aligned for the considered cases. On the contrary, for vertically aligned ellipses
(Ry/Rx > 1.00), the trend does not show the same plateau reference due to an increased submerging
time value and the initial Cs value decreases with respect to horizontal obstacles. This is further confirmed
by the magnification reported in Figure 18.
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Figure 18. Magnification up to t? = 1 of the slamming coefficient as a function of the ellipse aspect
ratio. Solid black line represents aspect ratio of 0.25, dotted black line 0.5, dashed black line the circular
obstacle with Ry/Rx = 1.0, solid light gray line the aspect ratio of 2.0, and dotted light gray line the
largest aspect ratio of 4.0.

In addition, the Cs at first impact time is significantly influenced by the ratio Ry/Rx, as one can
observe in Figure 19.
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Figure 19. Slamming coefficient at first impact time as a function of aspect ratio.

In Figure 19, one can note how the “thinner” the is body along the impact direction, the lower is
the slamming coefficient at first impact stages. For a more comprehensive understanding, density plot
at different time steps for the considered geometries are reported in Figure 20, where the free-surface
silhouette is reported as well.
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(a) Ry/Rx = 0.25

(b) Ry/Rx = 0.50

(c) Ry/Rx = 1.00

(d) Ry/Rx = 2.00

(e) Ry/Rx = 4.00

Figure 20. Density evolution at different non-dimensional times for different ellipse geometry. The three
snapshots for ever radii ratio represent half of wedge wetted, full wetted wedge, and three-quarters of
wetted wedge, respectively. The three obstacle penetrations correspond to the same non-dimensional
times, more specifically t? = 1.05, 2.10, and 3.10, respectively.

It is worth noting how the ellipse radii ratio significantly influences the free surface evolution
during wedge submerging process. In fact, for thicker bodies, when Ry/Rx < 1, there is not complete
closure of recirculation wave, while, for thinner ones, when Ry/Rx > 1, the body is “fully” surrounded
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by fluid. Moreover, the submerging process of thick bodies exhibits some circular compression waves,
which apparently vanish for thinner ones.

For the sake of clarity, it is useful to introduce a different non-dimensional time, where the
reference is the time when the body is theoretically fully submerged. To define such a time,
the reference time when the body is fully submerged without considering the pile up is defined
as tre f = 2Ry/cy, being cy the constant submerging speed. Thus, the new dimensional time can be
defined as:

T? =
t− tre f

tre f
(32)

Additionally, the slamming coefficient defined in Equation (31) is slightly modified by considering
the theoretical wetted diameter instead of the wedge horizontal diameter. Thus, the new slamming
coefficient can be defined as follows:

Cs =
Fy

1
2

ρc2χ

(33)

being χ the instantaneous theoretical wetted diameter defined according Figure 21 and which trivially
varies during the obstacle penetration into the water.

Figure 21. Schematic representation of the theoretical instantaneous wetted diameter used in Equation (33).

The slamming coefficient, reported in Figure 17, can be further reported with respect to the new
non-dimensional time.

In Figure 22, one can observe how the new definition for both non-dimensional time and slamming
coefficient allows some more considerations. In Figure 22, T? = 0 represents the time when the body
is fully submerged without considering the arising pile-up, starting from which the Cs, defined in
Equation (33), tends to asymptotic value, which increases with the aspect ratio. Moreover, for negative
time, where the body is submerging, it is confirmed how thicker bodies are characterized by higher
slamming coefficients.
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Figure 22. Evolution of the new slamming coefficient as a function of the non-dimensional time.
Solid black line represents aspect ratio of 0.25, dotted black line 0.5, dashed black line the circular
obstacle with Ry/Rx = 1.0, solid light gray line the aspect ratio of 2.0, and dotted light gray line the
largest aspect ratio of 4.0.

5. Conclusions

In this study, a coupled KBC-free surface model in the lattice Boltzmann framework was presented
and validated. The results were first validated with experimental results already present in the
literature and then with a BGK-Smagonrinsky approach, highlighting appreciable results in terms
of slamming coefficient in the range of moderate Reynolds number. It was also pointed out how a
standard BGK model without any turbulence model is unable to represent the considered phenomenon.
The independence from Reynolds number as well as the effect of grid size were shown and commented.
The influence of aspect ratio in terms of slamming coefficient was deeply analyzed by pointing out
how thick bodies exhibit higher slamming coefficients with respect to thinner ones at first impact
stages, but afterwards the trend is opposite with thinner bodies characterized by higher Cs, due to the
complete closure of the recirculation wave.

Summarizing, this study aimed at demonstrating the effectiveness of a coupled KBC-free surface
model to deal with impacting objects on free surfaces at moderate Reynolds number. The use of KBC
approach allows avoiding the introduction of a turbulence model, being such a framework capable of
locally adjusting the solution according to a γ limiter. Very good results were obtained for relatively
high Reynolds as well, due to the intrinsic capability of KBC to locally adjust the solution. These results
open the door to further developments such as introducing free falling obstacles with embedding the
equation of motion.
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