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Abstract: With the aim of improving the understanding of water exchanges in medium-scale
catchments of northern China, the spatiotemporal characteristics of rainfall and several key water
cycle elements e.g., soil moisture, evapotranspiration and generated runoff, were investigated using a
fully coupled atmospheric-hydrologic modeling system by integrating the Weather Research and
Forecasting model (WRF) and its terrestrial hydrologic component WRF-Hydro (referred to as the
fully coupled WRF/WRF-Hydro). The stand-alone WRF model (referred to as WRF-only) is also
used as a comparison with the fully coupled system, which was expected to produce more realistic
simulations, especially rainfall, by allowing the redistribution of surface and subsurface water across
the land surface. Six storm events were sorted by different spatial and temporal distribution types,
and categorical and continuous indices were used to distinguish the applicability in space and
time between WRF-only and the fully coupled WRF/WRF-Hydro. The temporal indices showed
that the coupled WRF-Hydro could improve the time homogeneous precipitation, but for the time
inhomogeneous precipitation, it might produce a larger false alarm than WRF-only, especially for
the flash storm that occurred in July, 2012. The spatial indices showed a lower mean bias error
in the coupled system, and presented an enhanced simulation of both space homogeneous and
inhomogeneous storm events than WRF-only. In comparison with WRF-only, the fully coupled
WRF/WRF-Hydro had a closer to the observations particularly in and around the storm centers. The
redistributions fluctuation of spatial precipitation in the fully coupled system was highly correlated
with soil moisture, and a low initial soil moisture could lead to a large spatial fluctuated range.
Generally, the fully coupled system produced slightly less runoff than WRF-only, but more frequent
infiltration and larger soil moisture. While terrestrial hydrologic elements differed with relatively
small amounts in the average of the two catchments between WRF-only and the fully coupled
WRF/WRF-Hydro, the spatial distribution of elements in the water cycle before and after coupling
with WRF-Hydro was not consistent. The soil moisture, runoff and precipitation in the fully coupled
system had a similar spatial trend, but evapotranspiration did not always display the same.
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1. Introduction

Rainfall is an important driver of the water cycle and a key index of the change of weather
system [1–3]. Additionally, interrelated elements in the water cycle such as runoff, evapotranspiration,
and soil moisture also influence water resources, climate, agriculture, and ecosystems in a region [4–6].
In recent decades, with the maturity of information collection methodologies such as remote sensing,
satellites and communication technology, forecasting through meteorological or climatic patterns has
become an effective means for alleviating hazards caused by extreme hydrological events [7–9]. The
development of climate models [10,11] has effectively linked the atmospheric, surface, and subsurface
processes, and prolonged the foreseeing period of storm and flood forecasting. Even so, this is not
sufficient to understand and predict how the complex components of the water cycle interact with the
complexities of the landscape. First of all, the current atmospheric models mainly apply a relatively
simple one-dimensional approach in simulating both the surface and the groundwater processes, while
less consideration is given to the lateral interaction among soil, surface and undersurface hydrological
features [12,13]. Second, in a standalone hydrological model [14], the output of the climate model is
used as the input data to drive the hydrological model, but the indirect connection between the land
surface and the atmosphere is neglected [15]. The lack of a feedback mechanism leads to the separation
of the atmospheric precipitation and subsequent land surface hydrological processes. At the same
time, the lateral water flow generated in the underground interaction and the redistribution of soil
moisture cannot be fed back to the atmosphere.

A fully coupled modeling system [16] of the climate model and the hydrologic model is a novel
development designed to make up for the aforementioned lack. In the fully coupled system, the climate
model is coupled with the hydrologic model through the land surface model (LSM) of the same physical
mechanisms, and the input and output of both models provide feedback to each other. The progressive
fully coupled modeling system yields regulated topographically-driven soil moisture and land surface
fluxes, thus improving the spatiotemporal correlations between the surface and lower atmospheric
elements [6]. Maxwell et al. [17] tried to connect the hydrology model ParFlow [18] with the Advanced
Regional Prediction System (ARPS) [19] in an idealized experimental simulation. The results showed
that the fully coupled system could be used to describe the spatiotemporal correlation between lower
atmospheric variables, surface and water table depth. To solve the biochemical shortcomings of the
hydrological model, Maxwell et al. [20] introduced Noah LSM to connect ParFlow, and the Weather
Research and Forecasting (WRF), tests were still carried out in an idealized experiment scenario and
proved that an accurate runoff mechanism and lateral flow could change the spatial distribution of
land surface and atmospheric fluxes. Shrestha et al. [8] used the Community Land Model (CLM)
to link Parflow with atmospheric model, the Consortium for Small-Scale Modeling (COSMO), to a
week prediction in Ruhr basin, Germany. They found the potential of the fully coupled system in
surface flux prediction. Gochis et al. [21] proposed a parallel, multicore, multiphysics, multiscale, fully
distributed hydraulic model system (WRF-Hydro). WRF-Hydro sets up a multiscale quasi-3D land
surface hydrological simulation system to improve the one-dimensional vertical generalization of water
transport using the LSM Noah or Noah MP in the WRF model [21]. It could operate independently or
be used for the coupling with WRF. WRF-Hydro realizes the effective scale conversion of hydrology
and land surface modules, solves the problem of resolution mismatch between a climate model and a
hydrologic model [22], and reflects the lateral movement of soil moisture and the interaction between
surface water and subsurface water.

The interrelationship promotes the expression of the land surface hydrological process, and
the fully coupled WRF/WRF-Hydro is expected to be able to provide feedback and improve the
simulations of the WRF model [23,24]. Variables that feedback to each other in the fully coupled
WRF/WRF-Hydro include soil moisture, land flues of energy, etc. The coupled WRF/WRF-Hydro
system has been applied for studies in a number of places in the world. Senatore et al. [25] conducted
a three-year continuous simulation in southern Italy. The results show that the WRF/WRF-Hydro
coupling model produced higher soil moisture content and lower overall surface runoff than WRF-only.
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Xiang et al. [26] investigated the exchange processes between the atmosphere and the land surface
using the fully coupled system, by carrying out a comparison experiment from 2004 to 2013 in
northwestern Mexico. The results indicated that the soil moisture and vegetation types could affect
the convective rainfall, and the initial land surface conditions (such as the soil water storage) were
critical for enhancing the simulations. Kerandi et al. [6] explored the simulation with the coupled
WRF/WRF-Hydro in a watershed of East Africa from 2011 to 2014, and showed that the precipitation
of the coupled system had little variation compared to WRF and might be affected by the moisture
advection outside the domain. Both of the above three fully coupled cases focused on the long-term
series of simulation. Wehbe et al. [27] gave an analysis of a 3-day extreme event in arid region of United
Arab Emirates, and the simulated precipitation suggested reducing root mean square error (RMSE)
and relative error (RE) trends in the fully coupled WRF/WRF-Hydro than WRF-only. These previous
studies show that atmospheric hydrological coupling models have a significant effect on the simulated
atmospheric–terrestrial water balance. However, for the discussion of fully coupled WRF/WRF-Hydro,
most of the coupling simulations focus on a long time scale, there were not enough cases and few
systematic analyses of storm events with different temporal and spatial consistency and the related
changes of water cycle elements in the hydrological processes.

In semi-humid areas of northern China, there is frequent convectional rain and the runoff

generation is mixed with infiltration-excess and storage-excess mechanisms. The rain storm events
in such areas, featured with high rainfall intensities, pre-dry soil conditions, and inhomogeneous
spatiotemporal distributions, need further simulation accuracy of the terrestrial hydrological processes.

This study we explored three basic questions:

• What are the different spatiotemporal storm simulation performances between WRF-only and the
fully coupled WRF/WRF-Hydro in the semi-humid areas of northern China?

• Could the fully coupled system improve the precipitation spatiotemporal distribution?
• What are the differences in the variation of water cycle elements (e.g., rainfall and soil moisture)

of different storm events?

To answer the problems above, the WRF-only and coupled WRF-Hydro models were applied to
two catchments for six 24-hour rainstorm events with different spatiotemporal homogeneousness of the
rainfall distribution. The impact of the enhanced description of atmospheric–terrestrial water balance
in WRF-Hydro was investigated by comparing WRF-Hydro and WRF-only results with observations
over the region. In order to further understand the simulation results, several crucial water cycle
elements, i.e., the generated runoff, the evapotranspiration, and the soil moisture were also analyzed
and compared between the fully coupled modeling system and the stand-alone WRF model.

2. Data and Methods

2.1. Study Area and Storm Events

The scope of this work covers two basins in the semi-humid regions of northern China: the Fuping
catchment with eight rain gauges, and the Zijingguan catchment with eleven rain gauges. Figure 1
shows the gauge locations, DEMs, and WRF nested domains of the two study catchments. The Fuping
and Zijingguan catchments, which respectively belong to the south and the north branch of the Daqing
river catchment, occupy drainage areas of 2210 and 1760 km2, respectively. The average annual rainfall
in the Daqing river catchment was approximately 600 mm. From late May to early September each
year, the warm and humid airflow around the tropical low pressure moves towards northern China.
The airflow encounters subtropical high pressure and the Taihang Mountain topography to stop its
movement and gradually slow down. There is weak cold air activity in the study areas, and cold and
warm air interact with local strong convective rainfall.
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Figure 1. Locations and digital elevation models (DEMs) of the two study catchments in northern China
with the gauges and the settings of the Weather Research and Forecasting model (WRF) nested domains.

For the classification of the storm events, the temporal and spatial homogeneousness of the rainfall
occurring in the two basins was analyzed by calculating the storm events coefficient of variance (Cv),
since the lower the Cv value, the more homogeneous the rainfall [28]. Cv can be written as follows:

Cv =

√∑N
i=1

( xi
x − 1

)2

N
(1)

where x is the average of xi. When the calculation is for the spatial distribution, the spatial Cv value
calculated by Equation (1) means the variability of the spatial rainfall distribution, xi is the 24 h rainfall
accumulation of the ith station, and N is the number of rain gauges, hence the spatial Cv reflects an
average of the cumulative deviation of all time steps at each rain gauge; when the calculation is for the
time distribution, the temporal Cv means the variability of the temporal rainfall distribution, xi is the
catchment average rainfall of the ith-hour, and N is the total number of hours for the storm duration.
At this time, the temporal Cv value represents an average of the cumulative deviation of all rain gauges
in each time step.
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Unlike the southern regions of China, it is difficult to find truly homogeneous rainfall in northern
China. The spatial Cv and temporal Cv of precipitation events that occurred in the two basins from
1985 to 2015 were separately sorted according to frequency. For both spatial Cv and temporal Cv, there
was a critical value of 5% frequency, which was taken as a Cv threshold value to separate homogeneous
and inhomogeneous storm events [29]. That is to say, the temporal or spatial homogeneousness was
determined when the Cv values of storm events were less than the threshold Cv values, which were 0.4
in time and 1.0 in space, respectively.

Six typical and representative events in the two basins from 2005 to 2015 were selected for
simulation and the detail rainfall information on the events and the judgment of the rainfall type are
shown in Table 1, wherein the rainfall distribution of Type 1 (including Event 1) was homogeneous
in both space and time, Type 2 (including Event 2) was homogeneous in space but inhomogeneous
in time, and Type 3 (including the other four events) was inhomogeneous in both space and time. It
should be pointed out that the soil moisture levels in Event 4 and Event 6 were relatively dry before
raining, and Event 5 had the shortest rainfall duration and the largest accumulative rainfall of six storm
events. There is a 24 h statistical window, which can completely cover the precipitation process of the
selected storm events.

Table 1. Storm events selected from the two study catchments and their spatiotemporal rainfall
evenness characterized by Cv.

Event ID Catchment Rainfall Window Accumulated
24 h Rainfall (mm) Spatial Cv Temporal Cv Type

Label

1 Fuping 07/29/2007 20:00 to
07/30/2007 20:00 63.4 0.400 0.601 1

2 Fuping 07/30/2012 10:00 to
07/31/2012 10:00 50.5 0.193 1.082 2

3 Fuping 08/11/2013 07:00 to
08/12/2013 07:00 30.9 0.740 2.393

34 Zijingguan 08/10/2008 00:00 to
08/11/2008 00:00 45.5 0.459 1.378

5 Zijingguan 07/21/2012 04:00 to
07/22/2012 04:00 172.2 0.610 1.887

6 Zijingguan 06/06/2013 22:00 to
06/07/2013 22:00 52.1 0.426 1.887

2.2. Models and Calibration

2.2.1. WRF

The Weather Research and Forecasting (WRF) model, which based on the mesoscale atmospheric
model (MM5), was designed as a new generation of numerical weather prediction (NWP) to be
applied for a wide range of research and operational prediction problems. [30–33]. In this study, three
nesting domain are set up for WRF (Figure 1): the innermost Dom3 has 1 km pixel size, the second
Dom2 has 3 km pixel size, and the outer Dom1 has 9 km pixel size. The driving data were acquired
from the Final Operational Global Analysis (FNL) data of the National Centers for Environmental
Prediction (NCEP) to provide WRF with initial and boundary fields. The different options for physical
parameterization schemes need attention in different practical applications. In this study, based on
the climatic characteristics and the underlying conditions of the two study catchments, the Yonsei
University of microphysical processes scheme [34], the Kain–Fritsch of boundary layer scheme [35] and
the Purdue–Lin of cumulus convection scheme [36] were screened. It should be noted that the cumulus
convection scheme was not used in the innermost Dom3 where the convective rainfall generation is
assumed to be explicitly resolved [37]. Table 2 lists the experimental details and physics schemes of the
WRF related configurations.
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Table 2. Configurations of the WRF model.

Subject Chosen Option Subject Chosen Option

Driving data 6 h FNL Pressure 50 hPa
Integration time-step 6 s for Dom3 Projection resolution Lambert
WRF output interval 1 h Longwave radiation RRTM

Fuping domain center 39◦04′15”N, 113◦59′26”E Shortwave radiation Dudhia
Zijinguan domain center 39◦25′59”N, 114◦46′01”E Land surface Noah
Horizontal grid number 26×28, 42×48, 84×96 Microphysics Purdue–Lin (Lin)

Horizontal resolution 9 km, 3 km, 1 km Cumulus convection Kain–Fritsch (KF)/Explicit
Vertical discretization 40 layers Planetary boundary layer Yonsei University (YSU)

2.2.2. WRF-Hydro

The WRF-Hydro model used in this study was version 3.0 [38,39], and the information about
the WRF-Hydro model is available on the official website [40]. WRF-Hydro mainly includes a LSM
module, a hydrologic module and a disaggregation–aggregation module.

1. Runoff generation in Noah
The LSM coupled with WRF/WRF-Hydro are Noah in this case [38,39]. There are four soil layers in

a 2-meter soil column used in Noah, and the soil column configuration used in this study had the depth
of the bottom of the layers as 0–10cm, 10–40cm, 40–100cm, and 100–200 cm. The runoff generation
process in Noah is divided into three parts: surface excess infiltration runoff, saturated subsurface
runoff and deep underground free outflow. The process of excess infiltration runoff generation is the
simple water balance (SWB), derived by Schaake et al. [41], which follows the assumption that when
the infiltration is greater than the grid surface aquatic water capacity (precipitation reduced by the
interception and evaporation), the excess part of infiltration produces surface runoff. Then, with the
increase of infiltration, the subsurface water in each layer of soil column gradually accumulates. The
subsurface water occurs until the existing soil water content soil moisture exceeds the total saturated
soil moisture of the whole soil column. There is also a water outlet at the bottom of each grid soil
column, which is used to indicate a deep free drainage process.

2. Routing in the hydrological module
The hydrological module of WRF-Hydro compensates and strengthens the description of the

lateral transport of the infiltration excess process and of the saturated subsurface process in Noah.
Corresponding to runoff generation, it includes overland routing, subsurface routing, deep base flow,
and a river routing. The overland routing is realized similar to Downer et al. [42] by a completely
unsteady, finite difference and diffusion wave method. The flow on the reverse slope and backwater
effects are taken into account in the diffusion wave equation. The subsurface routing refers to the
saturated flow in the soil layer, and its lateral movement is according to the method proposed by
Wigmosta and Lettenmaier [43], where a quasi-three-dimensional flow is computed, including the
effects of topography, saturated soil depth and saturated hydraulic conductivity varying with soil
depth. Channel routing, similar to overland flow, uses an explicit, one-dimensional, variable time step
diffusion wave equation. When the water depth of the grid column exceeds a predefined retention
depth, the stream inflow occurs and gradually flows along the channel grids. The base flow is
represented by a simple, experience-based bucket model located below the soil column and is the
construction of a conceptual bucket model with side openings, which is especially suitable for a
long-term simulation. An exponential function is used to achieve the conceptual water depth in
the bucket, and the water discharged from the soil column is mapped to the underground bucket
according to a scale factor. The water in the bucket is gradually returned to the channel section directly
corresponding to its downstream catchment area. The current hydrological module of WRF-Hydro
does not support the coupling of river channel and base flow.

3. Configurations of WRF-Hydro and disaggregation–aggregation module
The configurations related to the WRF-Hydro are shown in Table 3. The base flow module is closed

in this study for a short simulation time and it simply collects underground runoff and reallocates
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it to the channel, which can easily provide additional river flow [19]. The fully coupled method
is realized by recompiling and merging WRF-Hydro into WRF. As the carrier of linking WRF and
hydrological modules, LSM realizes the complete interaction of model state variables and flux variables
by calling the disaggregation–aggregation module. The Noah in WRF-Hydro requires forcing data
including precipitation, 2m surface temperature, surface pressure, long and short wave radiation, and
leaf area index. When the fully coupled option is turned on, running WRF will call the LSM module,
disaggregation–aggregation module and hydrological module components of WRF-Hydro. Runoff

generated in Noah before the grid disaggregation process is "on", and the proportion of downscaling
factor is 10. This means that the variables of Noah (the maximum soil moisture content and lateral
saturated hydrological conductivity of different soil type, the excess infiltration, the soil water content
of each soil layer, etc.,) generated by each 1km × 1km grid are disaggregated into 100m × 100m subgrids
by assigning linear weighting factors for subsurface and overland routing. Then, through a linear
average of the subgrids, the fine grid variables generated by overland routing (water accumulation
depth) and subsurface routing (soil moisture content of each soil layer) of the hydrological module are
aggregated back to the Noah grid and the updated soil moisture and heat flux are fed back to WRF
for the next iterative cycle. For details of the grid disaggregation–aggregation process, refer to the
description of Gochis and Chen [44].

Table 3. Configurations of the WRF-Hydro model.

Subject Chosen Option

Forcing input interval 1 h
Subgrid size 100 m

Routing model time step 6 s
Aggregation factor 10
Subsurface routing On

Overland flow routing On
Channel routing On with the steepest descent

Baseflow bucket model Off

2.2.3. WRF-Hydro Calibration

Before analyzing the influence of WRF and the fully coupled WRF/WRF-Hydro, we calibrated
the stand-alone WRF-Hydro parameters, and then selected the same parameter group in the coupled
system. It should be pointed out that the stand-alone WRF-Hydro forcing input time step must be
consistent with the WRF model output time step (1 h) for it was a necessary compilation rule for
guaranteeing the data generated by WRF can be used to drive WRF-Hydro.

Four parameters were used for the calibration and sensitivity analysis, including the runoff

infiltration parameter (REFKDT), the surface retention depth scaling parameter (RETDEPRTFAC), the
overland flow roughness scaling parameter (OVROUGHRTFAC) and the channel Manning roughness
(MannN). REFKDT is a significant parameter for the infiltration excess process. RETDEPRTFAC should
be adjusted depends on the surface slope, and in general, in regions where slopes are steeper than
30◦–45◦, and there is no accumulation or retention. Increasing REFKDT and RETDEPRTFAC affect the
total water volume by encouraging more local infiltration near the river channel to wetter soils and thus,
to better riparian conditions. OVROUGHRTFAC depends on the land-use type, and also influences
the amount of water that is transferred to the channel grids. It also has an impact on the hydrograph
shape, but OVROUGHRTFAC in controlling the speed of the overland transmitters downstream and
the amount of water on a column scale is relatively minimal. Instead, MannN has obvious impact on
the streamflow to channel grids. Decreasing MannN and OVROUGHRTFAC accelerated the routing of
the river channel, resulting in a higher flood peak [45,46]. This is also supported by the conclusions
from other studies (e.g., Kerandi et al. [6], Senatore et al. [25], Naabil et al. [45] and Ryu et al. [46]).
To minimize model runs and cut down computational time, the calibration process used a stepwise
approach [47] which denotes that the determination of one parameter will be verified before the next
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parameter is calibrated. This approach made it possible to adjust the model to best fit the observations
of streamflow and timing. We mainly calibrated order is REFKDT, MannN, RETDEPRTFAC and
OVROUGHRTFAC. Aside from the four main parameters, the other parameters are set to their defaults,
owing to the lack of observational data.

2.3. Evaluation Statistics

Both the 24 h accumulation and the spatiotemporal distributions of rainfall are evaluated for
WRF-only and the fully coupled WRF/WRF-Hydro modeling system. While calculating average
rainfall, the relative error (RE) was first evaluated:

RE =

∣∣∣∣∣Ps − Po

Po

∣∣∣∣∣× 100%, (2)

where Ps and Po are the simulated and observed 24 h cumulative rainfall values in the two study areas
calculated based on rain gauges [48].

For the evaluation indices of the spatial and temporal rainfall distributions, five indices which
refer to [28] are used, i.e., the critical success index (CSI), the probability of detection (POD), the false
alarm ratio (FAR), the root mean square error (RMSE), and the mean bias error (MBE). The meanings
of the above indices and the range values are provided in Table 4. Among these indices, FAR, CSI, and
POD are categorical, and RMSE and MBE are continuous indices [49,50].

Table 4. Descriptions and ranges of the five indices for the rainfall spatial and temporal distribution.

Index Range Optimal Value Meaning

CSI 0–1 1 Proportion of correctly simulated rainfall frequency to all
possible rainfall situations

POD 0–1 1 Proportion of observed rainfall being correctly simulated
FAR 0–1 0 Proportion of false positives in simulated rainfall events.

RMSE 0–∞ 0 Mean square error of the simulations
MBE −∞–∞ 0 Average error of the simulations

CSI: critical success index; POD: probability of detection; FAR: false alarm ratio; RMSE: root mean square error;
MBE: mean bias error.

The categorical indices were as follows:

POD =
1
N

∑N

i=1

NAi
NAi + NCi

, (3)

FAR =
1
N

∑N

i=1

NBi
NAi + NBi

, (4)

CSI =
1
N

∑N

i=1

NAi
NAi + NBi + NCi

, (5)

The calculation of categorical indices is based on a rain/no rain contingency table, as shown in
Table 5. The NA, NB, NC, and ND represent the total hit numbers of the eligible judgment, whether
the simulated and observed values in an observation period or at the observation position were
greater than 0.01 mm (judgment of whether rainfall occurred) and NA =

∑N
i=1 NAi, NB =

∑N
i=1 NBi,

NC =
∑N

i=1 NCi, ND =
∑N

i=1 NDi. When evaluating on a temporal dimension, the rainfall simulations
and observations of different time steps were compared at the same rainfall gauges i, and N referred
to the number of the rain gauges. When evaluating on a spatial dimension, the rainfall simulations
and observations of the different rain gauges were compared with the same hourly time step i, and N
(N = 24) referred to the number of time steps.
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Table 5. Rain/no rain contingency table for the simulation against the observation.

Simulation/Observation Yes No

Yes NA NB
No NC ND

NA: The hit number of rainfall occurring in both simulation and observation; NB: The hit number of rainfall occurring
in simulation but no observation; NC: The hit number of no rainfall occurring in simulation and observation;
ND: The hit number of rainfall occurring in observation but no simulation.

There is a general evaluation of simulated performance on the basis of the correctness of rainfall
occurrences in categorical indices, and continuous indices are provided for a more quantitative
calculation of the simulated error.

The continuous indices were calculated as follows:

RMSE =

√
1
M

∑M

j=1

(
Psj − Poj

)2
, (6)

MBE =
1
M

∑M

j=1
(Psj − Poj), (7)

When the indices were calculated in the temporal dimension, M (M = 24) was the number of time
steps, and Psj and Poj were the simulated and observed average areal rainfall of the study catchment at
each time step j. When the indices were calculated in the spatial dimension, M was the total number of
each rain gauges, which is 8 for the Fuping catchment and 11 for the Zijingguan catchment and Psj and
Poj were the simulated and observed values of accumulated rainfall at each rain gauge j. Both MBE
and RMSE represent an average cumulative error, but in MBE, the error including the direction, might
induce gradually random errors canceled out during a rainfall period.

3. Results and Discussions

The presentation is divided into two parts: the first part is the analysis of different types of rainfall
in time and space between WRF-only and the fully coupled WRF/WRF-Hydro system according to RE,
five spatiotemporal indices and the spatial distribution map of 24 hours accumulative rainfall; the
second part is the temporal and spatial changes between soil moisture, runoff and evapotranspiration
in the water cycle and their relationship with different types of rainfall.

3.1. Rainfall Simulations by WRF-Only and the Fully Coupled WRF/WRF-Hydro

3.1.1. The 24 h Accumulation of Rainfall

Figure 2 shows the 24 h rainfall histogram and cumulative curve. For both WRF-only and the fully
coupled WRF/WRF-Hydro, the RE was truly related with the temporal and spatial homogeneousness
of storm events. It could be grasped intuitively that the cumulative rainfall of the coupled system was
generally closer to the observations than that of WRF-only, except Event 5. Table 6 further provides
the relative error (RE), different type rainfall average relative error (ARE) of the 24 h cumulative
rainfall curve and 24 h rainfall accumulation values using WRF-only simulation and the fully coupled
WRF/WRF-Hydro simulation. For the three types of events, the values of ARE (b) were all less
than ARE (a), which might mean that the fully coupled WRF-Hydro could improve the cumulative
rainfall compared with WRF-only. The results of ARE values were type 3>type 2>type 1, which were
reasonable for the inhomogeneous spatial and temporal distribution, led to worse simulations. The
RE of Event 1–4 of the fully coupled modeling system were less than WRF-only. In particular, the
Event 1 simulated and observed RE was reduced from 0.139 (WRF-only) to 0.038 (the fully coupled
WRF/WRF-Hydro). Nevertheless, the fully coupled system cumulative rainfall values of Event 5, an
extreme heavy storm mentioned before, were slightly less, with the associated RE values that rose
from 0.657 (the fully coupled WRF/WRF-Hydro) to 0.616 (WRF-only).
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Figure 2. The observed and simulated 24 h rainfall accumulations for the six storm events.

Table 6. RE values of the 24 h rainfall accumulations simulation: (a) Weather Research and Forecasting
model (WRF-only); (b) the fully coupled WRF/WRF-Hydro.

Type of Storms Obs
(mm)

Sim(a)
(mm)

Sim(b)
(mm) RE (a) RE (b) ARE (a) ARE (b)

Type 1 Event 1 63.38 72.18 65.82 0.139 0.038 0.139 0.038
Type 2 Event 2 50.48 28.51 29.33 0.435 0.419 0.435 0.419

Type 3

Event 3 30.82 14.41 17.75 0.532 0.424

0.515 0.477
Event 4 49.76 23.13 28.11 0.535 0.435
Event 5 172.17 66.13 59.03 0.616 0.657
Event 6 52.06 32.46 31.6 0.377 0.393

3.1.2. Indices for the Temporal Rainfall Distribution

Figure 3 is the temporal results of the five indices for WRF-only and the fully coupled
WRF/WRF-Hydro model. For both the fully coupled WRF/WRF-Hydro and WRF-only, it could
be determined that the temporal indices results were Type 1>Type 2>Type 3, from the best to the worst.
For events in Type 3, the RMSE values in the fully coupled WRF-Hydro were all higher than WRF-only,
which might mean a more accumulative error without canceling out the positive and negative errors in
time inhomogeneous events.
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Figure 3. Evaluation values of the indices for the temporal rainfall distribution of the six storm events:
(a) WRF-only; (b) the fully coupled WRF/WRF-Hydro.

We further calculated the difference between each index value and its optimal value as the
indices errors. That is, for CSI and POD, the indices errors were the positive difference between
the corresponding indices and 1; for FAR, RMSE and MBE, and the indices errors were the positive
difference with 0.The temporal heat map is shown in Figure 4. Lower indices errors compared with
WRF-only indicated that the fully coupled WRF-Hydro improved time distribution of Type1 and Type
2 events. However, in Type 3, Event 3 and Event 6 have the largest (2.393) and second largest (1.887)
temporal Cv values, which might mean a more uneven time distribution in Type 3. In both the fully
coupled WRF-Hydro and WRF-only, the CSI, FAR and POD errors for Event 3 were the largest, which
meant a worse rainfall occurrences simulation in time. Consistent with this, the RMSE error for Event
3 was the highest, but the decreasing MBE error represented the real random errors canceled out of the
total rainfall amount. The indices of Event 6 showed a similar trend with a second worst CSI, FAR and
RMSE, but a second best MBE.
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The fully coupled WRF-Hydro got a lower MBE error (0.532) in Event 3 compare with WRF-only
(0.419) even if the CSI, POD, FAR and RMSE errors were larger than WRF-only. However, in Event 6,
the FAR, RMSE and MBE errors of the fully coupled system were higher than WRF-only and all indices
of Event 5(temporal Cv 1.887) showed that for a 10 h duration flash storm, the fully coupled system
had neither a proper temporal rainfall occurrence nor an accurate temporal quantitative calculation
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of rainfall compared with WRF-only. These indicated that the fully coupled modeling system might
involve the risk of a larger false alarm in inhomogeneous time than WRF-only.

3.1.3. Indices for the Spatial Rainfall Distribution

WRF-only and the fully coupled WRF/WRF-Hydro spatial indices of the six storm events were
as provided in Figure 5 and the relative heat map of the indices errors was in Figure 6. Judging
from the color levels in Figures 5 and 6, for both the fully coupled WRF/WRF-Hydro and WRF-only,
the indices errors were smaller in space than in time. Similar to the results of the temporal indices,
the event simulation values of Type 1 and Type 2 were closer to observations than those of Type 3
and the coupled WRF-Hydro enhanced the simulations of homogeneous spatial storms. In fact, the
spatial inhomogeneity might not affect the coupled WRF/WRF-Hydro in improving WRF-only. What
distinguishes it from the temporal indices was that the fully coupled WRF/WRF-Hydro could achieve
better spatial indices than WRF-only for six events and only the POD and FAR errors of Event 3 and
the CSI, FAR and RMSE errors of Event 6 were slightly larger than those of WRF-only. For Event 5,
the fully coupled system was worse than WRF-only in the temporal indices, but the result of spatial
indices showed an improvement, especially the MBE error from 0.831 to 0.635, which might indicate
the potential of WRF-Hydro for the spatial distribution of a heavy rain.
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3.1.4. Spatial Variation of the Cumulative Rainfall

Figures 7 and 8 illustrate the spatial variation of the 24 h cumulative rainfall in the Fuping
and Zijingguan catchments. From left to right are the observed spatial patterns of the cumulative
rainfall from the rain gauges, the simulated rainfall distribution of WRF-only and the fully coupled
WRF/WRF-Hydro, and the spatial variations of the cumulative rainfall simulated by the two modes
(i.e., the fully coupled WRF/WRF-Hydro minus WRF-only). Among all the subfigures (c), the spatial
variations of Event 3, Event 4, and Event 6 were relatively more significant than the other events.

In particular, the coupled system simulations showed greater variations than WRF-only, which
can be seen in the spatial variations in the subfigures (c) of Event 3, Event 4 and Event 6 (Type 3) and
the fully coupled WRF/WRF-Hydro model improved WRF-only at the critical storm center due to
its spatial redistribution of the rainfall. Spatially, the fully coupled WRF/WRF-Hydro and WRF-only
showed essentially the same patterns for the cumulative rainfall distributions for both Type 1 and Type
2 events, and the simulations for the two events were better fitted with rain gauge observations than
those of the Type 3 events. The storm centers of Event 1 and Event 2 were captured relatively well by
the fully coupled WRF/WRF-Hydro as well as WRF-only. However, for Type 3 storm events, when
matched with the observations, some parts of the catchments with high rainfall accumulations were
missed by the fully coupled WRF/WRF-Hydro and WRF-only.
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Figure 8. Spatial distributions of the 24 h accumulative rainfall for the three storm events in the
Zijingguan catchment, from left to right: gauge observation; (a) WRF-only; (b) the fully coupled
WRF/WRF-Hydro; (c) the fully coupled WRF/WRF-Hydro minus WRF-only.

In comparison with WRF-only, Event 4 in the fully coupled WRF/WRF-Hydro was apart, with
variations ranging from −60 mm to 60 mm as shown in Figure 8c, which raised the overall rainfall in
the eastern and southern parts of Fuping and decreased the overall rainfall elsewhere. As a heavy
convective historical storm, the rainfall intensity of Event 5 increased sharply in a very short period
of time, with the maximum gauge cumulative values reaching up to 355 mm. The fully coupled
WRF/WRF-Hydro underestimated this storm, and the WRF-only performed even worse, indicating a
failure to capture these kinds of storm events in the Zijingguan catchment. The WRF-only had likewise
the worst performance in reproducing the spatial rainfall distribution of Event 6, the storm center
of which was dislocated. In stark contrast, the coupled system raised the rainfall in the north more
than WRF-only for Event 6, with differences ranging from −60 mm to 40 mm, which showed a wider
range than the differences of all other events, except those of Event 4. Event 4 and Event 6 occurred in
relatively dry soil conditions in the previous period and there was no obvious rainfall in the catchment
for nearly 15 days before the occurrence of the two storm events.

3.2. Simulations of Other Crucial Elements in the Water Cycle

3.2.1. Temporal Variation of the Water Cycle Elements

In addition to evaluating the spatiotemporal patterns of the rainfall, the spatiotemporal distribution
variables of the other elements in water cycle were analyzed to understand the fully coupled system.
These variables included evapotranspiration, runoff (the sum values of infiltration excess and saturated
groundwater), water storage, and surface temperature. The basin water balance theory [22,51] was
used in the calculation of the water storage change. This calculation can be expressed as follows:

Dw = P − R − Et, (8)
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where Dw is the water storage change within 24 h for each flood event in the two catchments, and
P, R, and Et are the rainfall, the generated runoff, and the evapotranspiration within the same time
period, respectively.

For the analysis of the variables in the grid area, the 24 h changes can be seen in Figure 9. There were
small amounts differed of the elements between WRF-only and the fully coupled WRF/WRF-Hydro as
a short duration of 24 h. The R values of the fully coupled WRF/WRF-Hydro for the six events were less
than that in WRF-only. In general, the fully coupled system increased the soil moisture and decreased
the R. Note that the largest difference in R is Event 4 among all rainstorms, where the fully coupled
WRF/WRF-Hydro was only 1.1 mm less than that of WRF-only. Compared to WRF-only, the coupled
system Et values exhibited a decreasing trend, except for Event 2, which rose by only 0.001 mm. The
amount of water storage slightly decreased in Type 1 and Type 2, while the water storage in the Type 3
events increased. At the same time, the change of the surface temperature within 24 h was not obvious,
and the fluctuation range was quite narrow.

Figure 10 shows the graphs for the temporal variations of the grid average values of the crucial
water cycle elements within 24 h. The Et trend was nearly the same as that of the Ts. During the period
with high rainfall intensity, the Dw in the two catchments rose and Et increased until a stabilization in
the later period. When the rainfall had gradually stopped, the Et increased with rising Ts (excepted
for Event 1 and Event 6 with decreasing Ts), triggering the Dw decreasing to negative. For Event 4,
and Event 6, the P and the Dw values generated by the fully coupled WRF/WRF-Hydro were slightly
higher than those from WRF-only before and after the peak period.

A number of studies (e.g., Findell and Eltahir [52], and Koster et al. [53]) have argued that local
soil moisture changes significantly in arid and semiarid regions dominated by convective rainfall, and
such changes can affect the accuracy of a model simulation and reflect the Dw change to a certain
extent. Figure 11 displays the hourly grid averaged soil moisture of the four soil layers (S1 to S4
with soil thickness ranges: 0–10 cm, 10–40 cm, 40–100 cm, 100–200 cm, respectively) simulated by the
fully coupled WRF/WRF-Hydro and WRF-only, which are expressed in terms of the volumetric water
content. That is, the values showed the average of the soil moisture in three dimensions including the
grid, time, and layer number. For the soil layers in semi-humid watershed, due to the low soil moisture
in the early stage and the short duration of the rainfall and infiltration processes, thinner S1 and S2 had
a rapid soil moisture decrease due to high surface temperature and surface evaporation. Among 4 soil
layers, soil moisture follows the rule that the attenuation gradually decreases with increasing layers.
For S3 and S4, they have larger thickness and slower response. This could be reflected in Event 1,
Event 3, and Event 5. Taking Event 5 as an example, the S1 in the first five hours of the storm reached
nearly 0.4 from around 0.3, and it was then maintained at a high level for the next five hours. The same
thing happened for the other three events, and only S1 and S2 changed.

The fully coupled WRF/WRF-Hydro soil moisture values all exceeded WRF-only values. For S1
and S2 in Event 4 and Event 6, there was higher S1 and S2 before and after the peak period, which
might be used as an explanation for the sudden increase of P and Dw in Figure 10. In the coupling
WRF-Hydro system, soil moisture, as a key feedback variable, could affect the spatial fluctuation
range of precipitation. Compared with the accumulative difference of rainfall, we found that a larger
fluctuation corresponded to initial drier soil conditions (Figure 7c, Figure 8 c, Figure 11). The more soil
moisture the columnar soil layer lacks, the more the hydrological module could feedback to the land
surface system and WRF to affect the elements spatiotemporal distribution in the fully coupled system.
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3.2.2. Spatial Variation of the Soil Moisture

Figure 12 shows the hourly averaged soil moisture of the four soil layers. It can be seen that the
values of Event 4 and Event 6 were much less than the values of the other events in the whole rainfall
period. The spatial distributions of the soil moisture were the same as the cumulative rainfall for
both WRF-only and the fully coupled WRF/WRF-Hydro, as the soil based on the higher accumulated
rainfall was more humid. However, in comparison with WRF-only, the fully coupled system generally
produced higher soil moisture content. The soil moisture of the storm center simulated by the fully
coupled WRF/WRF-Hydro increased more than that of WRF-only, especially for Event 1, Event 3, and
Event 5. This may also be the reason for the lower R values of the fully coupled WRF/WRF-Hydro.



Water 2020, 12, 1209 18 of 25Water 2020, 12, x FOR PEER REVIEW 18 of 25 

 

 

Figure 12. Spatial distributions of the hourly averaged soil moisture of the four soil layers: (a) WRF-
only; (b) the fully coupled WRF/WRF-Hydro. 

Figure 12 shows the hourly averaged soil moisture of the four soil layers. It can be seen that the 
values of Event 4 and Event 6 were much less than the values of the other events in the whole rainfall 
period. The spatial distributions of the soil moisture were the same as the cumulative rainfall for both 
WRF-only and the fully coupled WRF/WRF-Hydro, as the soil based on the higher accumulated 
rainfall was more humid. However, in comparison with WRF-only, the fully coupled system 
generally produced higher soil moisture content. The soil moisture of the storm center simulated by 
the fully coupled WRF/WRF-Hydro increased more than that of WRF-only, especially for Event 1, 
Event 3, and Event 5. This may also be the reason for the lower R values of the fully coupled 
WRF/WRF-Hydro. 

3.2.3. Spatial Variation of the Cumulative Runoff 

The runoff of the fully coupled system is determined by both precipitation and soil moisture, as 
the variables transferred back to Noah by the hydrological module of the fully coupled system 
include the water accumulation depth and soil moisture content of each soil layer. The spatial 
distributions of the 24 h cumulative runoff are shown in Figure 13, for which both WRF-only and the 
coupled WRF/WRF-Hydro were generally consistent with the rainfall, and high runoff values in 
places with high rainfall as well. The generated runoff of the storm center simulated by the two 
systems was higher than the other regions of the study catchments. Event 5 had the greatest rainfall 
accumulation, and the local maximum runoff was almost 80 mm, while Event 2 had the least 
cumulative rainfall, and the local runoff was just 8 mm. At the same time, the volume of the generated 
runoff was also subject to the change in the local soil moisture. With relatively dry soil conditions 

Figure 12. Spatial distributions of the hourly averaged soil moisture of the four soil layers: (a) WRF-only;
(b) the fully coupled WRF/WRF-Hydro.

3.2.3. Spatial Variation of the Cumulative Runoff

The runoff of the fully coupled system is determined by both precipitation and soil moisture, as
the variables transferred back to Noah by the hydrological module of the fully coupled system include
the water accumulation depth and soil moisture content of each soil layer. The spatial distributions
of the 24 h cumulative runoff are shown in Figure 13, for which both WRF-only and the coupled
WRF/WRF-Hydro were generally consistent with the rainfall, and high runoff values in places with
high rainfall as well. The generated runoff of the storm center simulated by the two systems was higher
than the other regions of the study catchments. Event 5 had the greatest rainfall accumulation, and the
local maximum runoff was almost 80 mm, while Event 2 had the least cumulative rainfall, and the local
runoff was just 8 mm. At the same time, the volume of the generated runoff was also subject to the
change in the local soil moisture. With relatively dry soil conditions such as Event 4 and Event 6, it can
be seen from Figure 12 that when the soil moisture was less than 0.26, the generated runoff was also
relatively low. Besides this, the runoff changed from the WRF-only to the coupled WRF/WRF-Hydro,
and Event 3, Event 4, and Event 6 in particular could reflect subtle differences similar to the rainfall.
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3.2.4. Spatial Variation of the Cumulative Evapotranspiration

The spatial variation of the Et between WRF-only and the fully coupled WRF/WRF-Hydro was far
from consisting of the rainfall spatial distribution. Figure 14 shows the 24 h average spatial distribution
of Et. The Et range of Event 1 was the narrowest, from 0–5.6 mm, while the range of Event 3 was the
broadest, from 0–11.2 mm. For Event 3 and Event 5, which reached their peaks (Figure 10) in the first
few hours, the spatial distribution of Et was consistent with the rainfall. For the rest of the events,
the spatial distribution of the Et was different from the rainfall distribution. Especially for Event 4
and Event 6 with relatively dry soil conditions, the cases were more complicated. In fact, ET was
affected not only by the rainfall and the soil moisture, but also by many other factors, e.g., the soil
temperature, the latent heat fluxes, the air pressure and the wind speed, etc. In the early stage of the
storm, the soil moisture was spatially inhomogeneous, and with the growth of the soil moisture, the
evapotranspiration rapidly increased. When the rainfall gradually stopped, the soil moisture decreased
and became spatially stable, and the evapotranspiration continued across the catchment. If there were
no particularly strong interference factors in the subsequent time period, the evapotranspiration of
each grid cell would gradually tend toward a stable value.
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4. Discussion

Enhanced hydrological representations on short-term meteorological forecasts are more uncertain,
and as yet under investigation and understanding its impact [25]. The concept of coupling the
hydrological model (WRF-Hydro) with atmospheric model (WRF) was expected to reduce uncertainties
associated with the spatial and temporal distribution of storm events, especially for complex terrain.
In this study, six storm events were screened with different spatiotemporal characteristics during a
24-hour window. The focus is to explore the short-term temporal and spatial water exchanges of
elements in the water cycle, especially different spatiotemporal types rainfall between WRF-only and
the coupled WRF/WRF-hydro in the semi-humid areas of northern China, where the short real rainfall
duration is regarded as a great challenge to the coupled system. Through categorical and continuous
indices, we proved a potential for the fully coupled system to reduce spatial mean square error and
could be confirmed from the enhancement spatial distribution of precipitation in the fully coupled
WRF-Hydro, especially for the simulation of rainstorm centers. However, when the fully coupled
WRF/WRF-Hydro is used, attention should be paid to the false alarm risk of rainfall occurrences and
period rainfall values in time inhomogeneous storms which have large rainfall intensity.

The distribution of precipitation among land water cycle elements is a complex process, and
more details are not yet fully explored [54]. In our study, the redistributions fluctuation of spatial
precipitation in the fully coupled system was highly correlated with soil moisture, and a low initial
soil moisture corresponded to a large spatial fluctuated range. The feedback process of the increased
soil moisture after the spatial redistribution led to the increase in precipitation in the corresponding
position, indicating that there may be a positive feedback relationship between local soil moisture
and precipitation. The spatial redistribution of soil moisture will change the surface flux, which may
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affect boundary layer dynamics, the initiation of moist convection and precipitation [55,56]. In this
study, the fully coupled system generally produced higher soil moisture content than WRF-only. This
was consistent with the previous study by Senatore et al. [25], which claimed before that the reason
was related to the combined effects of lateral terrestrial water flow redistribution in the fully coupled
system by allowing more water to circulate in the regional water cycle.

The fully coupled system is unstable and far from maturity [57]. After a disaggregation of the
land surface module, the coupled WRF-Hydro carries out the overland and undersurface routing
on a finer grid, and then, through average of the subgrid, aggregates and feeds back to the LSM to
realize the horizontal interaction between the hydrological module and LSM. It solves the spatial
variability structure of soil moisture resolution from one to the next time step. One of the model
structure restraints is that even if there are adjustable thicknesses of four soil layers in WRF-Hydro, they
are constant throughout the entire model domain. This does not bring much trouble to this study due
to the relatively single local soil type (cinnamon soil), but for the areas with strong soil heterogeneity, it
is still a problem to be solved because the main runoff generation processes are carried out in the ‘fixed
column’.

Since the primary objective of the study is to show the effects of different spatiotemporal types
rainfall between WRF-only and the fully coupled WRF/WRF-Hydro in the semi-humid areas of northern
China, rather than extensively assessing the performance of the hydrological module, the streamflow
is limited to only a simple foregoing calibration of four sensitivity parameters in the stand-alone
WRF-Hydro. The lateral redistribution process includes the overland routing and subsurface routing,
which means the runoff process will not be regulated by the feedback of the channel routing. On the
contrary, the streamflow is affected by the runoff. The comparison of runoff processes could reflect
the difference between the fully coupled WRF/WRF-Hydro and WRF-only. In fact, except for Event 1,
there was general underestimated streamflow in the standalone WRF-Hydro calibration compared to
the observations, which might be because of the underestimated accumulative rainfall of forcing data
from WRF and insufficient response to the channel characteristics parameters. It should be mentioned
that the simulations of WRF-only and the fully coupled system were all based on one set of physical
parameterizations which was found to be adaptive to most of the storm events in the study area [29].
One can notice that for some events, the simulated rainfall and other variables by the WRF model had
some considerable errors, which were inevitably caused by the forcing data or the parameterization
schemes. The accuracy of the forcing data could be a significant factor restricting the performance
of the atmospheric-hydrologic coupling system. Precise spatiotemporal information about the storm
center and the soil moisture (e.g., radar-rain gauge merging methods, soil moisture data assimilation)
may help provide improved simulations of the terrestrial atmospheric and hydrological processes.

The topographic and climatic characteristics of study area make it strenuous to screen enough
homogeneous events, and increase the uncertainty of the simulations. When applying the fully coupled
WRF/WRF-Hydro modeling system, the determination of model parameter, the spatial static data, the
integration time step, and the downscaling resolution may all have some impact on the final results.
The generalization of the conclusions in this study may also be restricted to some extent by the above
issues as same as indicate some prospects for future studies.

5. Conclusions

To enhance the understanding of the hydrometeorological conditions in semi-humid area of
northern China, six rainfall events that occurred in two medium-scale catchments were sorted with
different homogeneousness in space and time. The spatiotemporal characteristics of rainfall and
several key water cycle elements (e.g., soil moisture, evapotranspiration and generated surface runoff)
were investigated by the stand-alone WRF model and the fully coupled WRF/WRF-Hydro modeling
system. We proved that the precipitation events in the fully coupled system were slightly improved
than those in WRF-only, and the simulation performances were related with the temporal and spatial
homogeneousness of storm events. For both WRF-only and the fully coupled WRF/WRF-Hydro,
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the events with inhomogeneous spatiotemporal distributions of rainfall could lead to somewhat
worse simulations than those with homogeneous rainfall distributions in space or time and both
the two modeling simulations showed to be more realistic in space than in time. The fully coupled
system could improve the spatial distribution, especially the advantage of a lower mean bias error
and the enhanced prediction of rainstorm center than WRF-only. In the fully coupled system, the
fluctuation of precipitation was corresponded to the initial soil moisture, and for the temporal
inhomogeneous precipitation, the system might produce a large false alarm than WRF-only. Compared
with WRF-only, the simulations of the crucial water cycle elements by the fully coupled system differed
with relatively small amounts in the average of two catchments and generally increased soil moisture
and decreased surface runoff. The spatial distributions in the fully coupled system were redistributed
and the generated runoff and the soil moisture was generally consistent with that of the cumulative
rainfall, while the evapotranspiration did not always show the same trend due to more complicated
influencing mechanisms.

For semi-humid areas, how to exactly capture the rainfall process with inhomogeneous
distributions in space and time or with precedent dry soil conditions is the key point to be solved in
the following study.
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