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Abstract: Reducing water use could impact existing sewer systems but this is not currently well
understood. This work describes a new flow and wastewater quality model developed to investigate
this impact. SIMDEUM WW® was used to generate stochastic appliance-specific discharge profiles
for wastewater flow and concentration, which were fed into InfoWorks® ICM to quantify the
impacts within the sewer network. The model was validated using measured field data from a sewer
system in Amsterdam serving 418 households. Wastewater concentrations of total suspended solids
(TSS), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TPH)
were sampled on an hourly basis, for one week. The results obtained showed that the InfoWorks®

model predicted the mass flow of pollutants well (R-values 0.69, 0.72 and 0.75 for COD, TKN and
TPH respectively) but, due to the current lack of a time-varying solids transport model within
InfoWorks®, the prediction for wastewater concentration parameters was less reliable. Still, the model
was deemed capable of analysing the effects of three water conservation strategies (greywater
reuse, rainwater harvesting and water-saving appliances) on flow, nutrient concentrations, and
temperature in sewer networks. Results show through a 62% reduction in sewer flow, COD, TKN and
TPH concentrations increased by up to 111%, 84% and 75% respectively, offering more favourable
conditions for nutrient recovery.

Keywords: sewer design; stochastic sewer modelling; wastewater quality; household discharge;
reduced water consumption

1. Introduction

Contemporary water cycle infrastructure has typically been developed to promote public health
and safety by supplying wholesome drinking water and by transporting wastewater and stormwater
out of urban areas as quickly as possible. This has led to linear water use (take, use, throwaway) that
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is sub-optimal on grounds of sustainability. With growing environmental awareness, the idea of a
circular economy has emerged, and a paradigm shift is required to close the water cycle and re-classify
wastes as resources to recover and reuse. Resource recovery from wastewater is more effective at
high concentrations. This can be achieved through dewatering processes at treatment plants [1–3]
but another option is to limit wastewater dilution in the collection process [4]. Limiting wastewater
dilution can be achieved by reducing domestic drinking water use, separation of storm/wastewater
systems and preventing groundwater inflow by repairing/replacing broken pipes. This reduces nutrient
loss from the cycle whilst reduced drinking water demand and wastewater transportation volume
could save cost by reducing demands on existing infrastructure. Transporting more concentrated flow
with a smaller pipe/equipment size requirement is also facilitated. Urban water cycles could enable
resource recovery if considered from this new value proposition. This philosophy has prompted the
development of a water cycle model to investigate the effects of future water use behaviours on the
urban water system, and ultimately highlight how these systems could deliver enhanced resource
recovery. This paper describes the development of a stochastic wastewater quality model and the
comparison of this model to monitored field data. The sewer model forms part of a wider aim to
develop an integrated water cycle model using a combination of SIMDEUM® and InfoWorks®WS/ICM
packages. The integrated model will predict flow and wastewater quality changes in both drinking
water and wastewater infrastructures, to evaluate the consequences of future water use scenarios.

Water demand and water quality models can be developed as deterministic or stochastic models.
In a deterministic model, the results are fully based on pre-set parameter values and initial conditions.
Stochastic models will include randomness and each time the model is used it will produce a different
output. The advantage of deterministic models is the relative ease of use, whilst stochastic models will
provide better insight in the system’s dynamics. Because water use at the household level is extremely
dynamic and follows random patterns, we have chosen to use a stochastic approach for this project as
it gives a better reflection of reality.

A number of models have been developed to predict the impacts of various water conservation
measures on the sewer system. These models have been largely deterministic [5–7] and have tested
specific impacts of rainwater harvesting (RWH) and greywater reuse (GWR) on wastewater quality.
Penn et al. [7] reported pollutant concentration increases of 6–42% COD, 7–73% TSS, 9–57% NH4-N and
7–52% PO4-P for flow decreases of 8–41%. However, these deterministic approaches model domestic
wastewater production as a continuous discharge based on averaged data, assuming an identical water
use pattern for all residents. In reality, individual household wastewater profiles are a discontinuous
series of discrete points, and hence a stochastic model is needed to model household discharges which
are more representative of this reality. Penn, et al. [8] published a stochastic wastewater generator
that does not require a great amount of input data, but which is based on empirical sampling, and
assumes that the observed flow data (from 15 households) represents the flow of the target population.
The flow generator was used as an input to a network model that assessed ability of flow to move
gross solids (GS) in the sewer. GS movement was assessed through calculating critical flow required
to move solids, but this does not link solids/pollutant generation to the discharges themselves. If we
are to model water use changes that have not yet been observed, a model based on deterministic
methods or empirical sampling is insufficient. There is therefore need for a stochastic sewer model that
is independent of observed data for predicting impacts of changing water use. To our knowledge there
is currently no sewer model that links unique appliance-discharge patterns to the specific water quality
attributes produced by household appliances. Developing a model with this capability will offer a
better understanding of how and when pollutants/nutrients build up in sewers, and how various water
use changes could affect this in future.

This paper utilises a more complex stochastic generator than that developed by Penn et al. [8]. This tool,
SIMDEUM® [9], generates appliance-specific flow patterns based on probability parameters linked to
appliance usage, household composition, and consumer water use behaviour [10]. Patterns produced
by SIMDEUM® are specific to each appliance (e.g., toilet, sink and washing machine) which makes
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it possible to investigate explicit water use changes without assuming typical water usage patterns
based on historical data. SIMDEUM WW® extends from SIMDEUM® to convert demand patterns into
wastewater discharges, including thermal and nutrient loads [11]. This conversion is achieved through
correcting the flow rate or delaying the time of discharge, e.g., toilets can take minutes to fill but seconds
to discharge. Thermal and nutrient loads from each appliance are incorporated into the discharge profile
by assigning typical (per use) load to each appliance.

Bailey et al. [12] developed a stochastic flow model to assess the impact of water conservation on
the sewer. This model utilised stochastic household discharge patterns (generated with SIMDEUM
WW®) as input to a sewer network model based in InfoWorks® ICM. The flow model was validated
using data from an English catchment, provided by Wessex Water (UK-based water utility). The flow
model was extended to include wastewater pollutant concentrations by linking typical wastewater
quality data to appliance-specific discharges within SIMDEUM WW® and utilising the InfoWorks®

ICM wastewater quality model [13]. The flow/quality model was used to simulate and compare a
series of future water use scenarios. The wastewater quality aspect of this model, however, has not
previously been compared to field data to assess its validity. This paper details a wastewater quality
monitoring campaign conducted in a small housing estate in Amsterdam with that objective.

The paper is organised as follows: firstly, we describe the model development and the methodology
behind the wastewater quality monitoring campaign. Followed by the framing of six future water use
scenarios that were tested using the model. Then, a description of the Amsterdam-based catchment
used to analyse the model precedes the model predictions and a comparison of modelled parameters
with the measured data. Finally, we make key conclusions.

2. Methodology

A model was developed to simulate the effects of future water use scenarios in sewers.
The Infoworks® ICM (Sewer Edition; Innovyze Ltd., Oxfordshire, UK) hydraulic and wastewater
quality model was used to simulate the sewage system. This model was integrated with stochastic
discharge patterns generated using SIMDEUM® and SIMDEUM WW® [10,14]. The MATLAB® codes
behind SIMDEUM®were edited to make its outputs compatible with InfoWorks® ICM. Six future water
use scenarios were framed and simulated using the validated model, allowing flow and concentration
effects to be evaluated.

Infoworks® ICM Sewer Edition is an industry standard for 1-dimensional sewer network
modelling. The software offers accurate analysis of hydraulics and water quality in sewer and
stormwater networks. The model uses a network of nodes and conduits and solves the flow and mass
balances for the network, based on water quantity and quality input, fed into the model via the nodes.
The geometry of the network and the shape of the conduits is defined by geographical input and data
from the real network.

2.1. Household Discharge Modelling

2.1.1. Hydraulic Discharge Model

The SIMDEUM® software tool was developed in the Netherlands for accurate water demand
modelling. It can generate household water demand patterns based on statistical and probabilistic
information about inhabitants and their appliance usage [10]. The SIMDEUM® pattern generator was
calibrated for use in the studied catchment (Prinseneiland), which is described in Section 2.4.1, details
of the studied catchment are shown in Section 3.

2.1.2. Wastewater Quality Loading

SIMDEUM WW® was used to link each wastewater discharge with an appliance-specific wastewater
quality profile. SIMDEUM WW® originally included very little detail on pollutant discharges, having been
used simply to demonstrate the possibility of nutrient discharge modelling [11,15]. Therefore, a review
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of relevant literature [5,15–19] was conducted to find appropriate input values for nutrient simulation.
These input parameters describe pollutant mass per discharge for each household appliance (see Table 1),
and the derivation of these parameters is described in Bailey et al. [13]. The nutrient discharge aspect of
SIMDEUM WW® has never been validated. Through comparison of the wastewater quality model with
measured data from this work, the phosphorus (TPH) parameters reported in literature were found to
be too high. This is due to recent changes in EU legislation reducing phosphorus use in detergents [20].
The phosphorus parameters were corrected to align with this legislation and are highlighted in bold
in Table 1. The phosphorus associated with the kitchen tap was approximated as in Comber et al. [21]
where it was found to be 0.03 g person-1 day-1. It was assumed that this much phosphorus enters the
sewer through the disposal of food scraps. The other value shown in Table 1, i.e., 0.03 g use-1, which
depicts quality profile for each discharge, was found by calibration based on observed wastewater data
and above assumed phosphorus value. The phosphorus from toilet use was updated in accordance with
Comber et al. [21], and assuming, on average, six toilet uses per person, per day.

Quality of non-potable water sources was quantified using data from Penn et al. [6] (greywater)
also Ward et al. [22] and Farreny et al. [23] (rainwater)—see Supplementary Information. This was
combined with appliance pollutant quantities, shown in Table 1.

Table 1. Appliance-specific pollutant concentrations for improved SIMDEUM WW® (adapted from
Bailey et al. [13]). Bold values were defined in this work using observed wastewater data.

Appliance Temperature (◦C) Sewage Quality (g use−1) Ref.

COD TKN TPH TSS

Bath 36 25.90 0.85 0.00 8.88 [5,16]
Shower 35 12.60 0.49 0.00 4.32 [5,16]

Bathroom tap 40 1.48 0.04 0.00 0.56 [5,16]

Kitchen tap 40 7.48 0.35 0.03 4.68 [5,16,
21]

Dish washer 35 30 1.35 0.00 13.20 [5,16]
Washing machine

- With GWR
- With RWH

(35, 35, 35, 45)
65.25 0.638 0.00 17.10 [5,16]

69.40 0.78 0.00 17.88 [6]

66.29 0.86 0.00 17.72 [22]
Toilet

- With GWR
- With RWH

23
11.22 1.99 0.22 3.04 [15,21]

11.48 2.00 0.22 3.09 [6]

11.28 2.00 0.22 3.08 [22]

2.2. Stochastic Sewer Model

Wastewater flow and quality were simulated through a sewer network using InfoWorks® ICM
(Sewer Edition; Innovyze Ltd., Oxfordshire, UK). Stochastic household discharge patterns, described
in Section 2.1, were imported into InfoWorks® ICM to produce time-varying domestic wastewater
event. Each property has a unique flow and associated wastewater concentration profile as input to
the sewer; discharges were input with one-minute intervals.

InfoWorks® ICM incorporates both hydraulic and wastewater quality modelling components. The
hydraulic component was validated by Bailey et al. [12] using measured flow, depth and velocity data.
Saint-Venant equations govern hydraulics in InfoWorks® ICM. The wastewater quality model runs
parallel to the hydraulic model, as described in Bailey et al. [13], but was not validated. The concentration
of dissolved pollutants and suspended sediment at every node in the sewer network is calculated
for every time step using the InfoWorks® Network Model. The governing equation at a node is given
by conservation of mass, Equation (1). Pollutant inflows arrive from incoming conduits and any
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external sources, in this case, wastewater events (household discharges). It is assumed that nodes are
well-mixed and there is no deposition or accumulation.

dMJ

dt
=

∑
i

Qici +
dMsJ

dt
−

∑
o

Qoco (1)

where:

MJ = mass of suspended sediment or dissolved pollutant in node J (kg)
Qi = flow into node J from link i (m3 s−1)
ci = concentration in the flow into node J from link i (kg m−3)
MsJ = additional mass entering node J from external sources (kg)
Qo = flow from node J to link o (m3 s−1)
co = concentration in the flow from node J to link o (kg m−3)

The InfoWorks® Conduit Model then calculates the concentration of dissolved pollutants and
suspended sediment in each conduit. A conduit is a conceptual link of defined length between two
nodes. One-dimensional flow is assumed in the conduit, as are well-mixed concentrations across each
section of the conduit. Pollutants are assumed move through the conduit with the local mean flow
velocity, and dispersion along the conduit is negligible. Wastewater determinants were all treated as
dissolved pollutants because InfoWorks® ICM software fails to recognise time-varying suspended
solid input. The authors have been advised that this shortfall will be corrected in a future software
update. Therefore, wastewater determinants in the model are transported through advection, with no
erosion, deposition, or accumulation of sediments. The advective mass flow between each element is
shown in Equation (2).

Fa = Fm × cupwind (2)

where:

Fa = mass flow through the face due to advection (kg s−1)
Fm = volumetric flow through the face (m3 s−1)
cupwind = cl if volumetric flow goes from left to right element, cr otherwise (kg m−3); cl, cr = determinant
concentration in respectively the left and right element

Adjusting to Allow for Mixing in the Sampling Tank

The sampling campaign, described in Section 2.3.2, generated data on wastewater in the pump
feed tank rather than wastewater flowing in the sewer system (see Figure 1). As the sewage flows into
the tank it mixes with the held-up water and thus the samples will reflect a dampened wastewater
concentration compared to model predictions. The sewer model output was adjusted to allow for this
mixing to allow comparison of model predictions with sampled concentration data. Equation (3) is the
derived expression for concentration in the tank (CA), assuming the volume remains approximately
constant (average volume of 1.6 m3, midway between high and low levels). It also assumes that no
reactions occur in the tank and the wastewater has a constant density.

CA(t) = (CA,in(t) −CA,o)
(
1− e(−

Q(t)
V t)

)
(3)

where:

CA = Concentration of pollutant A in the tank (kg m−3)
CA, in = Concentration of pollutant A into the tank (kg m−3)
CA,o = Initial concentration of pollutant A (kg m−3)
Q = Flowrate into tank (m3 s−1)
V = Tank volume (m3)
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t = Time (s)

Figure 1. Wastewater sampling campaign equipment set up. Portable toilet housing the sampling cabinet
that draws wastewater from the wet well of the pumping station in Prinseneiland. ISP is the level at which
the pump switches on, USP is the level where the pump switches off. The tank area is 2 m2.

2.3. Methodology for Field Testing

2.3.1. Data Availability for Validating the Hydraulic Discharge Model

The Prinseneiland catchment (See Section 3.1) has three sources of hydraulic water network data.
Two water mains supply drinking water to the island; a flow meter was present in each, providing
live data recording of water demand. Fifty-eight percent of catchment households have a water meter
recording specific water use, but this is mainly for billing purposes as data is summed over the
period between physical meter readings. The final data source was provided by pump flow and tank
level readings, recorded at the wastewater pumping station. Readings are recorded every 2–5 min
dependant on changes recorded by the level controller. A pump switches on when the tank level reaches
the programmed high level (above the inlet pipe) and off when the level reaches the programmed
low level (above the pump). The volumetric flowrate through the pump was measured using an
ECOFLUX electromagnetic flowmeter (www.krohne.com) (accuracy ± 0.5% of the measured value at
velocities ≥ 0.4 m s−1 and ± 0.002 m s−1 if velocity is below 0.4 m s−1). The tank level was measured
using two VEGABAR 52 (www.vega.com) sensors, where the deviation is reported to be less than
0.075%. By performing a mass balance on the flow through the pump and the changing level in the
tank (Equation (4)), it was possible to convert these readings into a sewer flow profile (Equation (5)).

V[τn,τn+1] = PC(n)

(
τ(n+1) − τ(n)

)
+

A(LSn+1 − LSn)S1 + A(LSn+1 − LSn)S2

2
(4)

Qt =

∑n=0
t V[τn,τn+1]

t
(5)

where:

V[τn, τn+1] = Volume entering the tank between level sensor readings (m3)
PC = Pumping capacity (m3 s−1)
LS = Tank level (m)
A = Tank area (m2)
S1, S2 = Level sensors
τ = Sample time (s)
Qt = Wastewater flowrate into the tank (m3 s−1)

www.krohne.com
www.vega.com
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t = Time (s)

At the end of August 2019, a wastewater quality campaign was carried out on Prinseneiland to
collect data necessary for validating the wastewater quality component of the stochastic sewer model.
The campaign was conducted continuously over 7 days, under dry weather conditions. Wastewater was
sampled from the pump wet well at the end of the catchment. All Water Services (www.aws-water.nl)
carried out the fieldwork and the wastewater samples were analysed by Eurofins Omegam. A vacuum
sampling device was used (photographs in the Supplementary Information). The sampling cabinet was
placed within a portable toilet at street level to comply with space constraints and protect apparatus
from damage. The sampling hose was secured at the sewer inlet to the wet well in such a way that the
end of the hose was approximately 3 cm below the cut-off level of the pump. This ensured that the
wastewater was as “fresh” as possible when sampled from the tank, and thus most representative of
the sewer flow. This method meant it was always possible to draw samples from the chamber, but
during the night where wastewater flow is low, there is the possibility that stagnant wastewater is
sampled. The sampling cabinet contained 24 1 L bottles into which a 50 mL sub-sample was drawn
every 3 min, i.e., 20 sub-samples per hour make up the 1 L sample for that hour. The sample collection
vessels were held at 1–5 ◦C. Sampling was carried out according to Dutch standard ‘NEN 6600-1 (NL)
Water—Sampling—Part 1: Waste water from March 2009. Every 24 h the completed samples were
removed from the cabinet and decanted into three separate packages for separate analysis (see Table 2),
and nitrogen and phosphorus were analysed from the same package. Samples were preserved on site
according to Dutch standard ‘NEN-EN-ISO 5667-3 (s) Water—Sampling—Part 3: Conservation and
treatment of water samples’ and were delivered daily to the analysis laboratory under cooling.

Table 2. Wastewater quality parameters analysed and specific methodology associated with
each parameter.

Parameter
Sampled Parameter Description Method (Eurofins

Omegam)
Limit of Determination

(mg l−1)

Required Sample
Volume

(ml Sample−1)

Measurement
Uncertainty

(+/−)

COD (mg l−1)
Chemical oxygen

demand Conforms to NEN 6633 5.00 100 15%

TKN (mg l−1) Total Nitrogen-Kjeldahl Conforms to NEN-ISO
5663 1.00 100 13%

TPH (mg l−1) Total Phosphorus Own method based on
NEN-EN-ISO 15681_2 0.05 50 12%

TSS (mg l−1) Total suspended solids Conforms to NEN-EN
872 and NEN 6499 1.00 750 16%

2.3.2. Quality of Sampling and Analysis Work

AWS are accredited according to the requirements as laid down in NEN-EN-ISO/IEC 17025: 2005
and Dutch Accreditation Council (RvA) regulations under number L599. Eurofins Omegam laboratory
in Amsterdam (who carried out the sample analysis) is also accredited by RvA.

2.3.3. Wastewater Quality Parameters

The parameters analysed and the procedures followed by the laboratory are shown in Table 2.

2.4. Model Validation

2.4.1. Procedure for Model Calibration

The SIMDEUM® model was calibrated by adjusting input variables describing household
occupancy, home–presence, and specific details of household water use in the area. Households are
characterised as either a single, dual, or family occupancy. Average occupancy and family size are also
defined. The household data was derived from census data from the local government of the study
area. Home presence data is culture and area-specific, and details typical times that people rise, go

www.aws-water.nl
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to work and go to bed. These data were obtained from the Netherlands Institute for Social Research
(SCP) that conducts a five-year time-budget survey. Comparison of the model output with monitored
catchment data showed a local deviation from the national survey data on wake-up time, so this was
adjusted on a case-specific basis. Household water use data is available from local water companies and
should be input to the model to describe typical water use for each household appliance. The specific
model adaptions made for the studied catchment are detailed in Section 3.2.

2.4.2. Procedure for Model Validation

Validation of the model was conducted by assessing the model performance over an average week.
Dry weather flow data was selected at various points of the year (2 weeks from each season) to produce
an average water use pattern of the catchment in order to compare with the model. The goodness of fit
of model output was evaluated by computation of the Nash–Sutcliffe efficiency (NSE) and the root
mean squared error (RMSE). The similarity of the flow patterns was evaluated with the correlation
coefficient (R). The equations for NSE, RMSE and R are found below in Equations (6–8).

NSE = 1−

∑n
i=1(xobs − xsim)

2∑n
i=1(xobs − x)2 (6)

RMSE =

√√
1

n− 1

n∑
i=1

(xobs − xsim)
2 (7)

R (X, Y) =
∑
(x− x)(y− y)√∑
(x− x)2 ∑

(y− y)2
(8)

where:

xobs = Observed parameter
xsim = Simulated parameter
x, y = Sample mean of parameters x, y

2.5. Impact Assessment for Water Conservation Technologies

The development and validation of the sewer model allow it to be used to predict the effect
of future scenarios. Table 3 describes the future scenarios that were developed for testing in the
Prinseneiland catchment. These scenarios were based on total area reform (100% implementation).
Water use scenarios include “Eco”, which involves an upgrade of household appliances (such as 1 L
flush toilets and water-saving showers) and ‘GWR’/‘RWH’, which utilise greywater or rainwater feed
for toilet flushing and washing machines. Greywater and rainwater feed quality data are found in the
Supplementary Material. Each scenario has been presented using future population statistics supplied
by the Municipality of Amsterdam (Gemeente Amsterdam), as outlined in Table 4. The ‘(a)’ scenarios
are the maximum bound for occupation in the catchment, and the “(b)” scenarios explore the effect of a
continued rise in single occupancy households, thus provides a minimum occupancy bound.
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Table 3. Future scenario description.

Scenario Demand (L cap−1 d−1) Description

1—Baseline 112 Present-day scenario—validated hydraulic model

2a—Eco, max. occupancy 42 Water-saving appliances such as 1 L flush toilets and
water-saving showers (as presented by Agudelo and
Blokker [24])2b—Eco, min. occupancy 44

3a—GWR, max. occupancy 67 Greywater reuse utilised for toilet flushing and
washing machines3b—GWR, min. occupancy 68

4a—RWH, max. occupancy 67 Rainwater harvesting utilised for toilet flushing and
washing machines4b—RWH, min. occupancy 68

Table 4. Population statistics for present and future scenarios (based data and projections obtained
from Gemeente Amsterdam).

Single Dual Family Family Size Occupancy

Baseline 58% 23% 19% 3.4 1.7
(a) Max. 55% 21% 24% 3.5 1.8
(b) Min. 91% 4% 5% 3.1 1.1

(a) Amsterdam projected population statistics, (b) Reduction in average occupancy to 1.1.

SIMDEUM® generates household discharge patterns based on the specific usage and discharge
characteristics of household appliances. Figure 2 shows how these household micro-components vary
between the scenarios. Differences in drinking water demand and discharge occur through the use of
non-potable water sources (not included in water demand) or outdoor use (does not enter the sewer).
In the case of greywater reuse and rainwater harvesting, household appliances were held at baseline
water consumption. Water was only redirected to appliances, i.e., no internal mass balance for water
movement was incorporated into the model. It is assumed that there will always be sufficient water in
a storage tank to allow these appliance discharges.

Figure 2. Outline of appliance demand and discharge for each of the future scenarios.

3. Catchment Used for Model Analysis

3.1. Description of the Modelled Catchment

Prinseneiland is a small housing estate located in Amsterdam, which is the capital and most
populous municipality of the Netherlands. A map of Prinseneiland is found in Figure 3. There are
418 domestic households and 55 other premises (offices, ateliers, storage buildings) located in the
housing estate.
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The sewer system is a looped and combined network (i.e., stormwater and wastewater).
Concrete sewer pipes, measuring 684 m (400–600 mm diameter and 1:1961 to 1:133 slope, the
average slope was 1:615), lead to a pumping station where wastewater is pumped away from the
housing estate for treatment. Flow and level monitors at the pumping station provide data for model
validation every 2–5 min.

Thirty-second time steps were used in calculations and simulations were conducted for 5 days.
Wastewater quality modelling parameters remained as the default with the exception of the temperature
model parameters in which the heat transfer coefficient was 4 × 10−5 m s−1, and the equilibrium water
temperature was 23 ◦C, to align with the warm weather at the time of sampling.

Figure 3. Map of modelled catchment—Prinseneiland, NL (Waternet, Amsterdam).

3.2. Model Calibration Details

The SIMDEUM® model was calibrated by changing input variables describing household
occupancy, home–presence data and specific details of household water use in the area. The average
household size in Prinseneiland is 1.7 people household−1, where single, dual occupancy and family
households are divided 58%, 23% and 19% respectively (see Table 4). This information was put into
SIMDEUM® along with the data shown in Figure 4, which details the typical distribution of water use
between household appliances (micro-components) on Prinseneiland. The split of water use between
appliances was determined by applying a scale factor to the micro-component statistics for the whole
of Amsterdam [25], as in Figure 4. Water and wastewater flow into and away from the island were
monitored by the local water company, Waternet. The model output was compared with measured
demand data from the island, and it was found that inhabitants seemed to rise an hour later than the
Dutch average. The home presence schedules were therefore updated to give an average wake up time
of 8 am (9 am for stay-at-home adults and seniors).



Water 2020, 12, 1187 11 of 20

Figure 4. Appliance-specific water use in Amsterdam, Netherlands [25] and the derived appliance
usage of Prinseneiland assuming the Amsterdam average micro-component trend.

4. Results and Discussion

4.1. Calibration and Validation of the Stochastic Sewer Flow Model

Figure 5 shows the drinking water flow measured on entrance to the modelled catchment,
demonstrating about a one-hour delay between clean water entering the catchment and the sewer flow
leaving the catchment. This is due to a combination of time in flow and hold up time of water used in
household appliances before discharge. Figure 5 also shows that in the early hours of the morning this
delay extends to almost two hours, which is likely due to the longer hold-up derived from increased
use of dishwashers and washing machines. The water balance between drinking water and wastewater
data in Prinseneiland revealed an average excess of 1.3 m3 day−1 in the wastewater. This excess is
likely due to infiltration to the sewer and runoff from the street and represents approximately 2% of the
dry-weather flow. This external inflow to the system could also explain some of the difference between
drinking water and wastewater flows, particularly at night when flow is low.

Once SIMDEUM® had been calibrated as described in Section 2.4.1, the model represented the
sewer system described in Section 3 reasonably well. Comparison of the model output with the sewer
flow data can be seen in Figure 6 along with the model evaluation statistics (correlation coefficient,
Nash-Sutcliff coefficient and the root mean squared efficiency, RMSE).

The model under-predicts the sewer flow during working hours, this is due to the assumption
that the housing estate is purely domestic. There is an average discrepancy of 10 m3 between the hours
of 10:00 and 18:00, which can be explained by the metered usage of the business premises. Nine percent
of the registered properties on Prinseneiland are business addresses and these vary in function from
warehouses to offices. These businesses were not modelled as they are not easy to describe well, and
this study primarily investigates the impacts of varying water use on domestic wastewater.

Figure 5. Comparison of the mean drinking water and wastewater flow in the studied catchment.
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Figure 6. Performance of stochastic sewer model when compared to measured sewer flow data.

4.2. Sampling Wastewater for Quality Analysis

To confirm that the wastewater quality model provides a good representation of real life, a
week-long wastewater sampling campaign was carried out, described in Section 2.4.2. The sampling
campaign began on a Thursday at 11 am and ran through until the following Thursday at 11 am.
These results have been reordered to represent a Monday–Friday profile for ease of analysis—but
it should be noted that the Thursday and Friday measurements were taken the week before the
Monday—Wednesday measurements. The weekends have not been modelled due to the limited
capacity of SIMDEUM® to describe weekend water use. Weekend water use is less strongly linked to a
daily routine and SIMDEUM® has yet to be developed to incorporate this difference. The results of the
sampling campaign are shown in Figures 7–9. Figure 7 shows how the measured wastewater flow
over the sampling week compared to the measured wastewater flow used to validate the hydraulic
model, see Section 4.1. There was heavy rainfall from 20:35 until 21:05 on the Tuesday evening of the
sampling campaign; this explains the flow peak shown in Figure 7 (indicated by an arrow) and its
deviation from the calibration flow. Figure 8; Figure 9 show the hourly measurements of wastewater
concentration that were taken for total suspended solids (TSS), chemical oxygen demand (COD), total
Kjeldahl nitrogen (TKN) and total phosphorus (TPH).

Figure 7. Wastewater flow over sampling week compared to flow data used for model validation.
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Figure 8. Hourly concentration of suspended solids and chemical oxygen demand (COD) in wastewater
over sampling week.

Figure 9. Hourly concentration of total Kjeldahl nitrogen (TKN) and total phosphorus (TPH) in
wastewater over sampling week.

There was a good correlation between TSS and COD (R = 0.82) and a reasonable correlation
between TKN and TPH (R = 0.55) but the correlation with suspended solids is weak (R = 0.38 for TKN
and R = 0.20 for TPH). This indicates that the bulk of the COD is combined within the suspended
solids but the TKN and TPH are present in a more dilute form. It is also notable that there is a
reasonable correlation between the flowrate and the concentration of TSS and COD (R = 0.78 and
R = 0.73 respectively). This seems to indicate that higher pollutant concentrations are produced at peak
flow, but it is more likely that accumulated solids are washed through the system during high flow.
This could be a consequence of sampling the wastewater downstream, where the highest concentration
of COD/suspended solids occurs in the morning peak flow and the evening peak flow, but this is not
necessarily the case upstream. This is discussed further in Section 4.3. TKN concentration also peaks
with the morning surge in flow but then drops early afternoon, before steadily increasing throughout
the evening until the next morning. TPH follows a very similar pattern to TKN but has a second
evening peak in concentration. This is likely due to phosphorus sources now being restricted for the
toilet and kitchen sink discharges, whereas the nitrogen is discharged more often.

4.3. Model Comparison with Sewer Quality Data

Figure 10 shows a comparison of the modelled mass flow compared to the observed data
(calculated as the product of the measured concentration and the measured wastewater flowrate).
The shaded areas represent the sampling error associated with each parameter, highlighted in Table 2.
As indicated in Section 4.2, there was heavy rainfall from 20:35 to 21:05 on the Tuesday evening of
the sampling campaign, and this is reflected in the concentration peak on the second evening of the
plots in Figure 10 (indicated by an arrow). Apart from this, the model represents the observed mass
flow reasonably well, as the timing and magnitude of the mass flow profiles are in alignment with
the measured values. The predicted mass flow overnight is, on average, higher than the observed
mass flow, and the observed morning peak is higher than predicted. This confirms the hypothesis, in
Section 4.2, that these flow peaks likely include accumulation of solids rather than higher concentration
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discharges from households. This build-up of suspended solids has not been accounted for in this
version of the model as time-varying solid generation is not available in InfoWorks® (see Section 2.2).

Figure 10. Mass flow of COD (a), TKN (b) and TPH (c) predicted by the model compared to the mass
calculated from measured concentration and measured flow rate at the wastewater pumping station.
The correlation coefficient (CC) and Nash–Sutcliff coefficient (N–S) are given for each plot.

Figure 11 shows the comparison of the predicted and measured nutrient concentration.
The modelled tank concentrations were calculated according to Equation (3). This also supports the
conclusion that the discrepancy between the modelled wastewater concentration and the observed
is due to the lack of differential solids transport modelling in the network. The model predicts
concentration to be highest during the night as most water use at night is from toilets, but this
cannot be confirmed by the measured data. Following the design of the sampling campaign, the high
concentration wastewater produced at night would only be accounted for during the first few 3-min
sub-samples of the peak flow the following morning. The subsequent sub-samples are likely to be
diluted substantially, leading to a morning peak in a lower concentration than the more concentrated
night flows. SIMDEUM WW® appears to be performing well as a wastewater generator, but as the
solids transport has not been adequately modelled within the sewer system (InfoWorks® ICM), the
concentration cannot be aligned with the measured data. The modelled TKN and TPH follow the
measured concentration data better than the COD, this is likely due to their lower correlation with
suspended solids, and hence, dilute modelling is more appropriate here.
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Figure 11. Wastewater flow (a) and modelled COD (b), TKN (c) and TPH (d) concentration in
comparison with the measured concentration.

4.4. Variability of the Model

To address the variability of the stochastic model, each weekday was evaluated on factors of flow
and nutrient mass—see Figure 12, where each day is compared to the first simulated day. The sample
point for comparison was the final pipe of the network, before the pumping station. The stochastic
model results are relatively consistent as the gradient of the line of best fit, m, for each day is close to 1.
Correlation between Day 1 of the simulation and the subsequent days is very high for flowrate but the
correlation is less strong for the nutrient mass flow. COD showed the smallest variability followed
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by TKN and then TPH. This is thought to be due to TKN and TPH being linked more strongly to
appliances that follow a less strict daily usage pattern, e.g., kitchen taps, dishwashers and washing
machines. Whereas the toilet and shower use (more strongly linked to COD generation) happen at
similar times of day. Elias-Maxil [26] assessed the variability in SIMDEUM® with over 200 simulations
and concluded that the pattern generator reaches a steady state after 75 simulations, i.e., the variability
approaches zero. As the studied catchment includes 418 households, this confirms that the variability
at the outfall is low.

Figure 12. (a) Variation in stochastic modelled flow over 5 days, (b) Flow variation over 5 days
compared to Day 1, (c) COD mass flow variation over 5 days compared to Day 1, (d) TKN mass flow
variation over 5 days compared to Day 1, (e) TPH mass flow variation over 5 days compared to Day 1.

4.5. Future Scenario Testing

Six future scenarios (Section 2.5) were tested using the stochastic flow and wastewater quality
model to observe the effects of different water conservation technologies on flow and wastewater
concentration. Increased wastewater concentration can offer benefits for resource recovery, whilst
reducing household water use is beneficial for water security and sustainability reasons.

Figure 13 shows the results from this simulation, analysed over a 5-day period (Monday–Friday).
It can be seen in Figure 13a, that the effect of Eco (2a/2b) and GWR (3a/3b) scenarios is the dramatic
reduction in the morning peak. The sewer system experiences a much narrower range of flowrates
in these scenarios, which warrants smaller pipe diameters. Penn, et al. [27] stated that for a 1–6 mm
diameter solid, the critical shear is 0.867–1.42 Pa, respectively, so without reducing pipe diameters,
these water use scenarios may struggle to transport larger solids (see Figure 13b).

Figure 13c–f shows the consequence on wastewater quality parameters, and there is little impact of
population changes between the scenarios (a and b scenarios). RWH produces a very similar situation
to the baseline as it is simply replacing potable sources with a non-potable alternative. The impact
of this scenario is better addressed by evaluating the impact on the drinking water system, as it
will likely increase water residence time in the distribution network, which may compromise water
quality. The Eco scenario produces the highest concentration of wastewater, although the range of
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concentrations is similar to the baseline/RWH scenarios. GWR produces wastewater at concentrations
between the other two scenarios but in a much narrower range. This scenario could, therefore, be
preferable for resource recovery as there is a narrower operating range for treatment units. However,
GWR is the poorest performing water use scenario in terms of wastewater temperature, as shower
and bath water do not directly enter the sewer, hence sewer temperature reduces. This model has
been demonstrated as a useful tool for analysis of various resource recovery options for future urban
water planning.

Figure 13. (a) Effect of scenarios on the flowrate at the catchment outfall, (b–f) Cumulative frequency
of the shear stress achieved, COD, Temperature, TKN and TPH concentration in wastewater at the
catchment outfall over 5 day (respectively).

Bailey et al. [13] concluded that this model over-predicts phosphorus concentrations, but with the
results from the sampling campaign, and the changes made in the estimated wastewater composition
due to the removal of phosphorus in detergents (Section 2.1.2), the model now predicts in line with
reality. Daily pollutant load produced per capita in these scenarios ranged from 86–122 g COD, 8–12 g
TKN and 0.8–1.2 g TPH—these values align with independently published values [21,28–30].

5. Conclusions

A new stochastic wastewater flow and quality model has been developed to address the impacts
of water use changes on wastewater flow concentration. The hydraulic model was tested and validated
in previous work. This paper presents the validation of the wastewater quality model using measured
data. The model was used to investigate the impact of three water-saving strategies (greywater
recycling, rainwater harvesting and installation of smart water appliances) on water quantity and
quality in the sewer network.
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The results obtained lead to the following key findings:

1. Stochastic sewer model wastewater quality validation: The predicted mass flows of COD, TKN
and TPH compared well with the corresponding observed data values. The same, however, cannot
be said for the COD, TKN and TPH concentrations. These concentrations were treated as dilute
pollutants as InfoWorks® does not currently incorporate differential solids transport, leading to
the misalignment of the predicted and measured concentration data. High concentration flows are
produced by the stochastic generator during the night but only washed through the system in the
morning. As the concentrations were measured at a downstream point in the network, there was
a lag time in transporting suspended solids which was not accounted for in the network model.

2. Implications for three water-saving strategies on the quantity and quality of flow in the receiving
sewer network: It was found that wastewater flow can be reduced by up to 62% with concentrations
of COD, TKN and TPH increasing by up to 111%, 84% and 75% respectively with the installation
of water-saving appliances. In addition, it was found that the use of water-saving appliances
and greywater recycling dramatically reduced the peak flows, whereas rainwater harvesting
produced similar flow and concentration results in the baseline case. The greywater recycling case
produced the most consistent wastewater concentrations and the lowest wastewater temperature.

3. Proposals for future work: This will involve incorporation of the time-varying component
for suspended solids entry to the sewer system, and differential solids transport in the
sewer. This advancement will be combined with a drinking water simulation to create a
comprehensive urban water model for observing effects of future water use scenarios on the entire
system. This project will ultimately highlight a future vision for the urban water cycle and support
recommendations for optimal resource recovery within drinking and wastewater systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/4/1187/s1
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