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Abstract: In decision-making with interval numbers, there are problems such as how to reduce the
loss of decision information to improve decision accuracy and the difficulty of using interval numbers
for sorting. On the basis of fully considering the subjective and objective weights of indexes, the grey
entropy method (GEM) is improved by taking advantage of the Mahalanobis-Taguchi System (MTS)
in which the orthogonal design has few tests but much obtained information, and the Mahalanobis
distance can reflect the correlation between indexes. Then, the signal-to-noise ratio is integrated with
the improved degree of balance and approach, and a multi-dimensional interval number decision
model based on MTS and GEM is put forth. This model is applied to selecting the optimal scheme of
controlling the Pankou reservoir’s water level in flood season. Compared with the decision results
of other methods, the optimal scheme selected by the proposed model can achieve greater benefits
within an acceptable risk range and thus better coordinate the balance between risk and benefit,
which verifies the feasibility and validity of the model.

Keywords: Mahalanobis-Taguchi System; grey entropy method; signal-to-noise ratio; degree of
balance and approach; interval number

1. Introduction

Multi-attribute decision-making refers to the process of sorting and selecting among a group of
alternatives by using the obtained information [1]. Multi-attribute decision-making methods include
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) [2], set pair analysis
(SPA) [3], grey relation analysis (GRA) [4], grey target method (GTM) [5], etc. Under the influence of
many factors, the objective things in nature are complex and changeable (e.g., runoff and flood in the
hydrological and water resources system), which show great uncertainty like randomness, fuzziness
and greyness [6], in addition to the fuzziness of human thinking. In recent years, the multi-attribute
decision-making methods with uncertain decision information, especially uncertain attribute values
and attribute weights, have become a hot research issue. In general, the priority and also difficulty in
solving this kind of problem is to transform uncertain decision-making into definite decision-making.
During this process, on the one hand, we should try to avoid or reduce the loss of decision information.
The more information loss, the larger deviation caused in the selection of the optimal scheme, which
may fail to achieve the expected objectives in scheme implementation and incur risk events. On the
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other hand, the cumbersome calculation of interval numbers should be reduced, so that the technique
is more operable in a practical application. For instance, when using the methods in references [7,8],
the comparison of interval numbers only considers their upper and lower boundaries, which loses too
much information even though the decision-making efficiency is enhanced. Moreover, the tedious
calculation in rough set method [9] and Vlsekriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) method [10] makes interval number ranking more difficult.

At present, grey analysis, set pair analysis, stochastic analysis and fuzzy analysis are the four
main kinds of hydrologic uncertainty analysis methods. In information theory, a system with some
known information and also some unknown information is a grey system, such as the hydrologic and
water resources system. Grey relation analysis is a multi-factor analysis method in the grey system
theories [11]. Its basic idea is to determine the closeness of relation between a comparison sequence and
a reference sequence according to their geometric similarity. Grey relation analysis can overcome the
shortcomings of regression analysis, variance analysis and other factor analysis methods in traditional
mathematical statistics [12], and has the advantages of a small sample size and simple calculation
procedure. Gao and Zhang [13] first used grey relation analysis for scheme selection. However, in the
relation coefficient series obtained from the alternatives and the reference scheme, the larger relation
coefficient often plays a decisive role in determining the relation degree, while the information implied
by other relation coefficients tends to be neglected. As an improvement, Zhang [14] put forward the
grey entropy method (GEM) based on the idea that an alternative scheme is better when it is evenly
closer to the reference scheme. This method combines the relation degree in grey relation analysis
with the balance degree defined in grey entropy by multiplication, and thus, develops the degree of
balance and approach for scheme decision-making, which in some way remedies grey relation analysis.
The GEM has been widely used in logistics [15], transportation [16], tourism [17] and other industries,
with satisfactory results. Grey entropy is a concept that combines grey system theory and information
entropy theory. As an effective statistical measurement for information uncertainty [18], it is consistent
with the physical meaning of Shannon entropy. Wang et al. [19] defined the grey distance entropy of
the real grey number and the interval grey number, respectively, took it as the measurement for the
proximity degree of the two grey numbers, and discussed the multi-attribute decision-making methods
based on grey distance entropy and TOPSIS. Liu et al. [20] deemed that in the grey entropy method
the attribute value is a real number and the attribute weight is not considered, thus they extended
the application scope to interval numbers. At present, grey entropy is mainly used to determine the
objective weight of indexes in uncertain decision-making, and there are not many in-depth theoretical
studies. The comparison of the above decision-making methods is shown in Table 1.

Table 1. Comparison of the five multi-attribute decision-making methods.

Method Advantage Shortage

TOPSIS
Alternative schemes are evaluated by both how close

they are to the positive ideal scheme and how far
away from the negative ideal scheme.

The Euclidean distance does not consider the
correlation between indexes, producing indistinct

decision result, “reverse order” and other problems.

SPA

Alternative schemes are evaluated by their
identical-discrepant-contrary degree to the optimal
scheme, preventing the "reverse order" problem of

TOPSIS.

The uncertainty of the discrepancy coefficient may
lead to decision risk.

GRA Alternative schemes are evaluated by their geometric
proximity to the optimal scheme.

The Euclidean distance is used to calculate the
correlation coefficient, which neglects the correlation

between indexes; larger correlation coefficients
determine the correlation degree, which causes

information loss.

GTM Alternative schemes are evaluated by their distance
from the optimal scheme (off-target distance).

The single bull’s-eye may cause the decision result to
be indistinct; the off-target distance is calculated
using the Euclidean distance, which neglects the

correlation between indexes, and index weight is not
considered.

GEM
Alternative schemes are evaluated by how evenly

close they are to the optimal scheme, which remedies
GRA in some way.

The Euclidean distance is used to calculate the
correlation coefficient, which neglects the correlation

between indexes; the calculation of correlation
degree does not consider index weight.
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The combination of the Mahalanobis-Taguchi System (MTS) theory and grey entropy can provide
a new idea for uncertain multi-attribute decision-making. The Mahalanobis-Taguchi System [21,22],
proposed by Japanese engineer Taguchi G. in the 1990s, is a pattern recognition method for unbalanced
data. Scholars are becoming gradually more familiar with MTS and constantly try to explore its
application or its combination with other theories in different fields. Buenviaje et al. [23] obtained
medical patterns from historical data sets through MTS. Huang et al. [24] utilized the data mining
function of MTS, combined it with the artificial neural network (ANN) and came up with the MTS-ANN
algorithm. Zeng et al. [25] studied how to make the risk decision on power transformer maintenance
by using MTS and the grey cumulative prospect theory. Chang et al. [26] employed the three key tools
of MTS, namely, orthogonal table, Mahalanobis distance and signal-to-noise ratio, to tackle the problem
of multi-attribute decision-making with interval numbers on the basis of TOPSIS. The orthogonal
table [27] is a direct test method for multi-factor system optimization. It can be expressed in the form
of La(bN), where a is the number of tests, b the number of levels of each factor and N the number of
factors that can be arranged at most in the orthogonal table. The orthogonal table is a prepared set of
standard tables, from which the suitable one is chosen in actual application according to the number
of factors and the number of levels of each factor. The orthogonal table designs a small number of
tests and obtains comprehensive information, which can effectively reduce the loss of information.
The Mahalanobis distance [28], proposed by Indian statistician Mahalanobis, is a covariance distance
that, compared with Euclidean distance, can better reflect the correlation between attributes. The
concept of signal-to-noise ratio (SNR) [29] originates from signal transmission and is defined as the
ratio of signal power to noise power. Taguchi G. redefined the SNR, regarding the square (µ2) and the
variance (σ2) of the expected value of an index (non-negative and continuous) as the signal power
and the noise power, respectively. The SNR can be divided into three types: nominal-the-better,
smaller-the-better and larger-the-better. The first one means that the closer to the expected value
when it is positive, the better; the second one means that the smaller the expected value when it is
0, the better; the third one means that the larger the expected value when it is +∞, the better. The
signal-to-noise ratio can be used to measure the volatility of indexes and thereby ensure the accuracy
of decision results.

Like other pattern recognition methods, MTS also uses distance to measure the similarity between
samples; however, instead of using Euclidean distance, it uses Mahalanobis distance, which is more
suitable to distinguish sample similarity. As the theory of MTS has only been developed for the past 20
years and there are few studies on its integration with grey analysis, more work needs to be done to
deepen this field of theoretical research and expand its application.

To address the uncertain multi-attribute decision-making problem in which both attribute weight
and attribute value are interval numbers, we improved the grey entropy method based on the treatment
of interval numbers in reference [26], and put forward a multi-dimensional interval number decision
model based on the Mahalanobis-Taguchi System with the grey entropy method (MTS-GEM). The
model is applied to the selection of the optimal scheme of controlling the Pankou reservoir’s water
level in flood season, which can facilitate reservoir operation research.

2. Multi-Dimensional Interval Number and Mahalanobis-Taguchi System

2.1. Orthogonal Test of Multi-Dimensional Interval Number

Interval number generally refers to the normal interval number in the form of ã =
[
aL, aU

]
(aL,

aU
∈R and aU

≥aL), where aL and aU are, respectively, the lower and upper bounds of the interval
number. Real numbers can be regarded as interval numbers whose lower bounds are equal to their
upper bounds. For the basic operation rules of any two interval numbers ã =

[
aL, aU

]
and b̃ =

[
bL, bU

]
,

see reference [30].
Suppose that there are n factors x̃ j (j=1,2, . . . ,n, and n≤N) in a test, which are uniformly distributed

within their variation range, and the number of levels of each factor is b. Because n factors can constitute
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a hypercube in an n-dimensional space, the result of one orthogonal test corresponds to a point on
the hypercube.

Take the orthogonal test of three factors as an example. Let the lower bound value of interval
number be level 1 and the upper bound value of interval number be level 2, then the orthogonal table
of L4(23) shown in Table 2 can be used for the orthogonal test, and the results are shown in Figure 1.

Table 2. Orthogonal table of L4(23).

Test
Factor

~
x1

~
x2

~
x3

One 1 1 1
Two 1 2 2

Three 2 1 2
Four 2 2 1
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2.2. Signal-to-Noise Ratio and Mahalanobis Distance

Let D be the population of a non-negative continuous index, whose signal-to-noise ratio η* is
calculated as follows [31]:

η∗ = µ2/σ2, (1)

where µ2 and σ2 are the mean square and the variance of population D, respectively.
The three types of signal-to-noise ratio for measuring index volatility are calculated as follows.

1 Nominal-the-better (NB) signal-to-noise ratio

According to the knowledge of mathematical statistics, the unbiased estimators of variance σ2

and mean square µ2 of population D are as follows:

σ̂2 =
1

a− 1

∑a

g=1
(Dg −D

2
), µ̂2 = D

2
−
σ̂2

a
, (2)

where D = 1
a
∑a

g=1 Dg and a is the number of samples.

Put σ̂2 and µ̂2 into Equation (1) and conduct the common logarithmic transformation on η*, then
the NB signal-to-noise ratio ηNB can be obtained:

ηNB = 10 log10
µ̂2

σ̂2 , (3)

2 Smaller-the-better (SB) signal-to-noise ratio
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For an SB index, the smaller µ2 and σ2 are, the better, meaning that the smaller µ2 + σ2 = E(D2)

is, the better. The unbiased estimator of D2 is D̂2 = 1
a
∑a

g=1 D2
g. Take (D̂2)

−1 as the signal-to-noise ratio,

and the SB SNR ηSB is calculated as follows:

ηSB = −10 log10

(1
a

∑a

g=1
Dg

2
)
, (4)

3 Larger-the-better (LB) signal-to-noise ratio
If D stands for an LB index, then D−1 stands for an SB index. From the above derivation process

of the ηSB formula, the LB SNR ηLB can be obtained:

ηLB = −10 log10

(
1
a

∑a

g=1

1
Dg2

)
, (5)

Let Z be a population of an n-dimensional real number space, µ = (µ1µ2 · · · µn)
T and

∑
−1 be

the mean vector and the inverse of covariance matrix of Z, respectively. If x = (x1x2 · · · xn)
T is one

sample of the n-dimensional real number space, then the Mahalanobis distance d from sample x to
population Z is:

d2 = (x− µ)T
∑
−1
(x− µ), (6)

In scheme decision-making, an alternative scheme is better if its Mahalanobis distance to the
reference scheme is smaller, hence, we adopted the SB SNR. If the reference scheme’s sample x and
population Z are taken as the input of MTS, then the Mahalanobis distance d between the alternative
scheme and the reference scheme is the responding output.

3. Improved Grey Entropy Method by Mahalanobis-Taguchi System

3.1. Grey Entropy

Grey entropy is the entropy of a grey number [32,33]. Grey number refers to a number set with
incomplete and uncertain information, in which the numbers are possible values. For a discrete grey
number q =

{
qi|i = 1, 2, · · · , n

}
, i ∈ J (where J is a finite set and qi ≥ 0,

∑n
i=1 qi = 1), H(q) = −

∑n
i=1 qi ln qi

is called the corresponding grey entropy. When qi = 0, qi ln qi = 0. The more equal q1, q2, · · · , qn are,
the greater the grey entropy H(q) is, thereby, H(q)max = ln n, and B(q) = H(q)/H(q)max is defined as
the balance degree of the grey number.

3.2. The Comparison of Grey Entropy and Information Entropy

Information entropy refers to the entropy of a signal source [34]. A discrete signal source can

be expressed as X :
[

x1 x2 · · · xi
p1 p2 · · · pi

· · ·

· · ·

xn

pn

]
, i ∈ J (where J is an infinite set, the probability of

random variable xi is pi and P(X = xi ∩X = x j) = 0, i , j,
∑n

i=1 pi = 1). Then, H(X) = −
∑n

i=1 pi ln pi is
called the information entropy of the signal source.

Accordingly, grey entropy and information entropy have the following similarities and differences.

• Similarities

1. With the same form of calculation formula, grey entropy and information entropy
share some characteristics, such as symmetry, non-negativity, additivity, convexity and
extremum property.

2. The physical meanings of grey entropy and information entropy are essentially the same.
The former is to measure the fluctuation degree of a grey number, while the latter is to
describe the uncertainty of a signal source.

• Differences
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1. Grey entropy is defined in a finite information space, whereas information entropy is defined
in an infinite information space.

2. Grey entropy is a kind of non-probability entropy with greyness, that is, qi is a possible value.
On the contrary, information entropy is a type of probability entropy with certainty, that is,
pi is a certain value.

3.3. Fundamentals of Grey Entropy Method

GEM was originally used for scheme decision-making with multi-dimensional real numbers.
Suppose an initial decision matrix X =

[
xi j

]
m×n

(I = 1,2, . . . ,m; j=1,2, . . . ,n) composed of m schemes

and n indexes. Through weighted standardization, X is converted into C =
[
ci j

]
m×n

, and the alternative
scheme is ci = (ci1, ci2, · · · , cin). Given the reference scheme pk = (pk1, pk2, · · · , pkn) (k = 1,2, . . . ,z),
the correlation degree Gki between the alternative scheme and the reference scheme is calculated as
follows:

Gki =
∑n

j=1
r( j)

ki /n, (7)

r( j)
ki =

min
i

min
j

∣∣∣∣p( j)
k − c( j)

i

∣∣∣∣+ ζmax
i

max
j

∣∣∣∣p( j)
k − c( j)

i

∣∣∣∣∣∣∣∣p( j)
k − c( j)

i

∣∣∣∣+ ζmax
i

max
j

∣∣∣∣p( j)
k − c( j)

i

∣∣∣∣ , (8)

where r( j)
ki is the correlation coefficient of index j between ci and pk and ζ is the distinguishing coefficient

and generally set at 0.5.

The correlation coefficient sequence of ci and pk is rki =
{
r( j)

ki

∣∣∣ j = 1, 2, · · · , n
}
, whose balance degree

Jki is calculated as follows:

Jki = −
1

ln n

∑n

j=1
q( j)

ki ln q( j)
ki , (9)

where q( j)
ki = r( j)

ki /
∑n

j=1 r( j)
ki .

The degree of balance and approach of ci and pk is calculated as follows:

γki = Gki × Jki, (10)

The greater the degree of balance and approach is, the similar the alternative scheme is to the
reference scheme.

It can be seen from Equation (8) that the correlation coefficient reflects the distance between
two points. When using the Euclidean distance for calculation, the correlation between indexes,
which usually exits in reality, is ignored, making the calculation results of the correlation degree and
the balance degree unreasonable. Moreover, there is interaction between indexes, either controllable or
uncontrollable. Additionally, the uncontrollable interaction affects the stability of the responding output.
Consequently, although the balance degree is an indicator of the volatility of correlation coefficient
series, it cannot embody the variability caused by the uncontrollable interaction between indexes.
The merit of MTS is that it can not only use the orthogonal table to deal with multi-dimensional real
numbers or multi-dimensional interval numbers, taking the interaction among indexes into account,
but also use the Mahalanobis distance considering the correlation between indexes to calculate the
correlation coefficient. Therefore, using MTS to improve GEM can enhance the decision-making
performance of GEM.
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4. Multi-Dimensional Interval Number Decision Model Based on MTS-GEM

4.1. Development of the Weighted Standardized Decision Matrix

Suppose that there are m alternative schemes and n indexes, and they constitute the initial interval

number decision matrix X̃ =
[
x̃i j

]
m×n

(i=1,2, . . . ,m; j=1,2, . . . ,n) where x̃i j =
[
xL

ij, xU
ij

]
. As the dimensions

of the indexes are often different, we used Equations (11) and (12) to nondimensionalize different types

of indexes, and get the standardized interval number decision matrix B̃ =
[̃
bi j

]
m×n

, where b̃i j =
[
bL

ij, bU
ij

]
.

For a benefit index:

b̃i j =


xL

ij −min
i

xi j

max
i

xi j −min
i

xi j
,

xU
ij −min

i
xi j

max
i

xi j −min
i

xi j

, (11)

For a cost index:

b̃i j =


max

i
xi j − xU

ij

max
i

xi j −min
i

xi j
,

max
i

xi j − xL
ij

max
i

xi j −min
i

xi j

, (12)

where min
i

xi j = min(min
i

xL
ij, min

i
xU

ij ) and max
i

xi j = max(max
i

xL
ij, max

i
xU

ij ).

To make the weight distribution of each index reasonable, the integration of expert scoring
(subjective weight) and entropy weight method [35] (objective weight) is used to determine the
combined weight of each index.

1 Subjective weight S̃ =
[̃
s j
]
1×n

where s̃ j =
[
sL

j , sU
j

]
Assuming that there are υ experts who participate in the weight scoring of n indexes, the scoring

matrix is Ỹ =
[
ỹl j

]
ν×n

(l=1,2, . . . ,υ; j=1,2, . . . ,n) where ỹl j =
[
yL

l j, yU
l j

]
, then s̃ j =

[
min

l
yL

l j, max
l

yU
l j

]
.

2 Objective weight T̃= [̃t j]1×n, where t̃ j =
[
tL

j , tU
j

]
First, the entropy of the interval number index is calculated based on the standardized interval

number decision matrix B̃:

EL
j = −

1
ln m

∑m
i=1

[(
bL

ij∑m
i=1 bL

ij

)
ln

(
bL

ij∑m
i=1 bL

ij

)]
EU

j = − 1
ln m

∑m
i=1

[(
bU

ij∑m
i=1 bU

ij

)
ln

(
bU

ij∑m
i=1 bU

ij

)] (13)

where EL
j and EU

j are the information entropy of the interval number index’s lower bound and upper

bound, respectively; when bL
ij = 0 or bU

ij = 0,
(

bL
ij∑m

i=1 bL
ij

)
ln

(
bL

ij∑m
i=1 bL

ij

)
= 0 or

(
bU

ij∑m
i=1 bU

ij

)
ln

(
bU

ij∑m
i=1 bU

ij

)
= 0.

Then, calculate the objective weight of the interval number index t̃ j:

t̃ j =
[
tL

j , tU
j

]
=

min

 1− EL
j∑n

j=1 (1− EL
j )

,
1− EU

j∑n
j=1 (1− EU

j )

 , max

 1− EL
j∑n

j=1 (1− EL
j )

,
1− EU

j∑n
j=1 (1− EU

j )


, (14)

3 Combined weight W̃= [w̃ j]1×n, where w̃ j =
[
wL

j , wU
j

]
Considering both the subjective weight S̃ and the objective weight T̃, we obtained the combined

weight of the interval number index W̃= [w̃ j]1×n where w̃ j =
[
βsL

j + (1− β)tL
j , βsU

j + (1− β)tU
j

]
and is

an empirical factor that reflects the preference of decision makers between subjective experience and
objective data [36].
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With the standardized decision matrix B̃ and the indexes’ combined weight W̃, we used the
multiplication algorithm of interval number to obtain the weighted standardized decision matrix
C̃ =

[̃
ci j

]
m×n

, where c̃i j = w̃ j × b̃i j. Additionally, based on TOPSIS, the positive ideal scheme p̃+ and the
negative ideal scheme p̃− were determined:

p̃+ =
{[

max
i

cL
i1, max

i
cU

i1

]
,
[
max

i
cL

i2, max
i

cU
i2

]
, · · · ,

[
max

i
cL

in, max
i

cU
in

]}
p̃− =

{[
min

i
cL

i1, min
i

cU
i1

]
,
[
min

i
cL

i2, min
i

cU
i2

]
, · · · ,

[
min

i
cL

in, min
i

cU
in

]} (15)

4.2. Orthogonal Test of Schemes and Calculation of Derivative Indicators

According to the number of indexes, a two-level orthogonal table with N≥n was selected, where n
indexes can be arranged in any n columns. For the interval number ã =

[
aL, aU

]
, take aL as level 1 and

aU as level 2. The layout matrix Ci of the alternative scheme c̃i (i=1,2, . . . ,m) is as follows:

Ci =


c(1)i
c(2)i

...

c(a)i


=


c(1)i1 c(1)i2 · · · c(1)in
c(2)i1 c(2)i2 · · · c(2)in

...
...

. . .
...

c(a)i1 c(a)i2 · · · c(a)in


a×n

, (16)

where c(g)
i (g=1,2, . . . ,a) is the distribution point of scheme c̃i and c(g)

i1 , c(g)
i2 , . . . , c(g)

in are the components

of c(g)
i .

Similarly, the layout matrix of the positive ideal scheme P+ and the layout matrix of the negative
ideal scheme P− can be obtained.

Here, we define derivative indicators as the signal-to-noise ratio and the degree of balance and
approach based on square Mahalanobis distance obtained by the initial interval number indexes.
According to Equation (6), calculate the square Mahalanobis distance between the alternative

scheme’s distribution point c(g)
i and the positive/negative ideal scheme, and we obtain d2

[
c(g)

i , P+

]
and

d2
[
c(g)

i , P−
]
.

1 Signal-to-noise ratio

The SB signal-to-noise of the scheme i to the positive (negative) ideal scheme is η+i (η−i):

η+i = −10 log10

{∑a
g=1 d′2

[
c(g)

i , P+

]
/a

}
η−i = −10 log10

{∑a
g=1 d′2

[
c(g)

i , P−
]
/a

} (17)

where a is the number of orthogonal tests and d′2
[
c(g)

i , P+

]
, d′2

[
c(g)

i , P−
]

is the square Mahalanobis

distance standardized by Equation (18):

d′2
[
c(g)

i , P+

]
=

max
g

d2
[
c(g)

i ,P+

]
−d2

[
c(g)

i ,P+

]
max

g
d2

[
c(g)

i ,P+

]
−min

g
d2

[
c(g)

i ,P+

]
d′2

[
c(g)

i , P−
]
=

d2
[
c(g)

i ,P−
]
−min

g
d2

[
c(g)

i ,P−
]

max
g

d2
[
c(g)

i ,P−
]
−min

g
d2

[
c(g)

i ,P−
]

(18)

2 Improved degree of balance and approach
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The correlation degree of the alternative scheme c̃i and the positive (negative) ideal scheme is G+i
(G−i):

G+i =
∑a

g=1
r(g)
+i /a, G−i =

∑a

g=1
r(g)
−i /a, (19)

where r(g)
+i (r(g)

−i ) is the correlation coefficient of the alternative scheme c̃i and the positive (negative)
ideal scheme at distribution point g.

Based on the square Mahalanobis distance, the formula of correlation coefficient is revised
as follows:

r(g)
+i =

min
i

min
g

d2
[
c(g)

i ,P+

]
+ζmax

i
max

g
d2

[
c(g)

i ,P+

]
d2

[
c(g)

i ,P+

]
+ζmax

i
max

g
d2

[
c(g)

i ,P+

]
r(g)
−i =

min
i

min
g

d2
[
c(g)

i ,P−
]
+ζmax

i
max

g
d2

[
c(g)

i ,P−
]

d2
[
c(g)

i ,P−
]
+ζmax

i
max

g
d2

[
c(g)

i ,P−
]

(20)

where the distinguishing coefficient ζ is set at 0.5.
The balance degree of the alternative scheme c̃i and the positive (negative) ideal scheme is J+i (J−i):

J+i = −
1

lna
∑a

g=1 q(g)
+i lnq(g)

+i

J−i = −
1

lna
∑a

g=1 q(g)
−i lnq(g)

−i

(21)

where q(g)
+i = r(g)

+i /
∑a

g=1 r(g)
+i and q(g)

−i = r(g)
−i /

∑a
g=1 r(g)

−i .
The degree of balance and approach of the alternative scheme c̃i and the positive (negative) ideal

scheme is γ+i (γ−i):
γ+i = G+i × J+i,γ−i = G−i × J−i, (22)

4.3. Scheme Decision-Making

Based on the signal-to-noise ratio and the improved degree of balance and approach, the decision
matrix Y is constructed as shown in Equation (23), in which the benefit indicator is η−i and γ+i, while
the cost indicator is η+i and γ−i:

Y =


η+1 η−1 γ+1 γ−1

η+2 η−2 γ+2 γ−2
...

...
...

...
η+m η−m γ+m γ−m


m×4

, (23)

Now, the decision-making problem with multi-dimensional interval numbers is changed into
a decision-making problem with multi-dimensional real numbers [37]. The optimal scheme can be
selected with the following multi-dimensional real vector space decision-making method (MRVSDM).

1. The n-dimensional real numbers are regarded as the points A1, . . . ,Ai, . . . ,Am in an n-dimensional

space with O as the origin, and then we can get the vectors a1 =
→

OA1, . . . ,ai =
→

OAi, . . . ,am =
→

OAm.
2. Assuming that the reference scheme vector is p, |ai| and

∣∣∣p∣∣∣ are the modules of vector ai and vector

p, respectively. Between vectors ai and p, calculate their angle θi = ( ˆai, p) = arccos
(

ai·p
|ai ||p|

)
(where

ai · p is their product), as well as their mapping distance MDi = |ai|Sinθi.
3. The set of mapping distance MD = {MDi|i = 1, 2, · · · , m } can be obtained. According to the

principle that the smaller MDi is, the closer vector ai is to vector p, the scheme that satisfies the
objective min

i
MDi is selected as the optimal scheme.

The diagram of decision-making in a three-dimensional real number vector space is shown
in Figure 2. The input of the MTS-GEM model is the interval number indexes derived from
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different schemes. After orthogonal tests and calculation of the Mahalanobis distance, the signal-to-noise
ratio, the improved degree of balance and approach, the output is the mapping distance from each
scheme to the ideal scheme. The flow chart of this study is shown in Figure 3.
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Mahalanobis-Taguchi System with grey entropy method.

5. Case Study

5.1. Initial Interval Number Decision Matrix and Its Weighted Standardization

Multi-objective reservoir operation is a multi-dimensional and complicated system engineering
issue. Affected by runoff forecast, operation model, solution method and other factors, in the obtained
non-inferior solution set, the attribute values are not always a precise real number but an interval
number with uncertainty. The Pankou reservoir, located at the upstream of the Du River in China, is an
annual-regulating reservoir with comprehensive utilization tasks of power generation, flood control,
water supply and so forth. Its basic information is listed in Table 3, and its location map is shown in
Figure 4.
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Table 3. Basic information of the Pankou reservoir.

Item Unit Pankou

Dead water level m 330
Flood control limit water level m 347.6

Normal water level m 355
Flood control high water level m 358.4

Design flood water level m 357.14
Spillway flood water level m 360.82
Minimum storage capacity 108 m3 8.5
Regulating storage capacity 108 m3 11.2

Total storage capacity 108 m3 23.38
Regulating performance – Annual regulating
Installed power capacity MW 500

Average annual generated power 108 kW·h 10.474
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According to the current regulations of the China Yangtze River Flood Control and Drought
Relief Headquarters, for the Pankou reservoir, the upper limit of operation water level in flood season
(June 20–August 20) is the flood control limit water level (347.6 m), while in other periods it is the
normal water level (355 m); the lower limit of operation water level in all periods is the dead water
level (330 m), and falling to the lower limit should be avoided during operation.

However, in the actual operation of the Pankou reservoir, it can barely store water to the normal
water level in most years, undermining such benefits as power generation and water supply. In order
to reasonably adjust the upper limit of water level in flood season and improve the utilization rate of
flood resources, in reference [38] the three indexes of flood control risk rate, annual generated power
and water storage at the end of flood season were used as the evaluation indexes for selecting the
optimal scheme of water level upper limit in flood season. Flood control risk rate was obtained by
means of flood stochastic simulation [39]. Firstly, the flood stochastic simulation model was used to
simulate n (a large number) pieces of annual maximum flood inflow hydrographs, which can fully
reflect the statistical characteristics of the reservoir’s measured flood inflow. Then, a flood operation
calculation was conducted to obtain the highest annual water level sequence, and the ratio of times
that the water level limit was exceeded to n was taken as the flood control risk rate, the value of which
needs to meet people’s acceptable level of risk. Annual generated power refers to the total electricity
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generated by the hydropower station within a one-year operation cycle, which represents the power
generation benefit of the hydropower station. The more annual generated power, the greater the
annual power generation benefit. The water storage at the end of the flood season refers to the water
storage between the dead water level and the particular water level at the end of flood season, which
represents the water supply benefit of the reservoir. The more water storage at the end of flood season,
the greater the water supply benefit.

The scheme setting is shown in Figure 5. Currently, Scheme 1 is being adopted as the operation
strategy of the Pankou reservoir’s upper water level limit in flood season.
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Figure 5. Scheme setting of the Pankou reservoir’s upper water level limit in flood season.

For the flood control risk rate, the Monte Carlo method was used to randomly simulate 100
groups of 1000 floods corresponding to the 1000-year return period (0.1%). After flood operation
calculation of each flood, the number of times that the design flood water level (357.14m) is exceeded
in each group of 1000 floods were counted as λξ(ξ = 1, 2, · · · , 100). The flood control risk rate of
each group was λξ/1000, and the flood control risk rate in the form of an interval number was[

min
16ξ6100

(λξ/1000), max
16ξ6100

(λξ/1000)
]
. Similarly, the annual generated power and water storage at the

end of flood season were obtained through reservoir operation calculation by using the monthly inflow
data of 41 years from 1971 to 2011. Then, the minimum and maximum values of the 41 results formed
the interval numbers. The initial interval number decision matrix X̃ is shown in Table 4.
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Table 4. Initial interval number decision matrix X̃.

Scheme i Flood Control Risk Rate
~
xi1/% Annual Generated Power

~
xi2/108 kW·h Water Storage at the End of Flood Season

~
xi3/108 m3

1 [1.812,4.371] [6.531,14.392] [4.887,11.200]
2 [1.882,4.408] [7.086,14.983] [5.411,11.200]
3 [1.993,4.421] [7.687,15.639] [6.033,11.200]
4 [2.211,4.689] [8.275,16.136] [6.751,11.200]
5 [2.534,5.028] [8.699,16.641] [7.523,11.200]
6 [2.977,5.594] [9.320,17.343] [8.431,11.200]

According to Equation (11)–(12), the benefit indexes (annual generated power, water storage at the
end of flood season) and the cost index (flood control risk rate) in Table 3 are standardized, resulting in
the standardized interval number decision matrix B̃ shown in Table 5.

Table 5. Standardized interval number decision matrix B̃.

Scheme i Flood Control Risk Rate
~
bi1 Annual Generated Power

~
bi2 Water Storage at the End of Flood Season

~
bi3

1 [0.323,1.000] [0.000,0.727] [0.000,1.000]
2 [0.314,0.981] [0.051,0.782] [0.083,1.000]
3 [0.310,0.952] [0.107,0.842] [0.182,1.000]
4 [0.239,0.895] [0.161,0.888] [0.295,1.000]
5 [0.150,0.809] [0.201,0.935] [0.418,1.000]
6 [0.000,0.692] [0.258,1.000] [0.561,1.000]

According to Lynne [40] who derives the variance formula of interval number sample matrix
based on uniform distribution, for B̃ =

[̃
bi j

]
m×n

, its variance D(̃b j) can be expressed as follows:

D(̃b j) =
1

3m

∑m

i=1

[
(bL

ij)
2
+ bL

ijx
U
ij + (bU

ij )
2
]
−

1
4m2

[∑m

i=1
(bL

ij + bU
ij )

]2
, (24)

Based on the definition of the correlation coefficient of two random real number variables in the
probability theory and mathematical statistics, the correlation coefficient of two interval variables
ρ(̃bh, b̃ j) (h, j=1,2, . . . ,n) is:

ρ(̃bh, b̃ j) =
Cov(̃bh, b̃ j)√

D(̃bh, )
√

D(̃b j)

=
D(̃bh + b̃ j) −D(̃bh) −D(̃b j)

2
√

D(̃bh)
√

D(̃b j)

, (25)

From Equation (24)–(25), the correlation coefficient matrix of B̃ =
[̃
bi j

]
m×n

can be obtained, as
shown in Table 6.

Table 6. Correlation coefficient matrix of the standardized interval number decision matrix.

Index Flood Control Risk Rate
~
b1 Annual Generated Power

~
b2 Water Storage at the End of Flood Season

~
b3

Flood control risk rate b̃1 1.000 0.613 0.573
Annual generated power b̃2 0.613 1.000 0.971
Water storage at the end of

flood season b̃3
0.573 0.971 1.000

It is shown in Table 5 that there is positive correlation among the three indexes. The correlation
between the flood control risk rate and annual generated power or water storage at the end of flood
season is slightly weak. The correlation between annual generated power and water storage at the
end of flood season is significant in that their correlation coefficient is 0.971. Thus, it is necessary to
consider the correlation between the indexes in the decision-making process of the reservoir water
level scheme in flood season.

There are five experts to grade the importance of the indexes, and the subjective
weight of the interval number indexes obtained from the scoring matrix is S̃ =
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{
[0.320, 0.397] [0.292, 0.360] [0.235, 0.300]

}
. According to Equation (13), the information entropy weight

is tL
j = (0.252, 0.347, 0.401) and tU

j = (0.573, 0.427, 0). Thus, the objective weight of the interval

number indexes is T̃ =
{
[0.252, 0.573] [0.347, 0.427] [0, 0.401]

}
. Let the empirical factor β be 0.5, then the

combined weight is W̃ =
{
[0.286, 0.485] [0.320, 0.394] [0.118, 0.351]

}
. From B̃ and W̃, the weighted

standardized decision matrix C̃ is obtained, as shown in Table 7.

Table 7. Weighted standardized interval number decision matrix C̃.

Scheme i Flood Control Risk Rate
~
ci1 Annual Generated Power

~
ci2 Water Storage at the End of Flood Season

~
ci3

1 [0.092, 0.485] [0.000, 0.286] [0.000, 0.351]
2 [0.090, 0.476] [0.016, 0.308] [0.010, 0.351]
3 [0.089, 0.462] [0.034, 0.332] [0.021, 0.351]
4 [0.068, 0.434] [0.052, 0.350] [0.035, 0.351]
5 [0.043, 0.392] [0.064, 0.368] [0.049, 0.351]
6 [0.000, 0.336] [0.083, 0.394] [0.066, 0.351]

Through the matrix C̃, based on TOPSIS and Equation (15), the positive (negative) ideal scheme
p̃+ (p̃−) is determined as follows:

p̃+ =
{
[0.092, 0.485] [0.083, 0.394] [0.066, 0.351]

}
p̃− =

{
[0.000, 0.336] [0.000, 0.286] [0.000, 0.351]

}
.

5.2. Orthogonal Test of the Schemes

Since there are three indexes, the orthogonal table is L4(23). The alternative scheme’s layout
matrix Ci (i=1,2, . . . ,6), the positive ideal scheme’s layout matrix P+ and the negative ideal scheme’s
layout matrix P− are shown in Table 8.

Table 8. Layout matrixes of the schemes.

Matrix Flood Control
Risk Rate

Annual
Generated

Power

Water Storage
at the End of
Flood Season

Matrix Flood Control
Risk Rate

Annual
Generated

Power

Water Storage
at the End of
Flood Season

C1

0.092 0.000 0.000

C5

0.043 0.064 0.049
0.092 0.286 0.351 0.043 0.368 0.351
0.485 0.000 0.351 0.392 0.064 0.351
0.485 0.286 0.000 0.392 0.368 0.049

C2

0.090 0.016 0.010

C6

0.000 0.083 0.066
0.090 0.308 0.351 0.000 0.394 0.351
0.476 0.016 0.351 0.336 0.083 0.351
0.476 0.308 0.010 0.336 0.394 0.066

C3

0.089 0.034 0.021

P+

0.092 0.083 0.066
0.089 0.332 0.351 0.092 0.394 0.351
0.462 0.034 0.351 0.485 0.083 0.351
0.462 0.332 0.021 0.485 0.394 0.066

C4

0.068 0.052 0.035

P−

0.000 0.000 0.000
0.068 0.350 0.351 0.000 0.286 0.351
0.434 0.052 0.351 0.336 0.000 0.351
0.434 0.350 0.035 0.336 0.286 0.000

5.3. Scheme Decision-Making and Result Evaluation

The square Mahalanobis distance from each point in the layout matrix Ci to the positive ideal
scheme’s layout matrix P+ and the negative ideal scheme’s layout matrix P− is worked out, as shown
in Table 9.
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Table 9. Square Mahalanobis distance.

Scheme i d2[c(g)i ,P+] d2[c(g)i ,P−]

1 4.139 1.567 3.263 2.428 1.658 1.649 4.166 4.175
2 3.774 1.662 2.966 2.290 1.424 1.906 3.858 4.190
3 3.386 1.790 2.630 2.155 1.187 2.222 3.478 4.192
4 3.152 2.076 2.238 1.909 1.054 2.583 2.930 3.936
5 3.071 2.436 1.901 1.668 1.037 3.018 2.308 3.583
6 3.132 3.112 1.542 1.543 1.177 3.806 1.628 3.355

The square Mahalanobis distance is standardized by Equation (18) and the SNR indicator is
obtained. The indicator of the degree of balance and approach is worked out by Equation (19)–(22).
Accordingly, the decision matrix X is derived, as shown in Table 10.

Table 10. Derivative indicator decision matrix X.

Scheme i η+i η−i γ+i γ−i

1 2.998 3.010 0.753 0.652
2 2.829 2.894 0.775 0.660
3 2.508 2.784 0.801 0.669
4 1.869 2.633 0.824 0.686
5 2.429 2.446 0.841 0.705
6 2.984 3.010 0.838 0.710

In accordance with Equation (11)–(12), X is standardized and with the weight of each index being
0.25, the weighted standardized decision matrix C is obtained, as shown in Table 11.

Table 11. Weighted standardized derivative indicator decision matrix C.

Scheme i η∗
+i η∗

−i γ∗
+i γ∗

−i

1 0.000 0.250 0.000 0.250
2 0.037 0.199 0.063 0.216
3 0.109 0.150 0.136 0.177
4 0.250 0.083 0.202 0.103
5 0.126 0.000 0.250 0.022
6 0.003 0.250 0.241 0.000

p = [0.25, 0.25, 0.25, 0.25] is taken as the reference scheme to calculate the mapping distance MDi
from the alternative scheme to the reference scheme.

To verify the feasibility and effectiveness of the method in this paper, the first comparison method
of scheme ranking (method 1) is based on the closeness degree of the SNR defined by Equation (26),
according to reference [40]:

ηi =
η−i

η+i + η−i
, (26)

On the basis of TOPSIS, the improved closeness degree of the degree of balance and approach is
defined as follows:

γi =
γ+i

γ+i + γ−i
, (27)

When γ−i → 0 , γi → 1 , the closer scheme i is to the positive ideal scheme, whereas when γ+i → 0 ,
γi → 0 , the farther scheme i is to the positive ideal scheme. This ranking criterion is that the larger γi
is, the better the corresponding scheme i is, which is the second method for comparison (method 2).

The schemes are sorted according to the different ranking criteria of method 1, method 2 and the
method in this study. The results are shown in Table 12.
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Table 12. Results of scheme ranking.

Scheme i
Method 1 Method 2 This Study’S Method

ηi Ranking γi Ranking MDi Ranking

1 0.5010 6 0.5359 6 0.2500 6
2 0.5057 3 0.5401 5 0.1585 3
3 0.5260 2 0.5449 2 0.0492 1
4 0.5848 1 0.5457 1 0.1378 2
5 0.5018 5 0.5440 3 0.1983 4
6 0.5021 4 0.5413 4 0.2443 5

It can be seen from Table 11 that Scheme 1 ranks the last in the decision results of all the three
methods, meaning that the currently-adopted strategy is far from decent and other schemes need to
be selected, which conforms to the status quo of the Pankou reservoir. This study’s method chooses
Scheme 3 as the optimal scheme, which raises the upper water level limit in flood season by 0.8 m
compared with Scheme 1.

The reasons for the inconsistent scheme ranking results can be explained by the calculation process
of the SNR and the improved degree of balance and approach in Section 4.2. The two indicators
respectively reflect the output strength and the degree of balance and approach of geometric curves in
the alternative and the reference schemes. If method 1 or method 2 is used alone, their decision results
will be less likely to be adopted. The method proposed in this paper includes the advantages of both
method 1 and method 2, and gets closer to the reference scheme by the mapping distance, producing
more accurate and reasonable decision results. Therefore, scheme 3 is recommended as the optimal.

In Table 11, the closeness degree of the SNR and the closeness degree of the balance and approach
degree are benefit indicators, whereas the mapping distance is a cost indicator, and therefore converted
into a benefit indicator by the range method. After normalizing the three indicators, the decision
results of the three methods are illustrated in Figure 6. It can be seen that compared with method 1
and method 2, this study’s method produces more obviously distinct decision results, which proves
that the proposed model can effectively mine the hidden rules in data, especially for the analysis of a
system with deficient information.
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6. Conclusions

In order to reduce the uncertainty of interval numbers as well as computation work and fully
mine the implied information in multi-attribute decision-making, a multi-dimensional interval number
decision model based on Mahalanobis-Taguchi System with grey entropy method (MTS-GEM) was
proposed and verified by a case study. The principal conclusions are as follows.
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1. MTS-GEM can effectively reduce the uncertainty created by interval numbers. In the model,
the bounded uncertain n-dimensional interval number is expressed quantitatively as a hypercube
in the n-dimensional space. Meanwhile, the alternative and reference schemes are all transformed
into finite vertices of the hypercube, which realizes the transformation from an interval number
decision vector to a real number decision vector.

2. MTS-GEM can produce markedly distinctive decision results, which demonstrates the sufficiency
of decision information contained in the model. The model not only considers the output response
strength and the degree of balance and approach between alternative and reference schemes,
but also uses the idea of further approaching the reference scheme by mapping distance, which
elevates the accuracy and reliability of the decision results.

3. The case study of selecting the optimal scheme of controlling the Pankou reservoir’s water
level in flood season shows that the proposed method can pick out the best scheme that
better coordinates risk and benefit, which further proves the comprehensive and excellent
decision-making performance of the model.
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