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Abstract: Tracer testing is a mature technology used for characterizing aquatic flow systems. To gain
more insights from tracer tests a combination of conservative (non-reactive) tracers together with at
least one reactive tracer is commonly applied. The reactive tracers can provide unique information
about physical, chemical, and/or biological properties of aquatic systems. Although, previous review
papers provide a wide coverage on conservative tracer compounds there is no systematic review
on reactive tracers yet, despite their extensive development during the past decades. This review
paper summarizes the recent development in compounds and compound classes that are exploitable
and/or have been used as reactive tracers, including their systematization based on the underlying
process types to be investigated. Reactive tracers can generally be categorized into three groups:
(1) partitioning tracers, (2) kinetic tracers, and (3) reactive tracers for partitioning. The work also
highlights the potential for future research directions. The recent advances from the development of
new tailor-made tracers might overcome existing limitations.

Keywords: reactive tracers; tailor-made tracer design; hydrogeological tracer test;
kinetics; partitioning

1. Introduction

Tracer tests are one of the most well established techniques for site and process characterizations in
the aquatic environment (i.e., in hydrology or hydrogeology). Various additives (e.g., particles, solids,
solutes, and gases) and physical quantities (e.g., temperature and pressure) can be applied as tracers for
interpreting hydraulic transport properties and/or reactive processes in the aquatic environment [1–4].
Some basic hydraulic properties, such as flow velocity or porosity, can be obtained by tracer tests
using conservative (non-reactive) tracer compounds. The combination of a conservative tracer with at
least one reactive tracer is commonly applied in order to assess additional system parameters, such
as residual saturation [5,6], microbial activity [7,8], or temperature distribution [9,10]. The unique
features of reactive tracers could provide valuable information on physical, chemical, and/or biological
properties of the hydrological system which surpasses the capability of conservative tracers.

The application potential for tracers within the scope of advanced reservoir management, such
as geothermal power generation or carbon capture and storage, has triggered the development
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of new tracers and tracer techniques in the past decades [11,12]. Reactive tracers used to detect
specific properties and processes in the aquatic environment must generally either have distinctive
physicochemical properties (e.g., sorption) or undergo specific reactions such as hydrolysis. To identify
the most suitable tracer compounds for a specific system or problem, a thorough understanding
of the physicochemical properties and their chemically reactive behavior in the probed system is
a prerequisite.

The main objective of this overview article is to present a systematic review of existing and
proposed reactive solute tracers based on current research advances conducted in different scientific
fields. The focus of this work is on chemical/artificial tracers which are intentionally introduce in the
tracer tests. For each subclass of tracer, the underlying process, their key properties, and possible target
parameters/applications are described. Furthermore, the potential areas for the future development
and exploitation of new reactive tracers are elaborated. Hereby, the new approach of producing
tailor-made reactive tracers may break down currently existing limitations on the investigation potential
of commercially available compounds.

2. Definition and Theoretical Background

2.1. Definition

A tracer is defined herein as a distinguishable chemical compound which is deliberately added to
an aquatic system having a temporally and spatially well-known input function (e.g., pulse injection).
The respective system property or information of interest is derived based on the relation of the input
function to the observed response function (breakthrough curve) within the investigated system.

Two general tracer types can be defined based on the degree of interaction with the systems. First,
conservative tracers show virtually no interaction with the reservoir materials, and thus they flow
passively with the carrier fluids at their velocity. Furthermore, they do not suffer any chemical or
biological processes. This implies that these tracers are inert under reservoir conditions. The second
type of tracers can be summarized as reactive tracers. The interpretation of reactive tracers relies on their
known properties, physicochemical or chemical behavior during the transport. Reactive tracers are
compounds that undergo a chemical reaction or physicochemical interaction processes in a predictable
way under specific boundary conditions existing in the investigated system. Consequently, using the
particular features of reactive tracers could provide unique information on physicochemical properties
and/or water chemistry of the hydrological system far beyond the capability of conservative tracers.

Traditionally, tracer tests were conducted using conservative tracers. These tracers can provide
general physical and hydraulic parameters of the system (e.g., porosity, dispersivity, or arrival time). In
order to derive these parameters with great accuracy, the compounds are desired to behave ideally. The
properties of an ideal tracer are well established [2]; they (1) behave conservatively (e.g., are transported
with water velocity, not degradable), (2) have a low background concentration in the system, (3) are
detectable in very low concentrations, and (4) have low or no toxicological environmental impact.
Nevertheless, all solute tracers are influenced to some degree by physical, chemical, and/or biological
processes. This means that completely ideal tracers do not exist in reality. Therefore, some knowledge
of the investigated system is required beforehand to verify the practicality of the tracer behavior and
thus to avoid test failure.

2.2. Conservative Tracer Transport versus Reactive Tracer Transport

The transport behavior of a tracer compound in the aquatic environment is affected by several
physical and chemical processes. These processes result in spatial and/or temporal concentration
changes of the introduced tracer during its transport, which are reflected in the system response
function (e.g., breakthrough curve c(t)). Tracer transport is commonly described based on the principle
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of mass conservation by means of the advection-dispersion-reaction model in the three-dimensional
form as follows:
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where R is the retardation factor, c is the tracer concentration, t is the time, V is the average
pore water velocity, DH is the hydrodynamic dispersion tensor (including mechanical dispersion
and molecular diffusion), and S is the source/sink term accounting for the tracer transformation
(degradation/generation).

As described above, tracer transport in water can be classified as conservative or reactive according
to its interaction within the system to be studied. A conservative tracer does not interact or alter
during the transport, and thus the concentration is not changed by processes other than dilution,
dispersion, and partial redirection. As such, conservative tracers are expected to mimic the transport
of water without retardation and transformation. They underlie only the purely hydrodynamic
transport processes: advection, diffusion, and dispersion (as terms 2 and 3 in Equation (1). It should
be noted that various types of mixing always exist which should be interpreted with caution as the
mixing or other dilution processes may influence the results of tracer experiments [13–16]. Therefore,
conservative tracers are generally used to investigate hydraulic properties (e.g., tracking connectivities,
flow pathways), analyzing travel times and flow velocities, determining recharge and discharge, and
estimating hydromechanical properties (e.g., dispersivity, porosity). Common examples of conservative
tracers under ambient temperatures are major anions such as bromide [17,18], stable isotopes such as
2H and 18O [4,19], dye tracers such as uranine [20–22], and rhodamine WT [23–27].

Apart from hydrodynamic transport processes, reactive tracers additionally underlie physical,
chemical, and/or biological processes during their transport (terms 1 and 4 in Equation (1)). The
implementation of reactive tracers with identical and well understood interactions or reactions could
implicitly provide unique information on physicochemical aquifer properties (e.g., sorption capacity),
water chemistry (e.g., redox condition, pH, ion concentrations), and other influencing parameters (e.g.,
temperatures, microbial activity) [28–30].

In order to benefit from the selective and process specific nature of reactive tracers, it is a prerequisite
to combine them with at least one conservative reference tracer by performing a multitracer experiment
to account for the purely hydrodynamic transport processes that affect both tracer types in the same
way. Consequently, the reactive processes can be identified and quantified. The intended information
from the tracers is gained by comparing the concentration versus time curves (breakthrough curves) of
the reactive tracers with the conservative tracers (reference). This can be illustrated by the schematic
breakthrough curves for a simulated tracer test having a pulse input function (Figure 1). The time shift
and/or the reduction of the peak area (tracer mass) of the breakthrough curves indicate retardation
and/or degradation, respectively. Measured breakthrough curves can be inversely interpreted using
analytical or numerical models to estimate the values of controlling parameters, such as the distribution
coefficient for the sorption process, the decay rate for the sorption process, or the decay rate for the
biodegradation process.
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Figure 1. Schematic breakthrough curves for conservative tracer and reactive tracers after a
pulse injection.

3. Types of Reactive Tracers

A generalized classification of currently existing reactive tracers and proposed reactive tracer
concepts, including their required properties, possible applications, and processes is provided.
Depending on their physical, chemical, and/or biological behavior, three major subgroups are
distinguished (Table 1):

• Partitioning tracers: These types are based on the partitioning equilibrium between two immiscible
phases or at their interfaces (fluid–solid, fluid–fluid) leading to a retardation relative to the
conservative tracer remaining in (one) fluid phase.

• Kinetic tracers: These types are non-equilibrium tracers in which only the reaction kinetics are
used for the parameter determination. As a result of the tracer reaction, the tracer signals are
decreasing (parent compound) or increasing (daughter compound) with time (degradation). These
tracers usually do not show retardation (no partitioning).

• Reactive tracers for partitioning: These tracers are a hybrid form of the preceding tracers,
containing features of both: chemical reaction (degradation) of the parent compound and
subsequent partitioning (retardation) of the daughter products.
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Table 1. Classification of reactive tracers.

Reactive Tracer Type

Equilibrium tracers
(partitioning tracers) Reactive tracer for

partitioning
(volume or interface

sensitive after
degradation)

Kinetic tracers
(decaying tracers)

Fluid–Solid Fluid–Fluid One phase Two phases

Sensitive for
uncharged

surfaces

Sensitive for
charged surfaces

Volume
sensitive

Interface
sensitive Degradation sensitive Thermo-sensitive Interface-sensitive

Determining properties
of tracer molecules

Uncharged but
still soluble
(moderately

polar) organic
compounds

Organic and
inorganic ions with

opposite charge
compared to the

surface

Compounds
with

quantifiable
partitioning
between two

phases (soluble
in both phases)

Amphiphilic
compounds

(surface active
agents-

surfactants)

Hydrophilic compounds,
susceptible to decay
leading to daughter

compounds with
different partitioning

properties (coefficients)

Degradable
compounds under
applied conditions

Hydrolysable and
hydrophilic

compounds with
known kinetic

parameters and
decay mechanisms

Hydrophobic and
hydrolysable
compounds

Possible target
parameters/Application

Organic carbon
content, surface
area to volume

ratio A/V (of
uncharged
surfaces)

Surface charge
(surface charge

density, exchange
capacity), Surface

area to volume ratio
A/V (of charged

surface)

Residual
saturation

Residual
distribution,
contact area

Residual saturation or
residual distribution,

contact area

Attenuation capacity,
other reaction

relevant boundary
conditions (e.g., redox

conditions, pH)

Temperature and
temperature
distribution

(cooling fractions)

Interfacial area
(development with

time)

Underlying (reactive)
process

Sorption due to
hydrophobic
interactions

Sorption due to
electrostatic

interactions (e.g.,
ion exchange,

hydrogen bonding)

Phase
partitioning

Interfacial
adsorption

(partitioning
between bulk

phase and
interface)

In-situ decay with
subsequent partitioning

Chemical and
biological reactions

Hydrolysis reaction,
substitution

Hydrolysis reaction
leading to

inter-phase mass
transfer
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3.1. Equilibrium Tracers

3.1.1. Fluid–Solid (Sorbing Tracers)

Sensitive for Uncharged Surfaces

A tracer compound sensitive for uncharged surfaces undergoes hydrophobic sorption onto
uncharged sites of the sorbent (e.g., soil, aquifer material), particularly organic matter. Hydrophobic
sorption is the result from a weak solute-solvent interaction coming from a decrease in entropy
of the solution and can be explained by general interactions between sorbate and sorbent, e.g.,
van-der-Waals forces (dipole and/or induced-dipole interactions) [31]. The organic carbon content
( fOC) of the aquifer material generally correlates with the sorptivity and thus the retardation of a
neutral (uncharged) organic compound [32–34]. Therefore, it is conceivable that substances, which
are sensitive to uncharged surfaces, have the potential to determine the fOC of a system from their
observed retardation factor (Runc) assuming a linear sorption isotherm:

Runc = 1 +
ρ

ne
Kunc, (2)

where ρ is bulk density, ne is effective porosity, and Kunc is the sorption coefficient. Kunc depends
primarily on the hydrophobicity of the tracer molecules, typically characterized by the n-octanol-water
partition coefficient (log KOW) and the fOC of the geological materials. From log KOW of the tracer
compound, Kunc for a particular system can be estimated. According to the literature [35–37] log KOW
can empirically be related to the organic carbon normalized sorption coefficient (KOC) in the form:

log KOC = a log KOW + b, (3)

KOC =
Kunc

fOC
, (4)

where a and b are empirical parameters.
Thus, from known log KOW and determined Runc, the average fOC between the injection and

observation points can be estimated. By selecting non-ionic compounds with moderate log KOW
values between 1 and 3 (1H-benzotriazole, carbamazepine, diazepam, and isoproturon) from formerly
published column experiments by Schaffer et al. [38,39] using correlation factors for non-hydrophobic
compounds after Sabljic et al. (1995), the observed fOC values of the columns agree very well with the
independently measured ones from the bulk using total organic carbon measurements. Despite the
relatively large uncertainty regarding the chosen log KOW values, all deviations of the absolute values
between the measured and calculated fOC are within one order of magnitude (less than factor 5).

To the extent of our knowledge, this tracer type has not yet been explicitly proposed, and therefore
their potential could be further investigated. Some promising examples include 8:2 fluorotelomer
alcohol [40], short-chained alkyl phenols [41], or pharmaceutical compounds [42–44].

Sensitive for Charged and Hydrophilic Surfaces

A tracer compound sensitive for charged surfaces undergoes ionic sorption between a charged
moiety of a tracer molecule and an oppositely charged surface of the sorbent (e.g., soil, aquifer material).
In this case, there is a strong electrostatic interaction (e.g., ion exchange, hydrogen bonding, or surface
complexation) between tracer sorbate and sorbent.

Retardation of a solute due to ion sorption on natural solids (Rc) can be related either to a sorbent
mass (Equation (2)) or to its surface sensitivity to the surface area (A) to volume (V) ratio if the sorption
coefficient (Kc) is known [45]:

Rc = 1 +
A
V

Kc, (5)
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These tracers are required to be water soluble, ionized (electrically charged), and can be organic or
inorganic substances. The selection of tracers for this application is based on the surface charge of the
sorbents. Further, the pH condition strongly influences the charge states of organic compounds (e.g.,
bases, acids, and ampholytes) and the sorbent’s surface [33]; thus, pH and the point of zero charge of
the surface should be considered before selecting a tracer compound.

Many laboratory tests have been conducted to demonstrate the feasibility of charged surface tracers
to interrogate the surface area, e.g., using safranin [46], lithium [47–49], and monoamines [50]. A couple
of field tests have also demonstrated the potential use of charged surface tracers for investigating
the surface area, e.g., using safranin [51] and caesium [52,53]. Furthermore, this tracer type has the
potential to estimate the ion exchange capacity of sediments [54].

3.1.2. Fluid–Fluid

The fluid-fluid tracers summarize liquid–liquid tracers and liquid–gas tracers due to the similarity
in the underlying processes and applications.

Volume Sensitive Tracers

A volume sensitive tracer is a compound that partitions between two immiscible fluid phases
(liquid–liquid or liquid–gas). A different solubility in the two fluid phases leads to the specific
phase distribution and results in a retardation of the tracer. Volume sensitive tracers are very useful
in estimating the volume of the immobile phase (residual saturation). For example, one common
application of this type of tracer is to characterize the source zone of non-aqueous phase liquids
(NAPLs) for contaminated sites. Another popular use is to evaluate the effectiveness of treatment
techniques before and after the remediation of NAPLs, thereby obtaining independent estimates on the
performance of the cleanup. This tracer can also be used to identify residual gas or supercritical fluid
phases, such as in carbon capture and storage applications. When sorption onto solids is negligible,
the retardation factor (Rvs) is a function of the average residual saturation (Sr) within the tracer flow
field [55,56]:

Rvs = 1 +
Sr

(1− Sr)
Kvs, (6)

where Kvs is the partition coefficient between two fluid phases.
A large number of laboratory experiments and field-scale tests have been conducted to detect

NAPL contaminations since the 1990s. The most commonly applied volume sensitive tracers are
alcohols of varying chain length, such as 1-hexanol [57–60], 1-pentanol and 1-heptanol [61–63],
2-ethyl-1-butanol [5,61,64], 6-methyl-2-heptanol [65,66], 2,2-dimethyl-3-pentanol [56,65,66],
2,4-dimethyl-3-pentanol [57,63,64,67–70], substituted benzyl alcohols [6,71] and fluorotelomer
alcohols [72]. Additionally, sulfur hexafluoride (SF6) [73–77], perfluorocarbons [61,78],
radon-222 [79–81], and fluorescent dyes (e.g., rhodamine WT, sulforhodamine B, and eosin) [82]
have also been suggested for use as volume sensitive tracers. Recently, the noble gases krypton and
xenon were applied successfully in the determination of the residual CO2 saturation [83–87].

Interface Sensitive Tracers

An interface sensitive tracer is a compound that undergoes the accumulation (adsorption)
at the interface between two immiscible fluids, typically liquid–liquid or liquid–gas, leading to
the retardation of the tracer. The magnitude of adsorption at the interface is controlled by the
physicochemical properties of tracer compounds and by the interfacial area, particularly the size of the
specific fluid–fluid interfacial area (anw) and the interfacial adsorption coefficient (Ki f ). The retardation
factor (Ri f ) defined through porous media follows [88,89]:

Ri f = 1 +
ai f

θw
Ki f , (7)
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Ki f =
Geq

Ceq
, (8)

where ai f is the specific interfacial area, θw is the volumetric water content, and Ki f is the interfacial
adsorption coefficient (ratio between the interfacial tracer concentration in the sorbed phase at the
interface (Geq) and the fluid (Ceq) at equilibrium).

The desired compounds for this tracer class are amphiphilic molecules (containing both
hydrophobic and hydrophilic groups). Information on fluid-fluid interfacial areas, along with
residual saturation (assessed by volume sensitive tracers) assists the understanding of the fate and
transport of contamination in the systems.

One of the most popular interface sensitive tracers that have been successfully tested in laboratory
and field scales is the anionic surfactant sodium dodecylbenzene sulfonate [67,69,88,90–100]. Further
potential arises for other ionic and non-ionic surfactants (e.g., marlinat [101], 1-tetradecanol [102,103],
sodium dihexylsulfosuccinate [104]) and for cosurfactants (e.g., n-octanol and n-nonanol [105]).

3.2. Kinetic Tracers

3.2.1. One Phase

Degradation Sensitive Tracers

Degradation sensitive tracers are compounds that undergo biotic and/or abiotic transformations.
Depending upon the nature of the tracer specific (reaction controlling boundary conditions), chemical
and/or biological characteristics of the flow system can be investigated. Information on the decay
mechanism and the equivalent kinetic parameters is a prerequisite for their successful application. The
decay mechanism is usually desired to follow a (pseudo) first order reaction to limit the number of
required kinetic parameters and to avoid ambiguity. In addition, other influencing factors on kinetics
should be considered before application (e.g., pH, light, and temperature). The reaction rate constant
(kDS) can be estimated by measuring the extent of tracer loss of the mother compound or the associated
increase of a transformation product along the flow path.

This type of tracer has been studied and tested in field-scale experiments over the past 20 years.
Their main purpose is to determine microbial metabolic activity (natural attenuation processes) and/or
to assess redox conditions. Numerous redox-sensitive tracers have been applied for laboratory and
field scale investigations, such as inorganic electron acceptors (e.g., O2, NO3

−, SO4
2−, CO3

2−) [106–116],
organic electron donors (e.g., low-molecular weight alcohols and sugars [117] and benzoate [118–120]),
or the organic electron acceptor resazurin [8,121–128].

Thermo-Sensitive Tracers

Thermo-sensitive tracers are compounds undergoing chemical reactions that are well-defined
and temperature driven, such as hydrolysis [129–131] or thermal decay [132,133]. Prior knowledge on
their reaction mechanisms is required for each specific thermo-sensitive tracer. To avoid ambiguity,
reactions following (pseudo) first order reaction are desired, and the reaction speed (expressed by the
reaction rate constant (kTS)) is preferred to be solely controlled by temperature. For these reactions,
the dependence of temperature (T) on kTS is the essential factor for estimating the thermo-sensitivity
expressed by Arrhenius law:

kTS = Ae−
Ea
RT , (9)

where A is the pre-exponential factor, Ea is the activation energy, and R is the ideal gas constant.
By knowing the corresponding kinetic parameters, the equivalent temperature (Teq) and the

cooling fraction (χ) can be obtained [134]. Teq references the thermal state of a probed reservoir relative
to an equivalent system having isothermal conditions, whereas χ has the potential to further estimate
a spatial temperature distribution of the investigated system.
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A typical application of these tracers is to investigate the temperature distribution of a georeservoir.
The first field experiments using ester compounds (ethyl acetate and isopentyl acetate), however,
were unable to determine a reservoir temperature [135–137]. The failure of the studies was attributed
to the poor determination of pH dependence and the lower boiling point of the tracer compounds
compared to the reservoir temperature leading to vaporization. New attempts demonstrated the
successful application in the laboratory [9] and in the field [138]. Other studies using classical tracers
like fluorescein [139] or Amino G [132,133] were able to identify the reservoir temperatures. Currently,
extensive research has been conducted to study structure-related kinetics of defined thermo-sensitive
reactions with promising results [9,10,130,131,134].

3.2.2. Two Phases

Kinetic Interface Sensitive (KIS)

KIS tracers are intended to be dissolved or mixed with a non-aqueous carrier fluid (e.g., supercritical
CO2 [11]) and injected into the reservoir. The underlying process is an interface-sensitive hydrolysis
reaction at the interface between the aqueous and the non-aqueous phase. Here, the tracer saturates
the interface of the evolving plume due to interfacial adsorption and reacts irreversibly with water
(hydrolysis with first-order kinetics). Due to the constant (adsorbed) concentration of the reactant at
the interface, the reaction kinetics is simplified to (pseudo) zero order kinetics. The formed reaction
products are monitored in the water phase.

In order to have minimal partitioning into the polar water phase, the potential tracers have to
be non-polar in conjunction with high log KOW values. Furthermore, the KIS tracer reaction kinetics
has to be adapted to the characteristics of the reservoir (T, pH) and the interfacial area dynamics
in order to resolve the plume development. In contrast to the parent compound, at least one of the
reaction products has to be highly water soluble resulting in low or even negative log KOW values.
Thus, back-partitioning into the non-aqueous phase can be avoided.

This class of reactive tracers was originally intended to characterize the fluid–fluid interfacial
area (e.g., between supercritical CO2 and formation brine during CO2 storage experiments [140]).
Currently, only limited laboratory experiments with the supercritical CO2 analogue fluid n-octane are
available [11].

3.3. Reactive Tracers for Partitioning

A reactive tracer for partitioning is a compound comprising the features of both partitioning tracers
and kinetic tracers. This type of tracer undergoes in-situ decay of the parent tracer compounds with
subsequent partitioning of the daughter compounds. The concentration of both parent and daughter
compounds are determined. The separation of the arrival times of the two tracers indicates the residual
saturation similar to volume sensitive tracers (see Section 3.1.2). The tracer compounds are hydrophilic
and must be susceptible to decay leading to daughter compounds with different partitioning coefficients.
Kinetic parameters should be evaluated in order to acquire suitable compounds for specific conditions
of tracer tests (e.g., types and time scales). In contrast to kinetic tracers, the kinetic parameters are not
used in the evaluation of the breakthrough curves for these tracers.

The most common fields for the application of these types of tracers are oilfields and carbon capture
and storage. Esters like ethyl acetate have been proposed to determine the residual oil saturation
according to Cooke [141]. By 1990 they have been successfully applied to oilfields [142,143] and are
continued to be implemented today [144,145]. Myers et al. (2012) demonstrate the feasibility of using
reactive ester tracers (i.e. triacetin, propylene glycol diacetate and tripropionin) to quantify the amount
of residually trapped CO2 through an integrated program of laboratory experiments and computer
simulations. Later, the research was also demonstrated successfully in field experiments [146].
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4. Exploitation Potential and Further Challenges of Developing Reactive Tracers

4.1. The Necessity for New Tracers–Tracer Design Approach

The use of tracers for hydrogeological applications has a long history. The first reported tracer
application was around 10 A.D. to track the connection between the spring source of the Jordan River
and a nearby pond [147]. Since then, the development of technology and the advances of tracer testing
with a wide selection of tracer compounds have brought effective tools for investigating different
properties of the aquatic environment. In general, tracer tests could be applied to any kind of natural
and engineered systems. It is especially advantageous for not directly accessible systems compared to
other techniques. Nevertheless, there are still many systems in which the potential of using reactive
tracers is not yet fully exploited and more attention should be paid to these, including:

- The hyporheic zone, a transition zone between surface water and subsurface water, has been
recognized as a hotspot for biogeochemical reactions, making the exchange of water, nutrients, and
organic matter important parameters. This zone is a mixing zone which has a complex hydrological
situation and heterogeneity containing dissolved gasses, oxidized and reduced species, temperature
patterns, flow rates, etc. Due to the large number of variables, the quantification of processes in the
hyporheic zone is still a challenge [148,149].

- Hydraulic fracturing (fracking) in shale/tight gas reservoirs has gained growing interests in
the oil and gas industry during the last decade [150]. However, fracking may pose environmental
risks [151,152]. During the stimulation process, fracking fluid is injected into the reservoir to create
additional flow paths for the transport of hydrocarbons. Hydraulically induced fractures may connect
pre-existing natural fractures and faults leading to the creation of multiple permeable pathways which
may cause groundwater contamination [153]. Therefore, there is a high demand for the application of
tracers to predict the risk or to track the contamination (i.e. fracking fluid) [154].

- Other fields may include karst aquifer characterization (due to the strong system heterogeneity
and variability), geothermal fluids and acid-mine-drainage (due to complex water chemistry
and temperature).

The design of new innovative reactive tracers requires new strategies. Molecular design has been
successfully established as a methodology for producing tailor-made molecules with desired properties
or effects in several scientific disciplines, especially in life sciences, such as pharmacology, biochemistry,
medicine [155], and material sciences [156]. The target-oriented combination of well-studied structural
elements and molecular features (e.g., functional groups, substructures, homologues, etc.) allows the
creation of novel compounds with desired structures and properties. Almost an unlimited number
of compounds is imaginable and can be synthesized individually for a magnitude of applications.
However, molecular target design of tracer substances for studying the aquatic environment has yet to
be widely considered.

4.2. Strategy for Designing Novel Reactive Tracers

Creating tracer molecules, which react in a predictable way under given physicochemical
conditions, is a relatively new and very innovative concept. By knowing exactly how certain reservoir
conditions drive the tracer reaction, new insights into the controlling variables may be gained. In the
following, the exemplary molecular target design of thermo-sensitive and interface-sensitive tracers is
described. The prerequisite for the design (selection and modification) of molecules that are able to
act as thermo-sensitive and interface-sensitive tracers in reservoir studies, respectively, is a thorough
understanding of their reactive behavior. In particular, it is vital to understand the role and influence of
each structural element in the molecule on its reaction kinetics and its physicochemical tracer properties
(e.g., detection, acidity, solubility, sorption, etc.). In Figure 2, the main steps for a successful theoretical
and practical molecular target tracer design are shown schematically.
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Figure 2. Schematic overview for the design of reservoir tracers.

Based on available literature and experiences from laboratory and field tests, a promising base
molecule for both tracer types is believed to be the class of naphthalenesulfonates, into which thermo-
and interface-sensitive groups can be incorporated (Figure 3). Several physicochemical attributes make
them convenient for the selection as the backbone structure. Naphthalenesulfonates are strong acids
with corresponding low logarithmic acidity constants (pKa) of <1. Therefore, this compound class
forms anions even at very low pH values and is highly water-soluble (>1000 g L−1). The resulting
pH-dependent log KOW of −2.87 at pH > 5 (SciFinder, ACD (Advanced Chemistry Development)/Labs)
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is also very low, which implies a non-sorptive behavior and, thus, a high mobility in aquatic systems.
Additionally, naphthalenesulfonates are stable under oxygen-free conditions and temperatures up to
250 ◦C [129,157]. The molecule’s good fluorescence with a direct detection limit in the low µg L−1 range
is another important feature of naphthalenesulfonates. Hence, their detection in field tests by online
determination simplifies the experimental effort needed. Furthermore, (high-pressure liquid) ion pair
chromatography combined with solid phase extraction and fluorescence detection (SPE-IPC-FLD)
lowers the detection limit by around one order of magnitude (<1 µg L−1) even in highly saline matrices,
such as brines from deep reservoirs [158,159]. The chromatographic separation even allows the
simultaneous analysis of several compounds and, therefore, the use of different isomers, derivatives,
and homologues. Finally, naphthalenesulfonates are non-toxic [160], their use in groundwater studies
is administratively non-restricted, and they are established conservative tracers for the characterization
of geothermal reservoirs [158,161].
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5. Summary and Conclusions

The selection of optimal reactive tracer compounds is main challenge that needs to be considered
before conducting a tracer test. For instance, when designing a thermo-sensitive tracer test, a tracer that
decays too slowly under a system’s temperature lengthens test duration needlessly and thus makes
observing the differences in mean residence times difficult; too fast decay makes it challenging for the
test implementation. Moreover, new reactive tracer compounds have been extensively developed in the
past decades due to the demand in new advanced technologies. Therefore, a complete understanding of
the physicochemical properties of reactive tracers and their occurring processes is essential. Depending
on the biophysicochemical behavior, three types of reactive tracers can be distinguished, namely:
equilibrium tracers, kinetic tracers and reactive tracer for partitioning. Equilibrium tracers are based on
the partitioning equilibrium between two immiscible phases or at their interfaces. Kinetic tracers are
non-equilibrium tracers in which only the reaction kinetics are used for the parameter determination.
Reactive tracers for partitioning are a hybrid form of equilibrium tracers and kinetic tracers.

The complexities of natural systems, along with the large number of requirements for the tracers,
make the selection and use of reactive tracers not a simple task, but an art. Based on the knowledge
of tracer properties, tailor-made tracer compounds are being developed with the required properties
or effects in hydrogeology. The target-oriented combination of well-studied structural elements and
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molecular features (e.g., functional groups, substructures, homologues) allows for the creation of
novel compounds with desired structures and properties. Nearly an unlimited number of compounds
can be synthesized individually for specific applications. This innovative concept can expand the
potential application of tracers in different fields (e.g., quantification of processes in the hyporheic zone,
prediction of environmental risks of hydraulic fracturing). Molecular design assists the preselected
properties (e.g., fluorescence) of both reactants and products. This allows a mass balance, and thereby
opens the opportunity of a tracer test design without an additional conservative tracer.
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