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Abstract: Numerical modelling increasingly generates massive, high-dimensional spatio-temporal
datasets. Exploring such datasets relies on effective visualization. This study presents a generic
workflow to (i) project high-dimensional spatio-temporal data on a two-dimensional (2D) plane
accurately (ii) compare dimensionality reduction techniques (DRTs) in terms of resolution and
computational efficiency (iii) represent 2D projection spatially using a 2D perceptually uniform
background color map. Machine learning (ML) based DRTs for data visualization i.e., principal
component analysis (PCA), generative topographic mapping (GTM), t-distributed stochastic neighbor
embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are compared in
terms of accuracy, resolution and computational efficiency to handle massive datasets. The accuracy
of visualization is evaluated using a quality metric based on a co-ranking framework. The workflow
is applied to an output of an Australian Water Resource Assessment (AWRA) model for Tasmania,
Australia. The dataset consists of daily time series of nine components of the water balance at a 5 km
grid cell resolution for the year 2017. The case study shows that PCA allows rapid visualization of
global data structures, while t-SNE and UMAP allows more accurate representation of local trends.
Furthermore, UMAP is computationally more efficient than t-SNE and least affected by the outliers
compared to GTM.

Keywords: machine learning; spatio-temporal gridded datasets; dimensionality reduction; color
maps; spatial visualization; quality assessment.

1. Introduction

One of the biggest challenges of the big data era is to make sense out of all the information
available. Unfortunately, not all that huge volume of data is informative. Such datasets may contain
spatial or temporal information or both spatial and temporal information. The information is available
either in the form of grid or point data. However, gridded data is difficult to capture in low-dimensional
space especially in Earth sciences, due to their dynamic and non-linear behavior.

Effective data visualization plays a key role in exploring such big datasets, finding patterns/features
and outliers. Such insights are essential to develop hypotheses on the data-generating processes [1].
In addition, data visualization tools can help improve decision making, primary data analysis and
information sharing [2]. Several visualization approaches exist in literature to extract the information
based on graphs, charts, parallel coordinates and tree maps just to name a few [3,4]. So far, domain
experts in Earth sciences rely on traditional visualization methods, such as maps and time series plots,
to explore patterns and structures of high-dimensional spatio-temporal datasets. Data visualization
is embedded in various inference and feature extraction techniques [5]. Therefore, visualizing
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high-dimensional spatio-temporal datasets requires a dimensionality reduction step to extract the most
informative feature dimensions [6].

Dimensionality reduction techniques (DRTs) in hydrology and hydrological modelling are mostly
used as a precursor for classification and clustering multivariate datasets, such as hydrological time
series [7,8]. Dimensionality reduction for spatial visualization of gridded data is, however, gaining
increasing research interest [9,10] and have not been explored using emerging technologies.

Machine learning (ML) algorithms have allowed us to perform complex tasks with limited
information in short amount of time and are able to represent large complex non-linear systems
in a computationally efficient manner. In literature, there exist several ML based DRTs for
data visualization [6,11–20]. The DRTs for data visualization are based on linear and non-linear
techniques [6,11–14], spectral and stochastic embedding [15], parametric and non-parametric
techniques [16–19], neighborhood preservation techniques [17], topographic mapping [18,19] and
multi-dimensional scaling [20,21]. While these methods vary in their way, they preserve distances and
neighborhood relationships between data points in the reduced dimensionality space, they all aim to
minimize both the redundant information and loss of information.

Principal component analysis (PCA) is so far one of the oldest and the best-known DRT in
data mining [13] and is widely used in hydrological sciences since 1960s [22]. PCA is a parametric
linear technique that constructs a low-dimensional representation of a dataset by capturing maximum
variation [16]. The alternative linear approaches include random projection [23,24] but they are not
able to capture the non-linear structures in stochastic datasets. PCA was successfully used in past
studies to identify variations in water quality parameters [25], understanding subsurface groundwater
properties [26] and to explore different quality characteristics of water systems [27]. Although,
PCA memory requirement is minimal i.e., only equal to the number of data points (P), however,
the assumption of capturing only linear features limits the applicability of PCA.

There exist many non-linear extensions of PCA such as kernel PCA [28], manifold charting [29]
and self-organizing maps (SOMs) [18]. SOM is an unsupervised neural network (NN) algorithm that
performs a non-linear mapping of the dominant dependent features present in the high dimensional
data to a low-dimensional grid [18,30].

On the other hand, generative topographic mapping (GTM) is a parametric non-linear technique
first introduced as a probabilistic alternative to SOMs. GTM performs non-linear mapping from the
latent space into the high dimensional data space and for data visualization, mapping is then inverted
using Bayes’ theorem, giving rise to a posterior distribution in latent space [19]. GTM overcomes
many drawbacks of SOMs, such as it preserves the topological structure and retains the neighborhood
information. The algorithm is used for various applications, such as in oil fraction determination
from a mixture of oil, water and gas in a multi-phase pipeline [19], in mapping sparse data sequences
to visualize the distribution of text-based documents [31], in classification of fault data [32] and in
mapping the biopharmaceutical data [33]. Although GTM’s computational memory requirement is
assumed equivalent to P i.e., the number of data points, however, it comes with the cost of selecting
the appropriate parameters, which may lead towards overfitting.

Multi-dimensional scaling (MDS) is the first non-parametric DRT that seeks a 2D representation
of high-dimensional datasets, which preserve topology and distances [17]. Several extensions of
MDS are available in literature, such as curvilinear component analysis [34] and curvilinear distance
analysis [35], however, the capability to capture non-linear structures by MDS is limited and fine tuning
of optimization parameters is required in the extended versions of MDS.

Many alternative non-parametric approaches are discussed in literature to capture non-linear
structures, such as, Isotop [36] for preserving the neighborhood information but do not have any
specific cost and objective functions. Another approach, the stochastic neighbor embedding (SNE) [37]
is introduced with the explicit cost function along with the properties to preserve the neighboring
information. Its main drawback is overcrowding of data points in the projected low dimensional space
using gaussian distribution, which leads to the compact representation of dataset.
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T-distributed SNE (t-SNE) [12] is an improved variation of SNE consists of a long-tailed distribution,
hence large neighborhoods of the data can be matched by a wide range of scales in the two-dimensional
(2D) projection and in this way avoid the overcrowding of data points. In fact, the t-SNE approach
tries to match the probability distributions induced by the pairwise data dissimilarities in the original
data space and the projected space. t-SNE has successfully been used to visualize high dimensional
datasets to reveal local as well as global structures at several scales in various application areas such as,
computer security [38], cancer biology [39], music analysis [40] and bioinformatics [41]. It is worth
mentioning that t-SNE computational and memory complexity is quadratic in the number of data
points (P4) and the local nature of t-SNE makes it sensitive to the curse of inherent dimensionality of
high-dimensional data [42]. In addition, t-SNE performance on the general dimensionality reduction
tasks is still vague as it is primarily built for visualization purpose only.

Uniform manifold approximation and projection (UMAP) is a recently introduced non-parametric
DRT, which shows its effectiveness in coping with diversity of dynamic and non-linear datasets [43].
It builds on strong mathematical foundations largely based on manifold theory and fuzzy topological
representation, which allows it to scale to very large datasets in an efficient manner. Like t-SNE,
UMAP has widely been used in the fields of bioinformatics [44], material science [45] and machine
learning [46], however, so far, no application has been found in hydrology and the Earth sciences. UMAP
computational efficiency equals P and has no computational restrictions on projected dimensions.
This is because UMAP does not require global normalization. Further, UMAP is built on solid
theoretical grounds useful for general purpose dimensionality reduction and preprocessing of machine
learning techniques.

This study focuses on one linear and three non-linear ML based unsupervised DRTs for
visualization i.e., principal component analysis (PCA) [16], generative topographic mapping (GTM) [19],
t-distributed stochastic neighbor embedding (t-SNE) [12] and uniform manifold approximation and
projection (UMAP) [43] summarized in Table 1 along with their respective computational efficiencies
in terms of data points represented by P.

Table 1. Dimensionality reduction techniques and their respective computational efficiencies.

Parametric Non-Parametric

Linear PCA (P) -
Non-linear GTM (P) t-SNE (P4), UMAP(P)

The reason to choose above mentioned DRTs is to test their practicality in terms of accuracy,
resolution and computational efficiency for high dimensional spatio-temporal gridded dataset.

To quantify visualizations of selected DRTs, there exists various quality metrics in literature, either
independent or dependent on DRTs. The quality is assessed by calculating pairwise proximities such as,
distances, similarities/dissimilarities or probabilities between low-dimensional and high-dimensional
space or by reproducing a high-dimensional space from a low-dimensional projection [47,48]. Different
DRTs preserves different proximities, therefore, difficult to compare. The DRTs dependent quality
metrics include neighborhood scales [49] and agreement evaluation criteria [50]. These evaluation
criteria preserve distances between neighboring points and are not suitable for comparison of different
pairwise proximities calculated from various DRTs. There are few DRT independent quality metrics,
which includes scale independent [51], distance [52] and rank based criteria [53]. The scale independent
criteria, such as QNX [51] use ranks instead of pairwise distances between the data points to define the
nearest neighbors. The rank comparison-based approach i.e., co-ranking [53] has a benefit of comparing
Euclidean distance of projected low-dimensional data points to any pairwise proximity of original
high-dimensional data as ordering the neighboring points is possible in all cases. Although, the absolute
information of a proximity is lost in the ranking procedure, however, the rank comparison-based
technique is suitable for comparing different DRTs.
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To visualize patterns effectively, the low-dimensional projected plane needs to be placed in a
spatial context. In this regard, color maps will help the end users to explain spatio-temporal patterns
intuitively. Visualizing higher dimensional data traditionally relies on directly mapping variables
to R, G, B channels to create a pseudo-color image e.g., [54,55] or combining different variables into
a predefined index such as, [56,57]. The main drawbacks of these methods are that they can only
visualize limited number of variables and that they require an in-depth understanding of the data
generating process to develop a meaningful index. High-dimensional data can be visualized by color
coding data points according to their projection in a lower dimensional space [58]. One of the most
challenging aspects of visualizing data through false color images is to develop a perceptually uniform
color scheme in order not to inadvertently emphasize or obscure parts of the data range [59–61].

In crux, the process of dimensionality reduction incurs a loss of information. Where information
loss is strongly linked with the preservation of geometry (distances, topology and reproducibility)
and helps in evaluating the trustworthiness of visual maps as shown in [47] i.e., the greater the
loss of quality, the less the preservation of geometry. Furthermore, the loss can be quantified to
gain an in-depth insight into the visualization’s accuracy. The critical analysis of the literature
review reveals that computationally efficient and accurate methods are required, which automatically
embeds dimensionality reduction in visualization workflow to develop hypothesis on complex
non-linear systems.

The objective of this study is to suggest a workflow that, (i) projects the inherent structure of the
high-dimensional spatio-temporal data in 2D accurately, (ii) Compare DRTs in terms of resolution and
computational efficiency and (iii) spatially visualizes the structure in an intuitive manner through a
perceptually uniform color coding of 2D reduced parameter space. Furthermore, to the best of our
knowledge, such comparison hasn’t been performed on hydrological dataset to extract local and global
structures. These structures serve as a backbone to describe hypothetical phenomenon. There is a great
need for such frameworks, which will help to reduce the uncertainty in observations along with the
improved understanding of physics and dynamics of hydrological systems.

The next section describes the dataset used followed by the adopted methodology, which
shows DRTs, accuracy metrics, color scheme adopted for visualization and computational efficiency
comparison. Result section consists of different DRTs visualization maps along with their visualization
quality quantification and time series analysis. Later, the discussion section will compare the DRTs in
terms of accuracy, resolution and computational efficiency followed by the conclusion.

2. Materials and Methods

2.1. Dataset and Study Area

The Australian Water Resource Assessment (AWRA) model is an operational, near real-time
continental landscape model [62]. For each day, the model partitions rainfall in millimeters (mm) per
day into potential and actual evaporation, runoff and deep drainage to groundwater as well as the
change in water storage in four soil compartments, expressed in mm.

These nine hydrological variables are calculated on a 5 × 5 km grid across Australia, considering
variability in vegetation, topography and soil properties [63]. The ongoing model development
is focused on improving the representation of local conditions and improving computational
efficiency [64].

For this case study, we used the model outputs for the state of Tasmania from 1 January 2017 to
30 September 2017, downloaded from http://www.bom.gov.au/water/landscape on 30 September 2017
as shown in Figure 1. This dataset has 273 daily values for the nine hydrological variables on a spatial
grid scale of (−43.71 < latitude < −40.14) and (144.49 < longitude < 149.41). The three-dimensional
arrays of hydrological variable are normalized to the [0, 1] range individually and appended to each
other to create a single three-dimensional array of size i.e., latitude by longitude by AWRA components
× daily time series observations (72 by 79 by 9 × 273) as shown in Figure 2. This array is vectorized

http://www.bom.gov.au/water/landscape
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and grid cells covering oceans are excluded. This results in a 2D array of size (72 × 79) by (9 × 273) for
further processing i.e., dimensionality reduction and visualization.Water 2020, 11, x FOR PEER REVIEW 5 of 15 
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hydrological AWRA components from January–September 2017 and (c) hydrological components of 
AWRA model output. 
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Figure 2. (a) Three-dimensional arrays of hydrological variables at the spatial grid scale of
(−43.71 < latitude < −40.14) and (144.49 < longitude < 149.41) of size (72 × 79), (b) a spatial grid
e.g., (X1, Y1) consists of (9 × 273) observations and (c) three-dimensional arrays are normalized (Nor)
and append to each other to form a single three-dimensional array of size (72 × 79) by (9 × 273).
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2.2. Methods

To visualize spatio-temporal structures locally and globally, four DRTs have been compared to
efficiently and accurately visualize the multivariate hydrological AWRA model output components.
Later, the perceptually uniform color scheme has been used, which allows user/domain experts to
associate each data point on a 2D color plot by preserving its specific location on a spatial map of
Tasmania. Figure 3 shows this workflow.
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2.2.1. Dimensionality Reduction Techniques (DRTs)

The objective of dimensionality reduction techniques is to find a low-dimensional projection
of a high-dimensional dataset with minimal loss of the information [6]. These techniques visualize
correlations and patterns in high-dimensional spatio-temporal datasets.

For this case study, two parametric (PCA, GTM) and two non-parametric (t-SNE, UMAP) DRTs
are compared.

PCA is a parametric linear technique that projects a dataset onto a 2D space defined by linearly
uncorrelated principal components [16].

Another parametric but non-linear DRT used for visualization is GTM [19,65]. GTM aims to
extract a low-dimensional representation of dataset, initially unknown hence called latent, lies on
high-dimensional data space. Such mapping uses non-linear function to map points in latent space
corresponding to points in data space, provides a map with the distribution of data points centered
at lattice. A lattice consists of grid nodes window. These lattices have an attached responsibility i.e.,
either mean or mode of a distribution, and are used to provide visualization of the map for individual
data points in 2D latent space. The size of the lattice is dependent on the chosen width factor of radial
basis function, which has a direct influence on the visualization. Smaller the lattice size, less compact
visualization can be attained. The hyperparameters govern the execution of GTM including (i) number
of nodes used for tuning the GTM resolution (k); (ii) number of hidden units in radial basis function
(m); (iii) width factor of radial basis function (s) and (iv) regularization coefficient (r) [66].

Unlike PCA and GTM, t-SNE is a non-parametric non-linear technique [12]. t-SNE visualizes
high-dimensional data by giving each datapoint a location in a low-dimensional projected map.
It calculates the probability of similarity between data points using gaussian distribution in
high-dimensional space and calculates the same for its corresponding data points in low-dimensional
space using T-distribution. The similarity of data points is calculated as conditional probabilities
i.e., the points nearest to a defined center are picked by gaussian distribution and T-distribution in
high and low dimensional space, respectively. Later, t-SNE tries to minimize the difference between
the conditional probabilities in high-dimensional and low-dimensional space for the best possible
visualization of data points in 2D using gradient descent method. The objective is to preserve the
neighborhood information without any pre-requisite of user defined input.

UMAP is also a non-parametric non-linear DRT and it searches for a low-dimensional projection
of a dataset that has the closest possible equivalent fuzzy topological structure (made up of local
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manifold approximations which preserve distances) in high-dimensional space [44]. UMAP then
minimizes the cross-entropy between low and high-dimensional space to optimize the visualization in
low-dimensional space. UMAP preserves the essential topological structure of the learned manifold
in the 2D representation of a dataset. Three main input parameters need to be defined by the user
i.e., (i) the number of neighboring points used in local approximation of manifold structure (n), which
ranges from 5 to 50; (ii) factor (d) with values between 0.001 to 0.5 controlling how tightly the embedding
is allowed to compress points together and (iii) the choice of metric (c) used to measure distance in the
input space including minkowski style metrics, spatial metrics, angular and correlation metrics [67].

The DRTs are performed in Python 3.6 using sklearn package for PCA and t-SNE. GTM is applied
using the ugtm package imported from https://github.com/hagax8/ugtm and UMAP is applied using
the umap package imported from https://github.com/lmcinnes/umap.

2.2.2. Quality Metric

The QNX measure [51] is used to quantify DRT based visualizations in a topology preserving
manner i.e., how well neighborhood relationship can be preserved between data vectors to capture
in 2D. QNX relies on the ranks of sorted distances between the high-dimensional and 2D projections.
QNX measure is independent of any DRT, therefore, successfully used for the quantification of 2D
projected visualizations for comparative analysis. This technique averages the quality curve QNX over
varying values of K-ary of neighborhood (K) [51] as shown in Equation (1).

QNX(K) =
1

KN

K∑
k = 1

K∑
l = 1

Qkl (1)

Qkl =
{
(i, j)ρij = k and rij = l

}
(2)

In Equation (1) QNX is a quality metric ranging between [0, 1], 1 means a perfect projection and
vice versa. N is the total number of observations in high-dimensional space i.e., (72 × 79) by (9 × 273),
X represents projected low-dimensional vectors and K is the neighborhood size. In Equation (2), ρij is
the rank of a sorted distance (ξi, ξj) in a high-dimensional space corresponding to a rank rij allotted to
a sorted distance (xi, xj) in 2D projection. A more comprehensive overview of the mathematical details
is provided in [46,51].

The above quantification criteria show a major advancement over the distance preservation
measurement as the use of ranks allow distances to grow or shrink, makes it scale-independent, given
that their orders do not change. Such criteria only dependent on neighborhood size K, produces curve
that may be analyzed on various scales.

2.2.3. Visualization

The next step in the workflow is to super impose the perceptually uniform color scheme on the
projected 2D plane to generate a spatial map of the dataset in which points with similar colors indicate
similar data vectors [57]. The color scheme is based on HSLUV (www.hsluv.org), a human-friendly
alternative to the Hue, Saturation, and Lightness (HSL) color space. It extends the perceptually uniform
CIELUV color space with a saturation component that allows chroma to be expressed as a percentage.
It is to be anticipated that the combination of three components i.e., colored scheme, colored map and
colored time series in a machine learning based visualization workflow allows to capture rich structure
of the data and display results in a format domain expert are familiar with.

3. Results

To accurately present the spatio-temporal structure of high-dimensional AWRA model output in
2D and to visualize it using the perceptually uniform color scheme, the comparative analysis has been
performed using PCA, GTM, t-SNE and UMAP.

https://github.com/hagax8/ugtm
https://github.com/lmcinnes/umap
www.hsluv.org
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The color plots corresponding to their spatial maps are provided in Figure 4a–c respectively.
The background color to the plot allows us to associate each AWRA pixel on a spatial map with a
position on the color plot. Each pixel consists of nine time series and reflect the water balance in a
specific location.
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Figure 4. For principal component analysis (PCA), generative topographic mapping (GTM),
t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and
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In Figure 4a PCA, t-SNE and UMAP are one-to-one mapping, where each data point is represented
in a low-dimensional 2D space. GTM however is a many-to-one mapping in which multiple data points
can be mapped to a single node, which represents the mean of a probability distribution. The best
GTM visualization for the dataset in hand consists of a parameter selection (k = 16, m = 10, s = 0.3,
r = 0.1) along with the mean data points representation. Further the choice of parameters (n = 10,
d = 0.1 and c = correlation metric) provides the best visualization results for UMAP.

Figure 4b visualizes the main trends in the dataset arising from topographic and rainfall gradients.
As the color scheme is designed to gradually blend from one color to another, colors close to each other
indicate similar behavior. This allows us to quickly visualize areas with similar behavior forming
clusters and find outlying values. In this regard, t-SNE and UMAP, appears to provide higher contrast
to identify subtle trends and dissimilarities. This is largely due to the ability of t-SNE to capture small
pair-wise distances, i.e., local structures in a 2D projected map, which resulted in better and clear
local patterns.

Further UMAP performance is visually comparable to t-SNE but arguably capture mores of the
global structure than local structure. This is due to the tradeoff between the number of neighborhoods
(n) chosen in local approximations of manifold structure and the reasonable tightness of data points
embedding (d) in optimizing the visualization quality. As larger n with tight d will average out the
local approximations in the process and result in potentially densely packed regions, which captures
the global structure better. GTM performs relatively poor in capturing any type of trends largely due to
its dependence on the efficient parameter selection and sensitivity to outliers. Furthermore, the reason
may be its dependence on the mean nodes of the data points instead of the data points itself. The first
two components of PCA summarize the main trends in the data, which in results in displaying more
global patterns than other compared techniques.

It is noticeable that without applying any clustering technique, the continuous perceptual uniform
color plot scheme provides an in-depth insight into different groupings with an intuitive interpretation
and meaningful patterns.

Figure 4(c(i)–(ix)) can further authenticate the above given statements. The 2D space is divided in
9 equal regions and within each region, 20 points are randomly selected. The associated time series
are plotted with the corresponding color. The time series of colors associated with t-SNE and UMAP
are more similar within a 2D space region, showing less variation in changing colors abruptly and
results in forming clusters more accurately at local scale; whereas, the time series associated with PCA
and GTM show more variation in time series within a 2D space region. These variations are clearly
shown by varying time series colors in Figure 4(c(i)–(ix)), resulted in identifying patterns locally with
less accuracy.

Figure 5 shows the QNX metric for DRTs. The relatively constant QNX values across neighborhood
values is an indication that t-SNE and UMAP capture the local structures of high-dimensional
spatio-temporal dataset in 2D projection as well as global structures. However, UMAP performance
to t-SNE is slightly better at capturing the global trends but the local trends are affected by the
outliers/noise. Furthermore, GTM performs poor in capturing the local as well as global trends due
to its sensitivity to the outliers. The first two principal components, not surprisingly, do not provide
much insight into the local structures, but perform better than t-SNE and UMAP to capture global
structures as shown by higher values of QNX for larger neighborhoods (K) shown in Figure 5.
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Figure 5. QNX visualization quantification curves PCA, GTM, t-SNE and UMAP. PCA provides better
global patterns (K > 120), whereas, GTM performance is poor in comparison. Further, t-SNE captures
the local structures better (K < 120) and UMAP captures better global structure between (250 < K < 550).

Table 2 further justifies Figure 5 by providing the QNX metric values against their varying
neighborhood sizes K for four DRTs. As stated before, if QNX ~ 1, it shows perfect projection and vice
versa. Drastic increase in QNX values against larger K for PCA compared to GTM, t-SNE and UMAP
shows that PCA is better at capturing global trends as QNX values quickly approaches to 1. However,
QNX values against varying values of K are far from 1 for GTM, therefore, does not capture any kind of
trend with higher accuracy.

Table 2. Visualization quantification index (QNX) for DRTs against neighborhood sizes (K).

QNX(K)/K 0 60 120 180 240 300 360 420 480 540

PCA 0.06 0.50 0.60 0.70 0.75 0.79 0.81 0.83 0.85 0.86
GTM 0.04 0.38 0.42 0.44 0.47 0.50 0.52 0.57 0.59 0.61
t-SNE 0.63 0.60 0.60 0.62 0.65 0.67 0.68 0.70 0.72 0.73
UMAP 0.22 0.59 0.60 0.62 0.652 0.673 0.682 0.702 0.722 0.732

On the other hand, t-SNE showed better performance in capturing local as well as global trends.
This is due to higher QNX values against K compared to GTM and UMAP as shown in Table 2. It is
important to note that, UMAP is slightly better at capturing global trends compared to t-SNE for the
range of K, i.e., 250 < K < 550.

As far as the computational efficiency is concerned, PCA took 20 seconds to run, whereas GTM
takes at least 150 seconds to run. On the other hand, UMAP is much faster in producing results due to
its non-parametric nature and took approximately 15 seconds, however, a non-parametric t-SNE took
only 80 seconds to run. The experiment is performed on 64-bit operating system with 32 GB Ram.
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4. Discussion

Choosing an appropriate data representation method is not a trivial task as they differ in the goals
of exploring either correlations, clusters or patterns in datasets with varying computational efficiencies.
Most of the DRTs are designed for high-dimensional point datasets. The gridded spatio-temporal
datasets are computationally more challenging.

Generally speaking, linear techniques compared to non-linear DRTs are more flexible in
representing high-dimensional structures in lower dimensions and therefore will incur less loss of
information. Topographic mappings and spectral embedding are designed to preserve the topography
or geometry of the dataset, whereas neighborhood preservation techniques, such as multi-dimensional
scaling and neural networks, aim to retain the multi-dimensional distances between data points in
the low-dimensional projections. Furthermore, the parametric DRTs optimize the parameters in the
process of training, which will provide out-of-sample extensions, whereas the non-parametric DRTs
do not.

Specific to the linear parametric DRT discussed in this case study i.e., PCA, a linear projection
cannot faithfully reveal the non-linear structures of the datasets and disturbs the local neighborhood
structures. Further, for very high-dimensional datasets, PCA becomes costly and sensitive to noise
due to its dependency on data covariance matrix. However, PCA is a useful preprocessing step for
very high-dimensional datasets to later proceed with the non-linear feature extraction techniques.
Alternatively, non-linear features are well captured by the parametric DRT i.e., GTM, however, requires
an appropriate selection of parameters.

On the other hand, non-parametric techniques have an advantage of fast processing and do not
assume any functional form of mapping to regulate parameters, however, suffers from a disadvantage
of not providing out of sample extension. T-SNE and UMAP are the main non-parametric ML based
DRTS discussed in this case study. UMAP is preferable to use for general purpose DRT, however,
t-SNE is preferred for visualization.

This case study suggested a workflow by comparing four ML based DRTs in terms of accuracy,
efficiency and resolution suitable for high-dimensional spatio-temporal gridded datasets followed by
its visualization quantification.

PCA retains large pairwise distances in the reduced dimensional space defined by the first two
principal components only. Local structures may be captured in other principal components. t-SNE
performs well for the high dimensional gridded datasets as its non-linear mapping function helps to
capture various spatio-temporal structures efficiently. It is important to mention here that UMAP is
competitive to t-SNE for visualization quality, however, preserve more of a global structure compared
to t-SNE. Furthermore, the performance of GTM largely depends on its parameter selection i.e., number
of nodes (k). With the increase in m, the lower-dimensional space points get more clustered together
due to the network overtraining, resulting in a more precise visualization rather than representing
optimized structures.

Overall, UMAP is a general-purpose DRT and can be recommended to treat high-dimensional
datasets with superior run time performance to capture non-linear global structure more accurately
compared to t-SNE. UMAP and t-SNE can both handle large non-linear datasets more efficiently,
however, non-linear GTM due to its parametric nature is prone to over-fitting.

All above discussed DRTs for data visualization have some associated advantages and
disadvantages, however, will assist domain experts to select suitable technique for their dataset.
Identifying the inherent structure of spatio-temporal dataset will, however, always be hampered by
the information loss that is unavoidable when representing high-dimensional data in two dimensions.
The selection of suitable ML based DRT depends on the dataset in hand. If the nature of dataset is
linear than PCA is best at capturing the local and global features, however, non-linear datasets can
be handled well by parametric GTM. If the parameters are more difficult to decide than UMAP and
t-SNE are preferable to capture non-linear trends. However, it should be kept in mind that t-SNE is
computationally more expensive compared to UMAP.
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Moreover, different DRTs often result in very different visualizations and it is hard to decide the
best suitable DRT for a given dataset at hand. It is often not clear if differences in the visualizations are
due to the data structure or the method chosen. Several techniques have been developed to assess the
quality of low dimensional projected visualizations. However, the QNX quality metric is suggested to
quantify visualizations as it does not depend on any DRT. Further, to visualize spatial patterns of a
single quantity of interest the perceptually uniform color scheme is recommended in order to capture
patterns in a diverse range.

5. Conclusions

The suggested workflow applied DRTs to visualize the multivariate AWRA model output
hydrological components in order to determine the prominent spatio-temporal features followed by its
quantification to access the visualization accuracy. The comparative analysis of four DRTs i.e., PCA,
GTM, t-SNE and UMAP by accounting a perceptual uniform color scheme has been performed on
AWRA model output for the Tasmania region.

t-SNE and UMAP are effective in detecting local spatial patterns with high resolution as compared
to the GTM, whereas, GTM lacks resolution in explaining the local as well as global trends. On the
other hand, PCA is better at detecting the global patterns. The time-series color plot further validates
the results and the quality metric QNX proves it quantitatively. Moreover, t-SNE proves to be
computationally quite expensive for high-dimensional spatio-temporal datasets, compared to PCA,
UMAP and GTM but provides much better insight almost equivalent to UMAP in explaining the data
structures and patterns. Furthermore, GTM is much sensitive to outliers compared to UMAP.

In essence, t-SNE and UMAP are better to use when non-linear trends are expected and local trends
are of much more importance, however, the UMAP is computationally more efficient. Furthermore,
PCA can capture global trends better for linear datasets, whereas, the parametric nature of the GTM to
capture non-linear trends makes it harder to capture any kind of trend.

The suggested workflow is beneficial for the exploratory data analysis of hydrological data.
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