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Abstract: Groundwater nitrate (NO3
−) pollution sources and in situ attenuation were investigated

in Kisumu city and Kano plains. Samples from 62 groundwater wells consisting of shallow wells
(hand dug, depth <10 m) and boreholes (machine drilled, depth >15 m) were obtained during wet
(May–July 2017) and dry (February 2018) seasons and analyzed for physicochemical and isotopic
(δ15N-NO3

−, δ18O-NO3
−, and δ11B) parameters. Groundwater NO3

− concentrations ranged from
<0.04 to 90.6 mg L−1. Boreholes in Ahero town showed significantly higher NO3

− (20.0–70.0 mg L−1)
than boreholes in the Kano plains (<10.0 mg L−1). Shallow wells in Kisumu gave significantly higher
NO3

− (11.4–90.6 mg L−1) than those in the Kano plains (<10.0 mg L−1). About 63% of the boreholes
and 75% of the shallow wells exceeded the drinking water WHO threshold for NO3

− and NO2
−

(nitrite) during the study period. Mean δ15N-NO3
− values of 14.8%� ± 7.0%� and 20.7%� ± 11.1%�,

and δ18O-NO3
− values of 10.2%� ± 5.2%� and 13.2%� ± 6.0%� in wet and dry seasons, respectively,

indicated manure and/or sewage as main sources of groundwater NO3
−. However, a concurrent

enrichment of δ15N and δ18O was observed, especially in the dry season, with a corresponding
NO3

− decrease, indicating in situ denitrification. In addition, partial nitrification of mostly sewage
derived NH4

+ appeared to be responsible for increased NO2
− concentrations observed in the dry

season. Specifically, targeted δ11B data indicated that sewage was the main source of groundwater
NO3

− pollution in shallow wells within Kisumu informal settlements, boreholes in Ahero, and
public institutions in populated neighborhoods of Kano; while manure was the main source of
NO3

− in boreholes and shallow wells in the Kano and planned estates around Kisumu. Waste-water
sanitation systems in the region should be urgently improved to avoid further deterioration of
groundwater sources.
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1. Introduction

Africa is quickly urbanizing with cities in Sub-Saharan Africa (SSA), reported to have grown at an
average rate of 4.0% per annum over a period of 20 years, compared to the global average annual urban
population growth rate of between 1.44% and 1.84% [1]. This rapid urbanization has put pressure
on water service provision and sanitation infrastructure in SSA cities. Their sanitation infrastructure
largely remains unchanged due to low capital investments, estimated at about 20% of the GDP. As
utilities responsible for piped water and sanitation services struggle to meet the demand, community,
and private-owned groundwater wells becomes the alternative option, not only to the rural population
but also to urban dwellers. At the same time, nitrate (NO3

−) is emerging as the most widespread
groundwater contaminant associated with anthropogenic activities. The World Health Organization
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(WHO) has put the maximum allowable concentration at 50 mg L−1 nitrate. This is because high nitrate
concentrations in water are both a health and environmental hazard promoting eutrophication, pose
high risks to methemoglobinemia (blue baby syndrome) in infants and colorectal cancer [2,3].

In Kisumu city, which is located at the shores of Lake Victoria, groundwater use for domestic,
industrial, and agricultural purposes is high. This is driven by rapid urbanization and industrialization
due to a vibrant sugarcane production industry and a high population density ranging 827–4737 people
per square kilometer, compared to Kenya’s average population density of 82 people per square
kilometer [4]. The supply of Lake Victoria water to the city is limited because of the low production
capacity of the city’s water service provider grappling with increased treatment costs caused by
pollution and eutrophication of Lake Victoria. This has made the piped lake water unaffordable to the
majority of the residents in the city and its surrounding areas, leading to an increased reliance on hand
dug shallow wells or community water supply boreholes. Due to the minimal costs involved in their
construction, shallow wells are widely used amongst urban residents in Kisumu and their distribution
and significance has been well documented [5]. Despite the rapid expansion of the city, there has not
been a corresponding investment in necessary waste management infrastructure, an occurrence that is
characteristic of many other SSA cities [6]. The situation has been worsened by the proliferation of
informal settlements (slums), which are not connected to any conventional sanitation system. The
slum areas are characterized by the use of pit latrines, open defecation by both humans and animals,
and landfills developing near groundwater resources. A similar sanitary situation is found in the rural
Kano, although with a lower population density. In addition, the use of inorganic fertilizer and animal
manure in the Kano area for sugarcane farming (Figure 1) may be a potential source of groundwater
nitrate contamination.
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Figure 1. Study area map with an inset: location of the study area in the Lake Victoria basin, Kenya 
(a) and land use map indicating the spatial distribution of the groundwater sampling points 
represented by squares and stars for boreholes (BH) and shallow wells (SW), respectively (b). 
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the potential sources of groundwater nitrate or its fate. Coupling of hydrochemistry and nitrate 
isotopes (δ15N- and δ18O-NO3−) has demonstrated its usefulness in identifying potential NO3− sources 
in groundwater and surface water [8]. In addition, the use of δ15N- and δ18O-NO3− has proven to be a 
powerful method to pinpoint occurrence of NO3− transformation processes such as nitrification and 
denitrification, influencing the NO3− concentration in groundwater [9,10]. However, mixing of 
different NO3− sources can lead to modification of the isotopic composition of dissolved NO3− and at 
the same time, δ15N- and δ18O-NO3− cannot clearly distinguish manure from sewage nitrate sources, 
since both sources have overlapping isotopic signatures [2]. Similarly, N transformation via 
nitrification and denitrification results into isotopic fractionations, which alter the isotopic 
signatures (δ15N and δ18O) of NO3−. These confounding factors complicate discrimination between 
multiple nitrate sources based on their isotopic composition. However, boron is a ubiquitous tracer 
in nature and is usually found in groundwater as a minor constituent. The large range of boron 
isotope (δ11B) ratios, observed in nature, enables clear contrasts to be made between boron sources in 
groundwater. Furthermore, boron is not affected by N transformation processes and researchers 
have demonstrated the added value of combining nitrate and boron isotope (δ15N, δ18O-NO3−, and 
δ11B) ratios in NO3− source discrimination [11–14]. 

Together with providing baseline spatiotemporal water quality and isotopic data of the 
investigated area, this study seeks (1) to establish the potential sources of NO3− input into 
groundwater and (2) to assess in situ attenuation controlling groundwater NO3−concentration in the 
region. This information is paramount for policy development regarding groundwater use, 
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Figure 1. Study area map with an inset: location of the study area in the Lake Victoria basin, Kenya (a)
and land use map indicating the spatial distribution of the groundwater sampling points represented
by squares and stars for boreholes (BH) and shallow wells (SW), respectively (b).

Despite the high risks to groundwater nitrate contamination, the available information on
groundwater nitrate in this part of the Lake Victoria basin is scarce [5,7]. Therefore, data on spatial
nitrate distribution in the city and its surroundings is lacking and no study has attempted to identify
the potential sources of groundwater nitrate or its fate. Coupling of hydrochemistry and nitrate
isotopes (δ15N- and δ18O-NO3

−) has demonstrated its usefulness in identifying potential NO3
− sources

in groundwater and surface water [8]. In addition, the use of δ15N- and δ18O-NO3
− has proven to

be a powerful method to pinpoint occurrence of NO3
− transformation processes such as nitrification

and denitrification, influencing the NO3
− concentration in groundwater [9,10]. However, mixing

of different NO3
− sources can lead to modification of the isotopic composition of dissolved NO3

−

and at the same time, δ15N- and δ18O-NO3
− cannot clearly distinguish manure from sewage nitrate

sources, since both sources have overlapping isotopic signatures [2]. Similarly, N transformation via
nitrification and denitrification results into isotopic fractionations, which alter the isotopic signatures
(δ15N and δ18O) of NO3

−. These confounding factors complicate discrimination between multiple
nitrate sources based on their isotopic composition. However, boron is a ubiquitous tracer in nature
and is usually found in groundwater as a minor constituent. The large range of boron isotope (δ11B)
ratios, observed in nature, enables clear contrasts to be made between boron sources in groundwater.
Furthermore, boron is not affected by N transformation processes and researchers have demonstrated
the added value of combining nitrate and boron isotope (δ15N, δ18O-NO3

−, and δ11B) ratios in NO3
−

source discrimination [11–14].
Together with providing baseline spatiotemporal water quality and isotopic data of the investigated

area, this study seeks (1) to establish the potential sources of NO3
− input into groundwater and (2) to

assess in situ attenuation controlling groundwater NO3
−concentration in the region. This information

is paramount for policy development regarding groundwater use, sanitation, urban waste management,
and use of agricultural inputs in the region.
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2. Materials and Methods

2.1. Study Area

Kisumu city and the surrounding Kano plains are geographically located in a central plain
surrounded by higher areas in the north-west (Kisian hill) and north-east (Nandi hills), bordering the
Winam gulf of Lake Victoria (Figure 1). The city lies between latitude 00◦02’ N–00◦11’ S and longitude
34◦35’–34◦55’ E and covers approximately 417 km2, and 35.5% is part of the Lake Victoria water body.
The city has experienced a high population growth with a reported population of 567,963 according to
the recent 2019 census [4]. It is Kenya’s third largest city and the second most important city in the lake
basin after Kampala [15]. The area receives a mean annual rainfall of 1245 mm occurring in two seasons,
long and short rains from March–July and September–November, respectively. In addition, the mean
annual minimum and maximum temperatures in the area are 17.3 and 28.9 ◦C, respectively [16]. The
geology and hydrogeology of the study area has been described by Olago [17]. Kisumu city consists
of fractured basalt overlain by pyroclastic deposits, which results into perched/unconfined aquifers
with a localized recharge [5]. The unconfined aquifer comprises the shallow groundwater in the area,
which occurs at depths ranging between 5 and 25 m [7]. The fractures act as pathways for groundwater
flow and recharge, posing a great risk to groundwater pollution. Deeper aquifers (25–60 m) in the
area occur in faulted and fractured hard rocks and sediments along the gulf, while thicker and well
developed aquifers occur in the Kano area at depths greater than 150 m [17]. A piezometric map of the
study area by Oiro [18] shows groundwater flows from the high altitude areas towards Lake Victoria
as discharge point. This is in agreement with Olago [17], who reported that the groundwater flow
direction in the Kisumu regional aquifer is from the highland recharge areas towards the central part
of the Kano plains and the lake.

Land use in the study area includes the urban and peri-urban zone, which is mainly concentrated
in the Kisumu municipality, an area covering 297 km2 [16]. The other urban centers are Ahero
and Awasi, which are situated in the Kano plains and lie along the busy Kisumu-Nairobi highway
(Figure 1b). Major industries include cotton mills, breweries, cement factory, and several sugar milling
and agro-chemical production industries. Urban agriculture and livestock keeping is common in
the area and has been documented [16]. Sugarcane farming is the main agricultural activity in the
Kano area (Figure 1), and is practiced under both small-scale mixed farming (with food crops: maize,
sorghum, and finger millet) and large-scale commercial farming. Irrigated rice farming is practiced in
the Ahero area next to the river Nyando.

2.2. Water Sampling and Analysis

In order to understand groundwater nitrate concentration, distribution, potential sources, and fate,
the study targeted both the shallow unconfined aquifer where shallow wells (SW) tap from, and the
deeper unconfined and confined aquifers where the boreholes (BH) are sank at depths above 25 m. The
groundwater points were mapped and selected in May 2017 in consultation with the Kisumu-based
water resources authority (WRA) regional office. The aim was to identify production BHs and SWs
spatially distributed and representative of the major land use patterns in the area (Figure 1). The
final list of sampling points included BHs and SWs in informal settlements (Ombuga, Nyalenda, and
Manyatta) and formal settlements (Migotsi and Kibos) of Kisumu city where groundwater use is high.
In the Kano area, BHs and SWs were selected from public institutions (e.g., schools), community donor
funded projects, and private owned wells. A total of 62 groundwater production points were sampled
during the wet season (May–July 2017) and in the dry season (February 2018).

During sampling, water samples were taken from production BHs and SWs. In case the well was
not pumping prior to the sampling exercise, the well was purged to ensure the representativeness of
a sample. Samples were first pre-filtered onsite using 11 µm filters (Whatman, GE Healthcare Life
Sciences, Chicago, IL, USA) and then filled in a 200 mL PVC bottle after pre-rinsing with the sample
water. Sample water was stored in an insulated cooler box containing ice cubes for transportation
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to the laboratory for physicochemical and isotopic analysis. Duplicate samples for cation analysis
were taken in 100 mL HDPE bottles, pre-filtered, and acidified to pH = 2 using diluted hydrochloric
acid. In situ measurements included temperature (T), electrical conductivity (EC), pH, and dissolved
oxygen (DO). These in situ parameters (T, EC, pH, and DO) were measured in every sampling station
using a multi-parameter sensor (Multi3430, WTW, Germany). In the laboratory, all samples were
filtered through 0.45 µm membrane filters and stored frozen (−17 ◦C) awaiting analysis. Laboratory
determination of Na+, K+, Ca2+, Mg2+, NH4

+, NO3
−, NO2

−, Cl−, and SO4
2− concentrations was carried

out using an ion chromatograph (930 Compact IC Flex, Metrohm, Switzerland).
The δ15N- and δ18O-NO3

− values were determined by the “Bacterial denitrification
method” [19–21], which allows simultaneous determination of δ15N and δ18O in N2O produced
from the conversion of NO3

− by denitrifying bacteria, which naturally lack N2O-reductase activity.
The δ15N and δ18O analysis of the produced N2O was carried out using a trace gas preparation unit
(ANCA TGII, SerCon, UK), coupled to an isotope ratio mass spectrometer (IRMS; 20–20, SerCon, UK).
The N2O sample was flushed out of the sample vial using a double-hole needle on an auto-sampler.
Water was removed using a combination of nafion dryer and MgClO4 scrubber. By cryogenic trapping
and focusing, the N2O was compressed onto a capillary column (CP-Poraplot Q 25 m, 0.32 mm
id, 10 µm df, Varian, US) at 35 ◦C and subsequently analyzed by IRMS. The subsequent stable
isotope data were expressed as delta (δ) units in per mil (%�) notation relative to the respective
international standards:

− δsample (%�) =

[ Rsample

Rstandard
− 1
]
× 1000 (1)

where Rsample and Rstandard are the 15N/14N or 18O/16O ratio of the sample and the standard for
δ15N and δ18O, respectively. δ15N values are reported relative to N2 in atmospheric air (AIR) and
δ18O are reported relative to Vienna Standard Mean Ocean Water (VSMOW). Three internationally
recognized reference standards, USGS32 (180.0%� ± 1.0%� for δ15N, 25.7%� ± 0.4%� for δ18O), USGS34
(−1.8%� ± 0.2%� for δ15N, −27.8%� ± 0.4%� for δ18O), and USGS35 (2.7%� ± 0.2%� for δ15N, 56.8%�

± 0.3%� for δ18O), were used to normalize the raw δ15N- and δ18O-NO3
− values (based on a N2O

reference gas tank) to the AIR and VSMOW scale. USGS32 and USGS34 were used for normalization of
the δ15N value and USGS34 and USGS35 for the δ18O. The amount of NO3

− in samples and references
were matched (i.e., 20 nmol), which corrects for nonlinearity of the IRMS and blanks associated with
the procedure. An in-house KNO3 laboratory standard (9.9%� for δ15N, 24.3%� for δ18O) was analyzed
together with the samples for quality control. Measurement batches were only accepted if measured
δ15N and δ18O values of the laboratory standard were within 0.4%� and 0.5%� of our accepted values,
respectively. If standard deviation on replicate samples was higher than 0.3 and 0.4 for δ15N and δ18O,
respectively, the sample was reanalyzed. This method is well explained in [20,21].

The water analysis technique for B and δ11B is well covered in [22]. Samples underwent a two-step
chemical purification using Amberlite IRA-743-selective resin (method adapted from Gaillardet and
Allegre [23]). First, the sample (pH = 7) was loaded on a Teflon PFA®column filled with 1 mL resin,
previously cleaned with ultrapure water and 2 N ultrapure NaOH. After cleaning the resin again with
water and NaOH, the purified B was collected with 15 mL of sub-boiled HCl 2 N. After neutralization
of the HCl with Superpur NH4OH (20%), the purified B was loaded again on a small 100 mL resin
Teflon PFA®column. B was collected with 2 mL of HCl 2N. An aliquot corresponding to 2 mg of
B was then evaporated below 70 ◦C with mannitol (C6H8(OH)6) in order to avoid B loss during
evaporation [24]. The dry sample was loaded onto a tantalum (Ta) single filament with graphite (C),
mannitol, and cesium (Cs). δ11B values were then determined by measuring the Cs2BO2

+ ion [25,26]
by a thermal ionization mass spectrometer. The analysis was run in the dynamic mode by switching
between masses 308 and 309. Each analysis corresponded to 10 blocks of 10 ratios. Samples were
always run twice. Total B blank was less than 10 ng corresponding to a maximum contribution of 0.2%,
which is negligible. Seawater (IAEA-B1) was purified regularly in the same way, in order to check for
possible chemical fractionation due to an uncompleted recovery of B, and to evaluate the accuracy
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and reproducibility of the overall procedure (e.g., [27]). Reproducibility was obtained by repeated
measurements of the NBS951, and the accuracy was controlled with the analysis of the IAEA-B1
seawater standard (δ11B = 38.6%� ± 1.7%�). Similar to N and O, B isotope ratios were expressed in
delta (δ) units and a per mil (%�) notation relative to an international standard, NBS951.

Statistical analysis for determining spatial-temporal differences in physico-chemical and isotopic
parameters was performed using ANOVA with Tukey HSD tests, and p < 0.05 significance level was
set to test significance between the parameter sets.

3. Results and Discussion

3.1. Hydrochemistry

Table 1 presents a statistical summary of 16 hydro-chemical and three isotopic parameters for
boreholes and shallow wells sampled during the wet and dry seasons. Water pH ranged from 6.1 to
10.1 and from 6.2 to 8.6 in boreholes and shallow wells, respectively. Two borehole samples (BH 27 and
28) exceeded the World Health Organization (WHO) pH limit (>8.5) during both wet and dry seasons
while shallow wells within Kisumu recorded a slightly acidic pH (<6.5). High pH observed in BH 27
and 28, located in the Awasi area (Figure 1b), is characteristic of cation exchange reactions where Ca2+

and/or Mg2+ in solution is exchanged with Na+ on clay minerals [28]. Replacement of Ca2+ by Na+ in
solution results into a pH change, which is sanctioned by change in the equilibrium of the reaction:

CaCO3 + CO2(g) + H2O = Ca2+ + 2HCO−3 (2)

It shifts the equilibrium further to the right and increases the bicarbonate content and pH. This is
supported by the significantly low Ca2+ (p < 0.0001) and Mg2+ (p = 0.04) values ranging from 1.1 to
1.7 mg L−1 and from 0.1 to 0.2 mg L−1, respectively obtained in the two boreholes during the study
period (Supplementary Tables S1 and S2). Consequently, high pH and low calcium levels favor the
solubility of fluoride, and this accounts for the high fluoride levels (9.0 and 11.0 mg L−1, respectively;
Supplementary Table S1) observed in the two Awasi boreholes. Generally, groundwater in the area had
high fluoride levels as shown in Table 1 where mean values exceeded the WHO limit (1.5 mg L−1) for
drinking water. This is a health risk since excessive intake of fluoride is known to cause dental/skeletal
fluorosis, cancer, low hemoglobin levels, osteoporosis, reduced immunity, and thyroid disorders [29].

Water temperature ranged from 25.3 to 37.6 ◦C and from 24.5 to 28.5 ◦C in boreholes and shallow
wells, respectively, and did not significantly differ by season. The EC values ranged from 295 to
2562 µS cm−1 in boreholes and from 248 to 1427 µS cm−1 in shallow wells portraying an increase in
mineralization with well depth. On the other hand, dissolved oxygen (DO) values ranged from 1.4
to 6.8 mg O2 L−1 in boreholes and from 1.2 to 9.8 mg O2 L−1 in shallow wells. However, the wet
season showed lower DO values than the dry season in both boreholes and shallow wells. This implies
increased oxygen consumption in groundwater most likely by dissolved organic carbon originating
from contaminated surface water during the wet season. Nitrate showed a wide variation ranging
from <0.04 to 70.0 mg L−1 and from <0.04 to 90.6 mg L−1 in boreholes and shallow wells, respectively
(Table 1). Seasonally, NO3

− concentrations in shallow wells were significantly higher in the wet season
compared to the dry season with about 70% of shallow wells located in Kisumu city giving values
above the WHO recommended limit (50 mg L−1). Unlike NO3

−, NO2
− concentration was significantly

higher in the dry season than in the wet season for both boreholes and shallow wells with 60% of the
samples exceeding the WHO limit (0.2 mg L−1) during the dry season. The biogeochemical processes
governing the NO3

− and NO2
− variations are discussed further in Section 3.3. In general, about 63% of

the boreholes and 75% of the shallow wells exceeded the WHO recommended limit values for NO3
−

and NO2
− during the study period. Both boreholes and shallow wells showed similar concentrations

of the major anions: Cl−, SO4
2−, and HCO3

− and the cations: Na+, K+, Ca2+, Mg2+, and NH4
+ during

wet and dry seasons with values falling within the WHO limits for drinking water.
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Table 1. Statistical summary of hydro-chemical and isotopic parameters for boreholes (n = 44) and shallow wells (n = 18) sampled during wet and dry seasons. WHO
limit stands for World Health Organization standard limits for drinking water; DO stands for dissolved oxygen; p-value represents the ANOVA (at p < 0.05 levels)
output for testing differences of parameters between wet and dry seasons.

Boreholes
WHO
Limit

Number
Exceeded

WHO

Shallow Wells
WHO
Limit

Number
Exceeded

WHOWet Dry p Value Wet Dry p
Value

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

Physico-Chemical Parameters

pH (-) 7 7.6 ± 0.7 10.1 6.1 7.4 ± 0.6 9.6 0.23 6.5–8.5 4 6.3 7.1 ± 0.7 8.6 6.2 7.0 ± 0.6 8.2 0.70 6.5–8.5 10
Temp (◦C) 25.3 28.0 ± 2.2 37.6 25.7 28.1 ± 1.9 36 0.84 - 0 25.1 26.4 ± 0.9 28.2 24.5 26.2 ± 1.0 28.5 0.43 - 0

EC (µS cm−1) 295 1091 ± 390 2520 400 1052 ± 383 2562 0.71 - 0 248 821 ± 282 1420 290 785 ± 3.02 1427 0.74 - 0
DO (mg O2 L−1) 1.4 3.1 ± 1.4 6.6 2 3.9 ± 1.2 6.8 0.01 - 0 1.2 2.9 ± 1.5 6.2 1.6 4.1 ± 2.0 9.8 0.05 - 0

Cl− (mg L−1) 1.6 22 ± 21 80.1 0.1 29.4 ± 39.7 156 0.29 250 0 1.7 32.0 ± 22.8 75.5 2.8 41.5 ± 34.3 103 0.33 250 0
SO4

2− (mg L−1) 0.9 37 ± 41 212 0.4 49.1 ± 67.7 360 0.33 250 0 1.4 31 ± 17 56.3 9 37 ± 17.5 67.2 0.38 250 0
NO3

− (mg L−1) <0.04 5.8 ± 8.8 43.7 <0.04 6.7 ± 12.5 69.9 0.74 50 1 <0.04 33.5 ± 32.4 90.6 0.04 10.9 ± 13.0 38.2 0.02 50 6
NO2

− (mg L−1) <0.04 0.02 ± 0.01 0.06 <0.04 1.4 ± 0.9 3.2 <0.0001 0.2 27 <0.04 0.04 ± 0.04 0.15 <0.04 0.6 ± 0.8 2.2 0.006 0.2 6
HCO3

− (mg L−1) 2.4 93 ± 46 167 20.2 98.5 ± 36.4 172 0.67 500 0 16.6 47 ± 38 109 4.9 57.2 ± 43.8 122 0.61 500 0
Na+ (mg L−1) 33.6 190 ± 92 452 29.8 186 ± 98 461 0.86 250 0 41 112 ± 7 5 311 31.1 98.3 ± 63.0 236 0.60 250 0
K+ (mg L−1) 4.9 23.6 ± 15.5 66.5 3.5 23.3 ± 14.7 67.9 0.90 250 0 1.3 22 ± 15 55 3.1 23.8 ± 17.8 62.1 0.75 250 0

Ca2+ (mg L−1) 1.11 23.9 ± 16.6 74.7 1.2 23.2 ± 13.3 60 0.85 75 0 2.5 26.6 ± 14.2 51.7 7.7 24.7 ± 12.2 42.4 0.70 75 0
Mg2+ (mg L−1) 0.1 6.1 ± 7.1 31.3 0.04 7.4 ± 7.8 30 0.46 50 0 0.4 8.0 ± 6.8 30 1.8 7.1 ± 3.8 12.9 0.68 50 0
NH4

+ (mg L−1) <0.01 0.03 ± 0.02 0.14 <0.01 0.03 ± 0.02 0.09 0.84 - 0 <0.01 0.7 ± 2.8 11.4 <0.01 1.1 ± 3.9 14.1 0.74 - 0
B (µg L−1) 16 24.5 ± 7.5 34 - 0 20 23 ± 4.2 26 - 0

F− (mg L−1) 0.7 4.1 ± 2.6 10.9 1.5 31 0.3 1.6 ± 2.0 8.0 1.5 6

Isotopic Parameters

δ15N (%�) 4.1 12.6 ± 6.2 25.8 6.9 15.5 ± 6.0 32.2 0.06 - 8 19.5 ± 5.8 28.9 12.4 33.6 ± 11.5 51.8 0.0004 -
δ18O (%�) −2.4 9 ± 5.4 20.8 −1.7 11.1 ± 5.5 24.1 0.13 - 7.5 13.3 ± 4.0 19.8 12 18.0 ± 4.8 29.3 0.0138 -
δ11B (%�) 23 30.3 ± 6.3 36 - 16 25 ± 12.7 34 -
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In Figure 2, water facies are presented in a Piper diagram [30] for the boreholes and shallow wells.
The boreholes and shallow wells were grouped into spatial categories, which also display similarities in
hydro-chemical and isotopic parameters. These were shallow wells located in Kisumu city (SW-Kisumu
city); shallow wells located in Kano plain (SW-Kano plain); boreholes located in Ahero town (BH-Ahero
town); boreholes located in public institutions in highly populated neighborhoods (BH-Public); and
boreholes located in the Kano plain (BH-Kano plain). It is clear that the groundwater positioning in the
Piper diagram is mainly determined by hydrogeology and anthropogenic activities. A mineralization
trend was observed (Figure 2, cation triangle) from the low mineralized boreholes (BH: 13, 23, and
41) located at the foot of the Nandi and Kisian hills (recharge areas) to highly mineralized boreholes
located around Awasi town (BH: 27, and 28). While this, on the one hand, represents cation exchange
of Ca2+ by Na+ in solution as discussed earlier, on the other hand, it is an indicator of the direction of
groundwater recharge. According to Olago [17], groundwater recharges from the high altitude areas of
the Nandi hills towards the center of the Kano plain (Awasi). These boreholes located near the recharge
zones (Figure 1b) had a Ca2+-Mg2+-HCO3

− and Na+-Ca2+-Mg2+-HCO3
− water type representing fresh

and recharging groundwater [31]. The same water type was obtained in BH 42, which by being located
next to R. Nyando (Figure 1b) revealed young/recharging water from the river [32]. However, the
Awasi boreholes (BH: 27 and 28) with a high pH showed a dominant Na+-Cl− water type by plotting on
the far-right corner of the diamond. In addition, these boreholes had a low NO3

− content (<1 mg L−1),
but relatively high EC (>1000 µS cm−1), characterizing saline water [28,30].Water 2020, 12, x FOR PEER REVIEW 2 of 19 
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unsaturated zone impart the bicarbonate character of the groundwater [33]. However, the 
dominance of NO3‒, Cl‒, and SO42‒ anions observed in SW-Kisumu city suggests the influence of 
contaminated surface water, just as alluded in the previous study [18]. This is in agreement with a 
similar study by Kamtucheng et al. [34] on surface and groundwater hydrogeochemistry around 
Lake Manoun, Cameroon. The study observed Na+-K+-Cl‒-NO3‒ and Ca2+-Mg2+-Cl‒-NO3‒ as the water 
types representing freshwater mixed with contaminated sources. The rest of the BH-Kano plain, 
BH-Public, and BH-Ahero displayed a Na+-K+-Cl‒-SO42‒ or Na+-K+-Cl‒-NO3‒ water type. 

3.2. Spatial Groundwater NO3− Distribution and Its Controlling Factors 

Figure 2. Piper diagram representation of major cations and anions (in % meqL−1) for water
characterization. Samples are categorized as, SW-Kisumu city: shallow wells located in Kisumu
city; SW-Kano plain: shallow wells located in Kano plain; BH-Ahero town: boreholes located in Ahero
town; BH-Public: boreholes in public institutions located in populated neighborhoods; and BH-Kano
plain: boreholes located in the Kano plain. BH 13, 23, and 41 are located near Nandi/ Kisian hills; BH 27
and 28 are located in Awasi town; dotted brown arrow shows increasing groundwater mineralization.
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The shallow wells in the diamond grouped into two categories: a group consisting of the
SW-Kisumu city showing a Na+-K+-Cl−-NO3

− or Na+-K+-Cl−-SO4
2- water type, and a group made

of the SW-Kano plain showing a Na+-K+-HCO3
− or Na+-HCO3

− water type. The majority of the
BH-Kano plain, just like the shallow wells, had the Na+-K+-HCO3

− and Na+-HCO3
− water type.

Previous studies conducted in the study area by Oiro [18] similarly report Na+ and HCO3
− as the

dominant cation and anion respectively in borehole water. The study also observed high NO3
− and

SO4
− levels in shallow wells located in Kisumu. This suggests that weathering of Na+-K+ containing

alumino-silicate minerals is the major process contributing to the dominance of Na+ and K+ in the
study area. In addition, the dissolution of CO2 and carbonate during precipitation and infiltration
in the unsaturated zone impart the bicarbonate character of the groundwater [33]. However, the
dominance of NO3

−, Cl−, and SO4
2- anions observed in SW-Kisumu city suggests the influence of

contaminated surface water, just as alluded in the previous study [18]. This is in agreement with
a similar study by Kamtucheng et al. [34] on surface and groundwater hydrogeochemistry around
Lake Manoun, Cameroon. The study observed Na+-K+-Cl−-NO3

− and Ca2+-Mg2+-Cl−-NO3
− as the

water types representing freshwater mixed with contaminated sources. The rest of the BH-Kano plain,
BH-Public, and BH-Ahero displayed a Na+-K+-Cl−-SO4

2- or Na+-K+-Cl−-NO3
− water type.

3.2. Spatial Groundwater NO3
− Distribution and Its Controlling Factors

Figure 3 presents the spatial NO3
− concentration ranges (averaged over the wet and dry seasons)

obtained in the boreholes and shallow wells. It was observed that the highest NO3
− concentration

in shallow wells, above the WHO limit (50–91 mg L−1), was mainly recorded in Kisumu city. These
account for 70% of the shallow wells sampled in the city and are located in informal settlements
(Ombuga, Nyalenda, and Manyatta) where locals depend on shallow groundwater because of low costs
associated with their construction [5]. The rest of the shallow wells in the city had NO3

− concentrations
ranging between 10 and 50 mg L−1 and are situated in newly planned but also highly populated estates
(Kibos and Migotsi). Kisumu is a densely populated city in Kenya with an average city population
density of 2375 people per km2, compared to Kenya’s average density of 82 people per km2 [4]. Due
to the limited sewerage infrastructure network in Kisumu, untreated sewage discharges into urban
streams is common. In addition, the majority of the urban population living in the informal settlements
use pit latrines [5]. This can easily result in leaching of NO3

− into the unconfined shallow aquifer
system of the city. The SW-Kano plain had lower NO3

− concentrations with most these wells recording
values < 10 mg L−1 except for SW 17, and 18 which gave > 10 mg L−1 during the wet season. During
the dry season, however, a general decrease of NO3

− concentrations was observed in shallow wells to
values ranging between 0.04 and 38.2 mg L−1 (Table 1).

On the other hand, NO3
− concentrations in boreholes varied spatially with BH-Ahero town

samples recording significantly higher NO3
− concentrations (20.0–69.9 mg L−1) in both seasons, than

those located elsewhere in the study area. The relatively high NO3
− in Ahero, where one exceeded the

WHO threshold should raise concern regarding NO3
− pollution management in the town because

the three main water supply wells to the town were sampled. Two of them belong to the local water
service provider and the third is run by a faith-based organization. Ahero is a highly populated
town located along the busy Kisumu-Nairobi highway and totally lacking a conventional sewage
management system. In addition, irrigation rice farming is the common agricultural activity around
Ahero (See Figure 1b) and uses water from the river Nyando, implying that the use of inorganic
fertilizers (i.e., (NH4)2SO4) may also be contributing to the observed NO3

− levels. NO3
− concentrations

ranging from 10 to 50 mg L−1 in boreholes were measured in public schools and in a community water
supply (BH: 7, 13, 18, 29, and 35).
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Figure 3. Spatial groundwater NO3
− concentration (average of wet and dry seasons) map of the study

area represented in ranges by bullet sizes; squares for boreholes, stars for shallow wells.

The lowest NO3
− concentration in boreholes <10 mg L−1 were recorded mainly in the less

populated parts of the Kano plain, which spans from the outskirts of Kisumu, the sugarcane belt and
the recharge areas near Nandi hills (Figure 3). Based on Figure 2, the low groundwater NO3

− range
belongs to the Ca2+-Mg2+-HCO3

− and Na+-K+-HCO3
− water types, which revealed either a dilution

from the low NO3
− recharging water or background NO3

− levels. However, as water changes to
Na+-K+-Cl−-SO4

2- or Na+-K+-Cl−-NO3
− type, NO3

− concentration increased tremendously to levels
> 20 mg L−1. This points out to urbanization and human population pressure as the key drivers to
groundwater NO3

− increase in the study area. The low NO3
− (<1 mg L−1) reported in the Awasi

boreholes (BH 27 and 28) was due to its confined and thick aquifer occurring at depths greater than
150 m [17].

3.3. Use of Multi Isotope and Hydro-Chemical Methods to Track Sources of Groundwater Nitrate
Contamination and Removal

For the implementation of effective NO3
− pollution control strategies, spatial water quality data

alone is not sufficient without identifying the potential NO3
− sources and associated biogeochemical

processes controlling groundwater NO3
− concentration. In order to identify the sources of groundwater

NO3
− input, δ15N- and δ18O-NO3

− values of boreholes and shallow wells, in addition to those of the
potential NO3

− sources from the study area were determined. Isotopic values obtained for the local
NO3

− sources: manure and sewage, soil N, precipitation, NO3
− fertilizer, and NH4

+ in fertilizer and
rainfall (Figure 4) were found to be within the literature ranges [2,19,35]. The δ15N-NO3

− in boreholes
ranged from +4.1%� to +25.8%� and from +6.9%� to +32.2%� in wet and dry seasons, respectively. In
shallow wells, δ15N-NO3

− ranged from +8.0%� to +28.9%� and from +12.4%� to +51.8%� during the
wet and dry seasons, respectively (Table 1). δ18O-NO3

− in boreholes, on the other hand, ranged from
−2.4%� to +20.8%� and from −1.7%� to +24.1%� during wet and dry seasons, respectively, while in
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shallow wells, it ranged from +7.5%� to +19.8%� and from +12%� to +29.3%� during the wet and dry
seasons, respectively.
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enrichment in δ15N- and δ18O-NO3− was observed in both boreholes and shallow wells moving from 
the wet to dry season (Figure 4). The isotopic enrichment observed in the dry season was 
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denitrification is taking place in the groundwater points during the dry season. Kinetic isotope 
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Figure 4. δ15N- vs. δ18O-NO3
− plot of groundwater samples categorized as, SW-Kisumu city: shallow

wells located in Kisumu city; SW-Kano plain: shallow wells in Kano plain; BH-Ahero town: boreholes
in Ahero town; BH-Public: boreholes in public institutions located in populated neighborhoods; and
BH-Kano plain: boreholes in Kano plain, during wet (green symbols) and dry (brown symbols) seasons.
Boxes represent δ15N- and δ18O-NO3

− ranges of local NO3
− sources: NO3

− in precipitation (NP), NO3
−

fertilizer (NF), NH4
+ in fertilizer and rainfall (NF&R), soil N (SN), and manure and sewage (M&S).

Black arrow indicates a denitrification vector for the increasing δ15N and δ18O.

A δ15N vs. δ18O plot of the groundwater samples during wet and dry seasons (Figure 4) clearly
shows that the majority of the groundwater samples lie in the manure and/or sewage source range.
However, a few exceptions of the BH-Kano plain samples (BH: 7, 18, and 20; see Figure 3) plotted
in the mixed soil N and NH4

+ in fertilizer and rainfall source range during the wet season. Isotopic
enrichment with population density is evident from Figure 4 as shown by all the SW-Kisumu city,
BH-Public and BH-Ahero town samples. These are the high population density areas (827–4737 people
per square kilometer), which gave significantly higher δ15N values (p < 0.0001: wet and dry seasons)
compared to the Kano plain (BH-Kano plain and SW-Kano plain), an area with a lower population
density ranging 234–362 people per square kilometer [4]. In addition, the SW-Kisumu city and
BH-Ahero town with enriched δ15N also recorded relatively high NO3

− concentrations above 20 mg
L−1 (Figures 3 and 4). This is an indication that sewage, characteristically enriched in δ15N [19], is
likely the driving force to groundwater NO3

− contamination in the major urban areas. A gradual
enrichment in δ15N- and δ18O-NO3

− was observed in both boreholes and shallow wells moving from
the wet to dry season (Figure 4). The isotopic enrichment observed in the dry season was accompanied
by a NO3

− decrease in all of the SW-Kisumu city samples and some of the BH-Kano plain (BH: 1, 7, 18,
20, and 29; Figure 5). This indicates that in situ NO3

− attenuation via denitrification is taking place in
the groundwater points during the dry season. Kinetic isotope effects during denitrification preferably
convert lighter isotopes (14N and 16O) to N2 and N2O, causing an enrichment of the heavy isotopes



Water 2020, 12, 401 12 of 18

(15N and 18O) in the residual NO3
− [36,37]. It is also clear that denitrification was more pronounced in

SW-Kisumu city, with high NO3
− concentrations in the wet season. Based on Figures 4 and 5, it appears

that denitrification may also be responsible for the low NO3
− concentration (but high δ15N and δ18O)

values recorded in the BH-Public samples during both wet and dry seasons. In addition, a general
linear relationship indicating an enrichment of δ15N relative to δ18O by a factor of between 1.3:1 and
2.1:1 supports evidence for in situ denitrification [9]. Figure 4 shows a linear relationship between
δ15N and δ18O (δ18O = 0.5 δ15N + 2.9, R2 = 0.7) for all groundwater samples. The slope revealed an
enrichment of δ15N relative to δ18O by a factor of 2:1, which is characteristic of denitrification [9,13,38].
Previous work done in the region by Nyilitya et al. [32] and involving one of the BH-Public wells
(BH11, Figure 3), obtained δ15N and δ18O values of 18%� ± 1.2%� and 20%� ± 0.2%� respectively for
the well, and a corresponding NO3

− concentration of 0.6 mg L−1. In comparison to Nyando river and
boreholes located in the headwater catchments, the BH-Public well had low NO3

− concentration and
showed a linear isotopic enrichment, which the authors attributed to denitrification.
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and assumes that Cl‒ is a conservative element unaffected by the biogeochemical processes 
occurring in groundwater [39]. A plot of NO3− vs. Cl‒ is shown in Figure 6 and a theoretical dilution 
line generated by joining the largely unpolluted BH-Kano plain to most polluted SW-Kisumu city as 
end members. Any groundwater resulting from the mixing of the two end members should lie 
closely to this line. On the other hand, groundwater affected by NO3− removal via denitrification 
should appear below the theoretical dilution line due to NO3− removal alone [9]. In the current study, 
samples lying along this line consist of SW-Kisumu city (wet season) and BH-Ahero town (wet and 
dry seasons), both of which were on the high NO3− and Cl‒ concentration range. Along this line were 
also the boreholes in low NO3− and Cl‒ concentration range, which were located in the recharge 
(Nandi hills) areas and the sparsely populated parts of Kano. The samples plotting along the Cl‒ axis 
(Figure 6), which include the Awasi boreholes with high Cl‒ but significantly low NO3− may mainly 
be portraying a salinization effect. At the same time several samples lie below the theoretical mixing 
line showing a significantly lower NO3− concentration than would be expected if dilution was the 

Figure 5. NO3
− concentrations vs. δ15N-NO3

− of groundwater samples categorized as, SW-Kisumu
city: shallow wells located in Kisumu city; SW-Kano plain: shallow wells in Kano plain; BH-Ahero
town: boreholes in Ahero town; BH-Public: boreholes in public institutions located in populated
neighborhoods; BH-Kano plain: boreholes in Kano plain; and BH-Kano plain 1, 7, 18, 20, and 29:
boreholes in Kano plain showing NO3

− decrease with δ15N-NO3
− increase, during wet (green symbols)

and dry (brown symbols) seasons.

A NO3
− vs. Cl− concentration plot is another effective tool to distinguish NO3

− reduction by a
biogeochemical processes from dilution [9,39]. The method is quite useful in cases where two water
masses from different groundwater flow paths containing different NO3

− and Cl− concentrations
mix, and assumes that Cl− is a conservative element unaffected by the biogeochemical processes
occurring in groundwater [39]. A plot of NO3

− vs. Cl− is shown in Figure 6 and a theoretical dilution
line generated by joining the largely unpolluted BH-Kano plain to most polluted SW-Kisumu city
as end members. Any groundwater resulting from the mixing of the two end members should lie
closely to this line. On the other hand, groundwater affected by NO3

− removal via denitrification
should appear below the theoretical dilution line due to NO3

− removal alone [9]. In the current study,
samples lying along this line consist of SW-Kisumu city (wet season) and BH-Ahero town (wet and
dry seasons), both of which were on the high NO3

− and Cl− concentration range. Along this line
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were also the boreholes in low NO3
− and Cl− concentration range, which were located in the recharge

(Nandi hills) areas and the sparsely populated parts of Kano. The samples plotting along the Cl− axis
(Figure 6), which include the Awasi boreholes with high Cl− but significantly low NO3

− may mainly
be portraying a salinization effect. At the same time several samples lie below the theoretical mixing
line showing a significantly lower NO3

− concentration than would be expected if dilution was the only
controlling factor for NO3

− concentration. Samples clearly indicating the NO3
− reduction process of

denitrification include all of SW-Kisumu city (dry season), BH-Public (BH: 11, 26, and 32), and one of
the BH-Kano plain (BH: 31). Together with the low NO3

− concentration, the samples recorded highly
enriched δ15N values (Figure 5), thus corroborating denitrification as a key process responsible for the
NO3

− reduction.
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Figure 6. Cl− vs. NO3
− concentrations of groundwater samples. SW-Kisumu city: shallow wells

located in Kisumu city; SW-Kano plain: shallow wells in Kano plain; BH-Ahero town: boreholes in
Ahero town; BH-Public: boreholes in public institutions located in populated neighborhoods; and
BH-Kano plain: boreholes in Kano plain, during wet (green symbols) and dry (brown symbols) seasons,
for determination of NO3

− removal mechanisms. Blue line is the dilution line, while the black arrow
indicates samples undergoing NO3

− removal through denitrification.

Based on Figure 4, Figure 5, and Figure 6, it could be concluded that denitrification was responsible
for NO3

− attenuation observed in all the SW-Kisumu city (dry season), BH-Public (both seasons),
and several of the BH-Kano plain (BH: 1, 7, 18, 20, 29, and 31) samples. It is noteworthy that the
data indicates denitrification occurring in oxic conditions (DO ≥ 1.6 in dry season), however, it has
been demonstrated that groundwater denitrifiers can be active in anoxic microsites while the bulk of
groundwater is well oxygenated [40]. In the case of BH-Ahero town, an increasing NO3

− concentration
corresponding to δ15N increase was observed moving from wet to dry season (Figure 5). This may mean
that an enriched δ15N source is responsible for the δ15N enrichment as opposed to denitrification, which
in this case should be the urban sewage source. Furthermore, Figure 6 corroborates that denitrification
may not be a major process in the BH-Ahero town samples (and confirms sewage source) because they
plotted along the dilution line on the high NO3

− and Cl− concentration range in both seasons.
The significantly higher NO2

− content, corresponding to lower NO3
− content observed in the

dry season indicates that denitrification may not be the only N conversion process taking place in
groundwater in the study area. Partial nitrification occurs in waste water contaminated systems under
high NH4

+, high temperature, and limited oxygen conditions, which favors ammonium oxidizing
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bacteria but inhibits the nitrite oxidizing bacteria, resulting in accumulation of NO2
− but reduced

NO3
− production in the system [41,42]. The fact that most groundwater samples in this study plot in

the manure and sewage source domain, coupled with the sanitation problem in the study area implied
that sewage (urban and domestic) contamination of groundwater was common. This should result
in elevated NH4

+ concentrations. However, in this study NH4
+ concentrations were generally low

while NO2
− concentrations were elevated (Table 1), indicating that (partial) nitrification was occurring.

Although DO levels reported in this study (mean: 4.1 mg O2 L−1) were somewhat above the 1 mg
O2 L−1 threshold reported by Wyffels et al. [41], for initiating partial nitrification to sustain NO2

−

accumulation, these were snapshot measurements and might therefore vary with time, location, and
depth. In addition, the relatively higher temperatures (mean: 26 ◦C (SW) and 28 ◦C (BH)) observed
in this study is another favorable condition for the high rate of NO2

− production witnessed [41,43].
For instance, Pynaert et al. [43] reported a temperature of 26 ± 1 ◦C as favorable for the high activity
of NH4

+ oxidizing bacteria, resulting into high production of NO2
−. Hence partial nitrification of

sewage derived NH4
+ may thus be another explanation for low NO3

− and the significantly higher
NO2

− observed in the dry season. However, further studies are required to establish the inorganic
nitrogen dynamics (e.g., nitrification, denitrification, and anammox) in groundwater in the area.

To discriminate manure from sewage sources and at the same time overcome any bias in NO3
−

source apportionment, which might have been occasioned by denitrification, boron (B) isotopic values
were determined for the three potential NO3

− sources and for representative groundwater samples.
B and δ11B values were analyzed in a selection of representative groundwater samples from: Kisumu
shallow wells located in the informal settlements (SWa); Kisumu shallow wells in newly planned estates
(SWb); boreholes in public institutions located in populated neighborhoods (BH-Public); boreholes
located in Kano plain (BH-Kano plain); and boreholes situated in the Ahero town (BH-Ahero town).

The boron concentration was highest in the inorganic fertilizers (15-2500 µg L−1) followed by
manure (127-581 µg L−1), sewage (25-46 µg L−1), and groundwater (16-34 µg L−1). The δ11B values of
the three sources were fertilizers ranging from −4.3%� to +7.8%�; sewage from +16%� to +22%�; and
in manure from +31%� to +37%�. The fertilizer and manure δ11B values fall in the literature range
of −9%� to +15%� reported by Widory et al. [11] and Komor et al. [44] in fertilizers and +15.3%� to
+42.1%� reported by Widory et al. [45] in manure. The sewage δ11B values obtained in this study were
higher than values reported in previous studies [12] ranging from −3.5%� to +13%�. However, δ11B of
our sources showed clear differences, which allowed contrasts to be made between the three sources.

A plot of δ11B versus 1/B (Figure 7) show the groundwater samples plot close to the sewage and
manure source boxes. The SWa show a strong δ11B signature of a sewage source while BH-Public
and BH-Ahero town also aligned themselves to the sewage source. The BH-Kano plain and SWb
showed a δ11B signature similar to the manure sources. SWa were located in the densely populated
informal settlements (Obunga, Nyalenda, and Manyatta) of Kisumu city, which lacks formal sanitation
systems but are characterized by the use of pit latrines, open defecation, and landfills [7]. In addition,
sewer contaminated surface water canals are common whose effluents together with the landfill
and pit latrine wastes can easily leach NO3

− into the city’s shallow groundwater. BH-Public are
situated in public institutions in populated neighborhoods while BH-Ahero town is located along the
Kisumu-Nairobi highway. These two locations also have high pit latrine density (in every homestead
and institution) while open surface channels drain the Ahero town effluents due to lack of conventional
sewer system. The lack of proper sanitation systems is the reason why sewage dominates groundwater
NO3

− input in the three locations. This agrees with the highly enriched δ15N-NO3
− values obtained in

SWa, BH-Public, and BH-Ahero town. SWb on the other hand are located in newly planned estates
in Kisumu (Migotsi and Kibos) with high-rise apartments, which are connected to the city sewer
system. However, these estates neighbor the peri-urban zone of Kibos where small scale mixed farming
and free-range livestock keeping are common. BH-Kano plain are situated in the rural parts of the
Kano plain characterized by small scale mixed farming of food crops and livestock. Therefore, in
the two locations (SWb and BH-Kano plain), animal manure use in farming and free-range livestock
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keeping, which leaves animal wastes littering streams and the land surface can easily leach NO3
− into

groundwater aquifers. The δ11B data successfully disentangles the manure and sewage sources and
augments hydrochemistry and NO3

− isotope findings in identifying the sources of groundwater NO3
−

contamination in Kisumu city and its surroundings.
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4. Conclusions and Recommendations

A triple isotope approach indicated that NO3
− contamination of groundwater in Kisumu city and

its surrounding is largely driven by inadequate sewage infrastructure and animal manure application
from either farming or free-range livestock keeping in the rural areas. However, in situ NO3

−

attenuation by denitrification and/or dilution concurrently helps to minimize the NO3
− loading. On

the other hand partial nitrification is likely responsible for accumulation of NO2
− in the groundwater

system. It is however, necessary to develop more process-based research for an in-depth understanding
of groundwater N fate in the area. Expansion and improvement of waste-water sanitation should
urgently be implemented in the region to avoid further deterioration of groundwater sources.
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