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Abstract: Water scarcity is one of the most important climatic threats in recent times. In Chile, the north
and north-central areas, with predominantly arid or semi-arid climates, have been strongly affected
by the low availability of water, as well as by overexploitation of water resources derived from the
negative effect caused by some sectors of the economy such as agriculture and mining. Only 53%
of households in rural areas in Chile have access to drinking water from a public network. To date,
some pilot greywater treatment systems have been implemented in rural public schools. This paper
presents an economic analysis of pilot systems for greywater treatment from three case studies.
The results showed that the implementation of these systems would not be economically feasible,
since the initial investment costs can exceed USD 5200, which is not offset by the water savings.
However, other benefits, such as thermal regulation, better life quality, and the feeling of well-being
and satisfaction of students and teachers should be considered to be paramount for the evaluation of
treatment systems. In addition, current levels of treated greywater could allow irrigation of 6.24, 5.68,
and 3.56 m2/person in the Alejandro Chelén, El Guindo, and Pedro de Valdivia schools, respectively.
These results contribute to a better understanding of the social role that should be applied to the
evaluation of ecological systems that save water and improve the well-being of the population.

Keywords: greywater; water scarcity; water reuse; economic analysis

1. Introduction

Water scarcity is one of the most damaging risks facing the world today [1]. Over two billion
people live in water-scarce regions and over four billion experience severe water shortage conditions
at least one month a year [2,3]. Some of the main factors that have caused and accelerated water
scarcity in the world are population growth, changes in consumption habits, and climate change [1,4].
The concept of water scarcity refers to the lack of physical availability of water, however, water scarcity
also involves multiple factors, such as economical and social. Countries with sufficient renewable water
resources may have shortages due to lack of infrastructure, poor water quality, lack of management
capacity, and environmental aspects [5]. Therefore, water scarcity should be understood from a water
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resources point of view and also as a social and political problem, where resource management has a
fundamental role [6,7].

In Chile, water scarcity has also become a problem of great concern. The geographical distribution
of water availability is quite uneven [8,9]. The north-central zone of Chile, with a predominant arid
and semi-arid climate, has an average water availability between 52 m3/person/year in the Antofagasta
Region (21–26◦ S, 69–70◦W) and 1020 m3/person/year in the Coquimbo Region (29–32◦ S, 70–71◦W) [10].
This entire area is below the threshold for sustainable development of 1700 m3/person/year [1,11].
Thus, it is necessary to promote a change in consumption habits and improve the management of
water resources to respond to future scenarios with greater water scarcity, through the development of
technologies to make the use of water more efficient.

The areas with the greatest water scarcity in Chile present strong economic activity, mainly related
to intensive agriculture in the central zone and mining in the north zone [8,12–15]. In regions with
predominant mining activity, the consumptive demand for water for this activity exceeds 50% of the
total water availability, while in predominantly agricultural areas, the water demand exceeds 80% of
the total water availability [16]. This has caused serious problems related to the availability of water
for human consumption. Currently, about 300,000 rural households in Chile do not have the necessary
infrastructure to supply drinking water [17].

In this scenario, from a circular economy perspective, water recycling and reuse has become a
relevant alternative [18]. The reuse of greywater has become a viable alternative in recent times [19,20].
Greywater is defined as domestic wastewater that excludes water from the toilet [21]. In general,
these waters can be reused after simple treatments for non-potable uses [19]. In 2018, the law
no. 21,075 was enacted in Chile, which regulates the collection, reuse, and disposal of greywater for
urban uses, irrigation of recreational areas, and ornamental irrigation [9,22]. However, this law does
not distinguish between urban and rural areas. In particular, rural areas are the most affected by
access to water and sanitation, and they are an important target population in the implementation of
greywater treatment systems. According to data from 2017, only 53% of households in rural areas in
Chile have access to drinking water from the public network. About 28% of households are supplied
from water wells, 12% from rivers or water channels, and 7% by cistern trucks [23], while 47.2% of the
rural population does not have a formal drinking water supply [17]. Greywater treatment can be a
sustainable alternative to reduce the pressures on water resources. However, there are still several
barriers that need to be considered, such as public acceptance of water reuse and the technical and
economic feasibility of the projects [21].

One of the main barriers to the implementation of greywater treatment systems corresponds to
economic feasibility. The initial investment for the installation of the systems is usually higher than
USD 1000 and operating and maintenance costs are around USD 165/year [21,24]. The economic factor
and poverty, as well as other restrictive aspects imposed by law, such as those related to monitoring
and control, could limit the viability of applying greywater treatment systems in rural areas. In this
context, some foundations have promoted greywater reuse initiatives in areas affected by drought.
In particular, the Un Alto en el Desierto Foundation in collaboration with the Pontificia Universidad
Católica de Chile has worked on the implementation of pilot treatment systems for reusing greywater
in rural public schools. These initiatives have been financed with competitive funds awarded under
different projects, which has sustained the initial investment. However, to extend these initiatives to
other establishments, an economic analysis is necessary to determine the economic and social feasibility
of these projects.

In this work, three greywater reuse pilot projects implemented in rural schools in the Coquimbo
Region, Chile, were economically and socially analyzed. This region is characterized by having a high
risk of water scarcity due to the decrease in rainfall during the last years and the extensive agricultural
activity developed in the area [8,9]. For this study, the capital, operating, and maintenance costs of the
treatment systems, as well as the environmental costs, were determined. The benefits were quantified
in terms of water savings and the environmental benefit associated with green areas. Additionally,
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the environmental and social benefits that treatment systems can bring to these communities were
discussed. A sensitivity analysis was also carried out on the frequency of maintenance of the systems,
investment costs, discount rate, green area costs, and the amount greywater treated per capita.
These results contribute to a better understanding of the economic aspects involved in low-scale
greywater treatment systems.

2. Materials and Methods

2.1. Study Cases

Three rural public schools in the Coquimbo Region, Chile were chosen as case studies (Figure 1).
The Alejandro Chelén School (30.88◦ S, 71.01◦ W) has 350 students and 70 workers, therefore, in total,
there are 420 people at the establishment. The school is supplied with water through the services
of a sanitary company. The school has a pilot greywater treatment system consisting of 3 sections
of filters in series, two sections composed of modified activated carbon and one section composed
of zeolite. The El Guindo School (30.64◦ S, 71.11◦ W) has 93 students and 28 workers, which gives
a total of 121 members at the establishment. The school is supplied by self-managed rural potable
water systems (APR) and has a pilot treatment system made up of two sections of activated carbon
in series. Finally, the Pedro de Valdivia School (31.11◦ S, 71.16◦ W) has 106 students and 27 workers,
for a total of 133 members at the school. This school is supplied by APR (1–10 m3 per week) and by
cistern truck (25 m3 per week). Currently, it has a pilot greywater treatment system, which consists of
two activated carbon filter sections, as in the case of the El Guindo School. These data are summarized
in Table 1. Additionally, the quality of the treated greywater for the schools during the pilot phase is
also presented in Table 1.
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Table 1. Characteristics of the case studies.

School Number of
Members Water Supply Pilot Treatment System

Permitted Use
According to the

Quality of the Treated
Greywater

Alejandro
Chelén 420 Sanitary

company

3 Filter sections in series:
2 Sections of activated
carbon (~5 mm diameter
and ~25 mm length) and 1
Section of zeolite (~5 mm
diameter)

Irrigation of
recreational areas and

services *

El Guindo 121 Rural potable
water (APR)

2 Sections of activated
carbon (~5 mm diameter
and ~25 mm length)

Irrigation of
recreational areas and

services *

Pedro de
Valdivia 133 70% APR & 30%

cistern truck

2 Sections of activated
carbon (~5 mm diameter
and ~25 mm length)

Irrigation of
recreational areas and

services *

* Maximum limit according to Chilean regulation, biological oxygen demand (BOD5) 240 mg/L; total suspended
solids (TSS) 140 mg/L; fecal coliforms (FC) 1000 mg/L.

2.2. Quantitative Economic Analysis

The factors studied in the quantitative economic analysis are presented in Table 2. These data
were obtained from real data monitored for each of the study cases.

Table 2. Factors considered for quantitative economic analysis.

Factor Description

Economic cost
Initial investment (materials, equipment, labor, etc.)

Operating, maintenance, and water quality control costs
(change of filter materials, electricity, etc.)

Environmental cost Noise pollution
Economic benefits Water savings

2.2.1. Economic Cost

Economic costs include capital (CC), operating (CO), maintenance (CM), and water quality control
(CQ) costs associated with the project. The calculation of these costs is carried out according to
Equations (1)–(4).

CC = Cm + Cq + Cw (1)

CO =
∑n

t=1

Ce

(1 + r)t (2)

CM =
∑n

t=1

C f

(1 + r)t (3)

CQ =
∑n

t=1

Ca + Ct

(1 + r)t (4)

where Cm, Cq, and Cw correspond to materials, equipment, and workforce costs; Ce is the costs of
electrical energy; Cf corresponds to the cost of the replacement of filter materials, which occurs every
100,000 L of greywater treated with a minimum frequency of one maintenance at year; and Ca and Ct

are the costs of water analysis and water samples transport, respectively. In the last case, the water
quality control is carried out quarterly, as required by current regulations [25]. A discount rate (r)
of 8.16% was used and the evaluation period (n) was 10 years because a longer period of operation
in a decentralized treatment system could imply a redesign of the system to adapt it to new needs,
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which should be evaluated as a new project. The discount rate was determined using the capital
asset pricing model (CAPM) and financial indices obtained from Damodaran [26] for the waste and
environmental services industry [27].

2.2.2. Environmental Cost

The main environmental cost identified in the pilot projects described in the case studies
corresponds to the noise pollution produced by the operation of the electric pumps. This cost was
determined according to the approximate valuation of 2 €/year or USD 2.34/year for the reduction of
1 dB [28,29]. Therefore, the environmental cost (CN) was determined using the following equation:

CN =
n∑

t=1

CdB × dB

(1 + r)t (5)

where CdB corresponds to the annual cost of reducing a decibel and dB corresponds to the perceived
decibels. The environmental cost was accounted for based on the total mitigation of noise produced by
the electric pumps. However, the noise levels emitted by the operation of the pumps are below the
limit required by Chilean regulations of 55 decibels in public spaces or green areas [30].

Therefore, the total cost of the project is calculated as follows:

CT = CC + CO + CM + CQ + CN (6)

2.2.3. Economic Benefit

The economic benefit (BE) was estimated from the water savings and the cost associated with the
volume of water reused by the treatment systems as follows:

BE =
n∑

t=1

Rw ×Cw(1 + ∆)t

(1 + r)t (7)

where Rw is the reclaimed water, CW is the current unit cost of water, and ∆ is the annual increase in
the price of water obtained from the moving average of the last 10 years, which indicates an increased
value of approximately 5.15% per year. The prices of water, according to the location and type of
supply were USD 1.67/m3 for Alejandro Chelén School, USD 0.88/m3 for El Guindo School, and USD
2.00/m3 for Pedro de Valdivia School.

2.2.4. Environmental Benefit

To obtain an approximate quantification of the environmental benefits (BN) of the project, we used
data from a study carried out in Santiago, Chile about the willingness to pay for green areas. According to
the surveys carried out, it was determined that the price for an additional hectare of green area in
present value is approximately USD 1.34 per month per person [31]. Therefore, the environmental
benefit was determined using the following equation:

BN =
∑n

t=1

CG ×A×N

(1 + r)t (8)

where CG corresponds to the willingness to pay for an additional hectare of green per year per person,
A is the surface of green areas expressed in units of hectares, and N is the number of members in
each school.

The total benefit of the project (BT) is calculated as follows:

BT = BE + BN (9)
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Both the costs and benefits of the pilot treatment systems were evaluated considering an operating
time of 10 months per year (school year) and only working days (excluding weekends), for a total of
200 operating days per year approximately.

Additionally, the ratio of benefits to costs (RB/C) was determined, according to Liang and van
Dijk [32], using the following Equation (10) (if RB/C > 1 the project is economically feasible, while if
RB/C < 1 the project is not economically feasible):

RB/C =
BT

CT
(10)

2.3. Sensitivity Analysis

A sensitivity analysis was performed for some variables in the cost/benefit analysis. The variables
studied were the cost of workforce, the frequency of maintenance (expressed as number of times a
year), the cost of the perimeter closure, the number of electric pumps, the plumbing costs, the amount
of treated greywater, the discount rate and the willingness to pay for green areas. Table 3 presents a
summary of the parameters and the range of variation studied. These data are presented as a tornado
diagram to compare the relative importance of the variables. Additionally, cash flows were studied
without considering capital costs, a scenario that simulates state financing of investment costs in
treatment systems as part of a social initiative. In this case, the operating and maintenance costs were
evaluated in contrast to the benefits of saving water.

Table 3. Sensitivity analysis parameters.

Variable Range of Variation

Workforce −20% to +20%
Maintenance frequency 0 to 4

Perimeter closure −20% to +20%
No. electric pumps 0 to 2

Plumbing −20% to +20%
Treated greywater −20% to +20%
Discount rate (r) 6% to 10%

Willingness to pay −20% to +20%

2.4. Qualitative Economic Analysis

The qualitative analysis of the benefits associated with greywater reuse projects is based on
benefits that are difficult to quantify from an economic point of view, but which have a great impact
and social benefit. Because the current use of recycled greywater, in the case studies, is for the irrigation
of green areas, the qualitative social evaluation focused on the benefits associated with green areas in
school communities.

3. Results and Discussion

The results were divided into a quantitative and qualitative evaluation, according to the data
monitored in the greywater treatment systems in the three schools.

3.1. Quantitative Economic Analysis

Table 4 presents the results of the economic analysis of the projects in the three schools. On the one
hand, the fixed costs associated with the construction of the greywater treatment systems correspond to
the collecting tanks, the perimeter closure of the installation area, plumbing, the initial filtering materials,
electric pumps, water meters, and the required workforce. We observe that, in the three projects,
these costs were higher than USD 5200. On the other hand, the operating costs were associated with
the electrical consumption of the electric pumps, which used an average of 8 h a day, corresponding to
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the school’s operating hours. This cost strongly depends on the number of electric pumps used in each
project. In particular, at the Alejandro Chelén School, only one pump was used, while in the other cases
two electric pumps were used, therefore, the operating costs were double. The maintenance costs are,
primarily, the replacement of the filter materials, that is, activated carbon and zeolite, depending on
the case. Regarding the environmental cost, the noise produced by the electric pumps was identified
as the most important. Finally, the benefits correspond to the water saved from the treatment systems.
The greywater production data are real levels monitored to date.

Table 4. Economic costs and benefits of the projects evaluated at 10 years (USD).

Alejandro Chelén El Guindo Pedro de Valdivia

Economic cost

Capital costs:

collecting tanks, 215 215 215

perimeter closure, 1250 1000 1125

plumbing, 625 625 625

filter material, 178.20 156.26 156.25

electric pumps, 61.30 122.50 122.50

water meter, 35.63 35.63 35.63

workforce 3125 3125 3125

Operating cost:

electricity 112.24 224.48 224.48

Maintenance cost:

filter material 217.80 190.97 190.97

Quality control cost: 372.20 372.20 372.20

Environmental cost noise 56.28 112.57 112.57

Economic benefit Water savings 400.11 54.88 86.55

Environmental
benefit

Willingness to pay for
green areas 2161.82 622.81 684.58

Total (Benefit—Cost) −3686.67 –5501.90 –5533.47

The results show that, in the three cases studied, the economic analysis is unfavorable. The benefits
minus the costs are negative in all three cases being USD −3686.67 in Alejandro Chelén School,
USD –5501.90 in El Guindo School, and USD –5533.47 in Pedro de Valdivia School. These values are
mainly attributable to the fact that the benefits are not able to compensate for the initial investment in
an evaluation period of 10 years. In particular, the Alejandro Chelén School presents the less negative
value as compared with in the other cases, which is compensated mainly because it is the school with
the most students, and therefore the generation of daily greywater is higher than the other cases. In the
same way, greater generation of greywater results in a greater potential irrigation area, and therefore
the environmental benefits are higher than in the other cases. It should be noted that the price of
water for the Pedro de Valdivia School was the highest, which corresponds to the price of water
supplied by a cistern truck for the area, followed by the price of water at the Alejandro Chelén School,
which corresponds to the price of the sanitary, which charges fees that include potable water, collection,
and treatment services. Finally, the lowest water price corresponds to the El Guindo School, which is
supplied through APR, organizations made up of committees or cooperatives that administer, operate,
and maintain drinking water services in rural areas [33]. This difference in prices is based on the fact
that the tariff model in Chile aims to finance operating and maintenance costs, and investment needs
and replacement of infrastructure and equipment [34,35].
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Additionally, the economic feasibility was studied based on the calculation of the benefit/cost
ratio. As in the previous information, it can be observed that all the values are less than 1 and are quite
small, which indicates that there is no economic feasibility, as mentioned by Liang and van Dijk [32].
These data are shown in Table 5.

Table 5. Economic feasibility.

Alejandro Chelén El Guindo Pedro de Valdivia

RB/C (ratio benefits/cost) 0.410 0.110 0.122

By dividing the cost of the project evaluated over 10 years by the water reused in the same
period, total costs of USD 2.11/m3, USD 12.01/m3, and USD 17.51/m3 were obtained for Alejandro
Chelén School, El Guindo School, and Pedro de Valdivia School, respectively. It can be seen that
the unit cost increases considerably when the scale of treatment is lower, as is the case of the El
Guindo and Pedro de Valdivia Schools, where the current level of treatment is less than 250 L per day.
A similar result was reported by Friedler [36], who evaluated the unit cost of treatment based on
daily water flow. According to his calculations, the unit treatment cost was approximately USD
4/m3 when the water flow was 1 m3/day, while costs were reduced to less than USD 1/m3 for over
10 m3/day. In addition, a study carried out in Beijing [32] demonstrated the importance of considering
environmental and social benefits when evaluating greywater treatment systems. When only the
financial analysis was considered, the two projects evaluated presented negative values, around USD
0.04/m3 for treated water volumes of approximately 107,000 and 750,000 m3 per year, for each project.
However, when considering the environmental and social benefits, the evaluation obtained positive
values, ranging between USD 0.5/m3 and USD 1.8/m3.

3.2. Sensitivity Analysis

Investment costs are difficult to modify at this scale, although they can be reduced somewhat
with economies of scale. However, it is important to identify the impact that certain variable expenses
have in the final analysis of economic feasibility. Figure 2 shows the sensitivity analysis for eight
variables. It can be seen that the variable with the greatest relevance corresponds to the workforce.
These prices reflect the market values for the installation of a single treatment system. However,
with an economy of scale, these costs could be reduced. The second most relevant is the frequency of
maintenance, particularly the replacement of filter materials. At this point, it is necessary to evaluate
other maintenance methods to avoid replacing all the materials every time, such as backwashing [37–39].
At the Alejandro Chelén School, the variation in the discount rate was more significant than in the
other schools because the annual benefits were higher, due to the greater amount of greywater treated.
It should be noted that the typical social discount rate for evaluating projects in Chile is 6%, therefore,
the sensitivity analysis of this value shows an approximation to a social evaluation of the project.
The other variables associated with costs, such as the perimeter closure, the number of electric pumps,
and the plumbing service have less relative importance. Finally, the amount of greywater treated
daily, which corresponds to the only variable associated with economic benefits, was the least relevant.
For this reason, the assessment is economically unfavorable in almost all possible scenarios.

Since the economic analysis had highly negative results, the economic feasibility was evaluated
without considering the initial investment costs or the quality control costs, simulating a state subsidy.
In addition, the environmental cost was eliminated, since, although it quantified in the general
economic analysis, the noise generated by the operation did not exceed the current regulations on noise
pollution [30]. Similarly, the environmental benefit was excluded, to compare only directly perceived
cash flows. Thus, a simplified economic analysis was carried out, considering only the operating
and maintenance costs, and the perceived water savings. In Chile, public schools are managed by
municipalities, with resources from the central government and municipal funds, which are very
unequal throughout the country [40]. Therefore, for the evaluated scenarios, we seek to determine if
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the operating and maintenance costs can be equated by the economic benefits and that these do not
represent additional operating expenses in the establishments, whose resources may be very limited.
The feasibility was evaluated in a range from 0 to 2000 L of greywater treated per school per day
(Figure 3).

The graphs show a shape of peaks, since when a threshold of treated greywater is exceeded,
a change of filtering materials is contemplated, thus, increasing maintenance costs. Under the current
operating conditions, only at the Alejandro Chelén School are the benefits of saving water higher
than the operating and maintenance costs of the treatment systems. However, the Pedro de Valdivia
School can compensate for operating and maintenance costs if it increases the amount of greywater
treated per capita to 6.4 L per day, which is equivalent to treating 850 L per day in the establishment.
In the case of the El Guindo School, given that the price of water from APR is lower than the other
cases, it is not possible to compensate for the operating and maintenance expenses by increasing
the amount of greywater treated. Other studies of economic analysis for greywater or rainwater
treatment systems have shown the infeasibility of decentralized projects, which is why the need for
government subsidies is necessary to make these initiatives more attractive [41,42]. Particularly, due to
the current regulations in Chile and the economic precariousness present in some rural areas of the
population, subsidies for initial investment and quality control of treatment systems represent the most
economically feasible scenario.
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Figure 3. Simplified economic analysis, considering only operating and maintenance costs, and
saved water benefits, studied in a range from 0 to 2000 L of greywater treated per school per day at
(a) Alejandro Chelén School; (b) El Guindo School; and (c) Pedro de Valdivia School.

3.3. Qualitative Economic Analysis

The economic analysis of projects at the scale studied is unfavorable. However, social benefits
play an important role in the evaluation of a project. Increasing the availability of water in areas
of water scarcity is not quantifiable solely based on the price of water saved. The extra benefits
that the availability of water for irrigation in arid or semi-arid areas can generate in the population
are very important. The World Health Organization (WHO) recommends a minimum threshold of
9 m2 per person of green areas [43]. The areas where the studied schools are located have a green area
surface of 4.91 m2 per person [44]. Therefore, it is necessary to increase the green areas in these regions
to meet the minimum recommendations for a better quality of life.

The treated greywater has the potential to be used for irrigation of plants, fruit trees, ornamental trees,
and green areas in general, according to the quality of greywater required for different uses.
Currently, treated greywater is used in schools to irrigate green areas. These green areas can be
optimized if the necessary water is used, avoiding losses, and preferring native plants and trees.
Quillay (Quillaja Saponaria) was taken as a reference, as an endemic tree in the area, to make a general
estimate of the green area surface that these waters could maintain. According to some studies,
to optimize the growth of the Quillay, 5 L of water are needed every 15 days for irrigation and an area
of 1 m2 per tree [45,46].

Table 6 shows the area that could be irrigated with the current level of greywater treated daily.
In addition, the range of greywater, corresponding to the first peak of economic feasibility in Figure 3,
was added in parentheses. In the case of El Guindo School, where there was no economically feasible
range, the upper peak was used, where the economic feasibility was less negative. Green areas could
increase if the amount of greywater treated daily is increased, which is particularly recommended
in El Guindo and Pedro de Valdivia Schools, to improve economic viability. If these initiatives are
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extended to other schools in the area, it is possible to increase the availability of green areas per person
at a regional level, and thus contribute to improving people’s quality of life.

Table 6. Potential irrigation of green areas with current levels of treated greywater and the first range
of economic feasibility.

Total Greywater Treated
Per Day [L]

Irrigation Area (Quillay
as Reference) [m2]

Green Areas/Person
[m2/Person]

Alejandro Chelén School 873 (807–999) 2619 (2421–2997) 6.24 (5.76–7.14)
El Guindo School 229 (540–999) * 687 (1620–2997) 5.68 (13.39–24.77)

Pedro de Valdivia School 158 (850–999) 474 (2550–2997) 3.56 (19.17–22.53)

Data subject to economic feasibility without considering capital costs. In parentheses, the potential ranges are shown
taking as reference the first peak of the economic feasibility of Figure 3. * Least negative range of economic feasibility.

In the studied area, the annual average temperature is 17.4 ◦C [47]. However, during the summer
months, the temperature reaches maximum values above 32 ◦C [47]. Vegetation is very useful to help
regulate the ambient temperature, as well as to adjust the humidity of surrounding areas [48–50].
The specific effect in reducing the temperature in school buildings depends on some factors, such as
the location of the green areas, their extension, and the leafiness of the trees. However, in general,
it has been reported that vegetation gives greater comfort to adjacent areas [51–53].

Although the climatic effects of vegetation can be more precisely quantified, there are several
additional effects that green areas have on people’s physical and mental health. A study carried out
in Denmark [54] showed that access to green areas within short commute distances from home was
associated with a lower degree of stress and also with lower obesity rates. Additionally, several studies
have shown that green areas in schools and any type of infrastructure and sustainable design in schools
were associated with better performance and a greater sense of satisfaction on the part of both students
and teachers [55–57]. In particular, the projects of this study have been incorporated into the study
plans, allowing the improvement of environmental and sustainable education in the establishments.
These curricular modifications have been reflected in participatory workshops of two hours a week,
in which children can learn recreationally and didactically.

4. Conclusions

The economic analysis of three pilot projects of greywater treatment systems in rural public schools
in Chile showed that it is infeasible because the high initial investment costs are not compensated for
by the savings in water quantified from the price of water in each case. The amount of water recovered
on a small scale fails to offset the capital costs, as well as the operating and maintenance costs that these
greywater treatment systems represent. Therefore, it is naive to think that only by the existence of legal
regulation for the reuse of greywater, private actors (individual or collective) will be encouraged to
promote projects in this matter, considering the economic, social, and institutional inequalities that
exist in the national territory. The current situation evaluated in the three schools is not economically
attractive. Under this context, subsidies are necessary for the initial investment of these projects.

However, the growing scarcity of water in the area, as well as the social benefits produced by
greater availability of water in arid and semi-arid areas, should be taken as a factor of greater relevance
when evaluating this type of project. Greywater allows the irrigation of green areas, which are very
scarce in areas with low water availability and a lack of rainfall. The increase in green areas in schools
is related to better performance and productivity, and a greater sense of satisfaction. It also contributes
to increasing the availability of green areas per person in the area, which is below the threshold
recommended by the WHO. Therefore, greywater projects should be evaluated from a social point of
view, and funding increased through public policies that promote greater sustainability in schools.
In this way, the State should promote public policies that allow subsidizing and stimulating alliances
with private parties to promote sustainable schools.
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