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1. Introduction

The larger anthropic pressure on the Water Supply Systems (WSS) and the increasing concern
for the sustainability of the large energy use for water supply, transportation, distribution, drainage
and treatment are determining a new perspective in the management of water systems. Operations
on drinking, storm, waste and irrigation waters are now considered; likewise, so are any other
industrial processes. Hence, an industrial approach is required and is starting to be implemented.
The control of these systems is increasing through better connectivity, larger data acquisition, more
process analysis and higher system control (Figure 1 [1]). An effort is also in action to move from
the linear economy model to the circular economy model. In this perspective, the potentiality for
the recycling of renewable and non-renewable sources is limited to few aspects of the process, as in
the use of unconventional energy and water sources in presence of water scarcity, or in the reuse of
the wastewater and the sludge coming from treatment plants. Much more emphasis should be given in
the management of the water systems and product innovation. The use of new devices in the network
affects the system sustainability in two ways: (i) it allows savings in the primary natural sources used
by the system and in the framework of the water-energy-food nexus; (ii) it automatically incorporates
in the water system all the environmental benefits expected at a political level by the product change.
As an example, we can consider the recent change in the pump market determined by the European
Community standards on Ecodesign. The pumps on the market are classified by a new performance
index, the Minimum Efficiency Index (MEI) and a minimum value MEI = 0.4 is required by Regulation
(EU) No. 547/2012. This value was fixed by the European Commission on the basis of an expectation of
the reduction in energy use of the pumps on the market. Then, the substitution of the existing pumps
by a water utility with a new product will reduce the energy use of the system and will contribute to
reach the EC environmental target.
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Figure 1. Decision tree of a Water Supply System (WSS). 

The first effect of climate change on water systems is represented by the problem of water supply 
in many arid and semi-arid areas. The water demand can be completed at the local scale by 
unconventional water sources, as by desalination plants, or by advanced treatment plants. The 
economic viability of these solutions should be assessed performing a complete evaluation of the 
water production costs and of the water supply costs, including the opportunities of energy recovery 
in the new supply system [2,3]. From the perspective of an industrial management of the water 
system accurate water balances are requested from the regional to the local scale. New measurement 
technologies and larger system connectivity are improving the knowledge of the network, including 
the existing rank cross-correlations between users and at all temporal lags. New water demand 
models start to be developed based on this interesting big data series. 

The topic that has been more largely treated in literature is the reduction of water leakage in 
pressurized water systems, representing the more efficient form of saving of the natural resources 
used in the system. This interest comes out from the large amount of water dispersed in the soil as 
an effect of pipe aging and other factors, as soil characteristics, pressure levels, traffic loads, etc. 
Statistics in Europe, referred to years 2012–2015, show that the amount of leakage is much more 
variable from one country to another, with a mean value of 23%, Figure 2 [4]. Therefore, a large 
number of studies were addressed to obtain a characterization of water losses to set up a number of 
strategies for reducing the amount of leakage and to create numerical models for the dynamic control 
of the network. A literature review including each of these aspects can be found in [5,6] and [7–9], 
respectively. Product innovation is in general connected to the equipment for the location of the water 
losses in the network, based on water balances or on local measurements. A better knowledge of the 
flow distribution allows for a more detailed characterization of the user demand pattern, then 
increasing the model performance [10,11]. 

Figure 1. Decision tree of a Water Supply System (WSS).

The first effect of climate change on water systems is represented by the problem of water supply in
many arid and semi-arid areas. The water demand can be completed at the local scale by unconventional
water sources, as by desalination plants, or by advanced treatment plants. The economic viability of
these solutions should be assessed performing a complete evaluation of the water production costs
and of the water supply costs, including the opportunities of energy recovery in the new supply
system [2,3]. From the perspective of an industrial management of the water system accurate water
balances are requested from the regional to the local scale. New measurement technologies and
larger system connectivity are improving the knowledge of the network, including the existing rank
cross-correlations between users and at all temporal lags. New water demand models start to be
developed based on this interesting big data series.

The topic that has been more largely treated in literature is the reduction of water leakage in
pressurized water systems, representing the more efficient form of saving of the natural resources used
in the system. This interest comes out from the large amount of water dispersed in the soil as an effect
of pipe aging and other factors, as soil characteristics, pressure levels, traffic loads, etc. Statistics in
Europe, referred to years 2012–2015, show that the amount of leakage is much more variable from one
country to another, with a mean value of 23%, Figure 2 [4]. Therefore, a large number of studies were
addressed to obtain a characterization of water losses to set up a number of strategies for reducing
the amount of leakage and to create numerical models for the dynamic control of the network. A
literature review including each of these aspects can be found in [5,6] and [7–9], respectively. Product
innovation is in general connected to the equipment for the location of the water losses in the network,
based on water balances or on local measurements. A better knowledge of the flow distribution
allows for a more detailed characterization of the user demand pattern, then increasing the model
performance [10,11].
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Two important strategies that are commonly used nowadays for leakage control are the creation 
of District Metered Areas (DMAs) in order to balance the water pressures and to make accurate 
resources balance, and the pressure reduction strategy, where the pressures in the network are 
reduced by Pressure Reducing Valves (PRVs) to minimize the water leakage. A research topic 
developed in the last decade is represented by the energy recovery in the dissipation nodes by Energy 
Production Devices (EPD). The assessment of EPDs performance is a frequent study topic and it is 
essential for the design of a micro and pico hydro power plant. The optimal location of EPDs and 
valves in the network is a complex problem to face with advanced numerical models. The most 
common EPDs are represented by the use of commercial Pumps As Turbines (PATs). A complete 
theory for PATs design and control in water supply networks has already been developed [12], 
including a detailed cost analysis [13], and a number of plants have been already installed [6,12].  

The problem of system control is also important in free surface conditions. An interesting 
research topic is represented by the control of gates in channels or in rivers in order to reduce the 
amount of water wasted, due to evaporation, leakage, and lack of control. Different control strategies 
can be considered, and the flow behavior can be simulated based on the Saint Venant equations. 

This Special Issue comprises papers focused on the most important issues related to the 
application of innovative technologies for active control and energy efficiency in water supply 
systems, such as: 

• Definition of dependencies and patterns in the big data analysis to be considered in a proactive 
multilevel historian application for water networks [14] 

• Methodology for historian analysis of malfunctions in sewer networks as a support tool for the 
management authorities [15] 

• Estimates of nodal demands for numerical simulation of water distribution networks [16] 
• Assessment of the interaction between head and leak flow in innovative materials for 

pressurized hydraulic systems [17] 
• Performance of EPDs for pico and micro hydropower in water distribution networks [18–20] 
• Existing and emerging desalination technologies, their economic and environmental benefit, 

their potential application in arid zones [21] 
• Application of new technologies for wastewater pumping with large environmental benefit 

[22,23] 
• Application of automatic control to irrigation canals for improving the efficiency of water 

delivery [24,25] 

Figure 2. Water distribution losses in EC countries in the 2012–2015 period [4].

Two important strategies that are commonly used nowadays for leakage control are the creation of
District Metered Areas (DMAs) in order to balance the water pressures and to make accurate resources
balance, and the pressure reduction strategy, where the pressures in the network are reduced by
Pressure Reducing Valves (PRVs) to minimize the water leakage. A research topic developed in the last
decade is represented by the energy recovery in the dissipation nodes by Energy Production Devices
(EPD). The assessment of EPDs performance is a frequent study topic and it is essential for the design
of a micro and pico hydro power plant. The optimal location of EPDs and valves in the network is
a complex problem to face with advanced numerical models. The most common EPDs are represented
by the use of commercial Pumps As Turbines (PATs). A complete theory for PATs design and control in
water supply networks has already been developed [12], including a detailed cost analysis [13], and
a number of plants have been already installed [6,12].

The problem of system control is also important in free surface conditions. An interesting research
topic is represented by the control of gates in channels or in rivers in order to reduce the amount of
water wasted, due to evaporation, leakage, and lack of control. Different control strategies can be
considered, and the flow behavior can be simulated based on the Saint Venant equations.

This Special Issue comprises papers focused on the most important issues related to the application
of innovative technologies for active control and energy efficiency in water supply systems, such as:

• Definition of dependencies and patterns in the big data analysis to be considered in a proactive
multilevel historian application for water networks [14]

• Methodology for historian analysis of malfunctions in sewer networks as a support tool for
the management authorities [15]

• Estimates of nodal demands for numerical simulation of water distribution networks [16]
• Assessment of the interaction between head and leak flow in innovative materials for pressurized

hydraulic systems [17]
• Performance of EPDs for pico and micro hydropower in water distribution networks [18–20]
• Existing and emerging desalination technologies, their economic and environmental benefit, their

potential application in arid zones [21]
• Application of new technologies for wastewater pumping with large environmental benefit [22,23]
• Application of automatic control to irrigation canals for improving the efficiency of water

delivery [24,25]

Based on these contributions, this editorial will be organized in three macro-sections. Section 2.1
will consider the papers on big data analysis. Section 2.2 will be focused on the performance of EPDs
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for energy recovery in the water networks. Section 2.3 will present the contributions on the application
of industrial technologies and control algorithms

2. Contributed Papers

2.1. Big Data Analysis

The conceptual view of a historian’s application as conceived in an Industry 4.0 framework
is described by [14]. A multilevel structure increases the potentialities of the big data analysis
(Figure 3). The Level 1 algorithms are conceived to identify complex relationships and dependencies
between technical system characteristics. Level 2 algorithms predict the future evolution of measured
characteristics in order to make adjustments to the technical system. Level 3 algorithms are responsible
for deciding how to influence the technical system in order to meet a defined objective. These algorithms
are based on two distinct inputs: the predicted future evolution of the technical system, and a set of
objectives provided by a technical system manager. Obviously, the proposed historian’s architecture
is proactive because it consists of a repetitive loop, whereby the evolution of the technical system is
recorded, analyzed, and predicted, and then technical system evolution is altered from the prediction
in order to achieve predefined goals. The objectives can be changed along the way, based on newly
recorded data.
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Figure 3. Reference proactive architecture for a network modeling and control based on historical data.

This methodology can be applied to all sectors of WSS, and an example was performed to
a water treatment facility that receives water from several water wells and sends the treated water
to the distribution network using a pumping station and reservoirs, with the purpose of reducing
operational costs. Several dependencies were identified between measured characteristics, such as
adsorbed energy, turbidity, equipment functioning, etc. Following the data dependency identification,
quality priority indicators were associated to each water well, and total priority indicators and flow
setpoints for local control loops were determined. Then, a proactive change of the local flow setpoints
in each well was decided, with a noninvasively change of the local system behavior. A final 9% energy
efficiency improvement was demonstrated.

Level 1 Algorithms are generated on the basis of measured characteristic values. Despite
the potential computerized framework of a big data analysis, a preliminary definition of the relevant
characteristics of the system is generally required. Then, an improvement of the frequency and
accuracy of the measurements will be suggested, starting from the first stage to the subsequent
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stage of this proactive management. The study on the malfunctions of sewer networks of Southern
Italy provides this kind of starting information [15]. Based on a very simple database, that was
traditionally drafted by Italian water management authorities, containing a brief qualitative description
of the situation, including the reasons for the call, nature of disservice, location, possible causes,
and the following intervention, an analysis of the recorded interventions was performed. Type and
frequency of the malfunction were put in relation with the characteristics of the sewer pipelines, of
the location in the network, of the kind of urban aggregate. In general, the correlations are very
complex for the presence of many hidden factors. As an example, we can observe from the distribution
of the interventions per kilometer due to breakage vs. pipe material that stoneware pipelines have
the highest vulnerability for the provinces of Taranto, Lecce, and Brindisi, followed by reinforced
concrete pipelines in Brindisi and Taranto provinces, and steel pipelines in the Lecce province. A
dependency of the number of interventions per kilometer vs. the number of inhabitants was also
revealed, Figure 4.
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The generation of a water-demand time series at both single user and nodal scales is a typical
problem for network simulation programs. Big data coming from the hourly consumption data of
a smart water network located in a suburban area of Naples (Italy) were considered in [16]. In Figure 5,
the measured daily demand time series are plotted for a small water district (1000 users) and for
a large water district (1000 users). The distributions were analyzed according with two different
approaches suggested in literature, namely the top-down approach and the bottom-up approach.
The bottom-up procedure was found to perform significantly better than the top-down procedure in
terms of rank-cross correlations at a fine scale. However, the top-down procedure showed a better
performance in terms of skewness and rank cross-correlation when the aggregated demands were
considered. Both procedures generate results perfectly comparable with the measured distribution at
an aggregate scale, Figure 6.
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Figure 6. Daily temporal patterns of both mean µ (continuous lines) and intervals µ ± 0.5σ (dotted lines)
for measured (black lines) and generated (grey lines) aggregated demands: the generated demands
were obtained applying the top-down approach (a) and the bottom-up approach (b), respectively [16].

Another typical problem for network simulation is represented from the hydraulic characterization
of the real losses. These kinds of studies are generally performed by physical experiments. As a result,
the relationship between the leak outflow and the hydraulic head and the geometric features of the hole
and the mechanical characteristics of the pipe, are obtained. Nowadays, the technical innovation is
represented by the possibility of modeling numerically the flow field at the orifice [17]. Experiments
were performed on a drilled PVC-A (Polyvinyl Chloride-Alloy), presenting a rectangular orifice of
20 × 3 mm, realized in the bottom side of the pipe, oriented transversally to the flow direction. A
Computational Fluid Dynamics (CFD) model was then implemented and calibrated with experimental
results, to different geometric configurations of the orifice, with the aim of assessing the dependence
of the orifice geometry and orientation on the calibration of leakage law parameters. As an example
of the work potentiality, the velocity fields obtained numerically are plotted in Figure 7, for different
values of the pipe flow rate.
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2.2. Technologies for Micro to Pico Hydropower

EPDs for energy recovery in WSS can be based on different principles, depending on the flow
conditions and on the amount of energy that is required locally. In many cases, traditional turbines can
be used. In particular, Francis turbines are generally operated in the large water transmission lines,
where stable conditions of flow rate and head drop are observed. Pelton turbines are also in use to
recover the residual energy at the end of the pipelines when free discharge conditions are present. In
water distribution these devices are not suitable due to the observed daily variability of the flow rate
and head drop. Another problem for hydropower exploitation in water distribution is represented
by the limited power dissipated in the pressure reduction valves (Figure 8a) [18]. As a consequence,
in presence of large costs for the EPD, the control system and housing are not viable. In Figure 8b,
the annual income of hydro power plants is plotted as a function of the installed power, for two
unit costs, and ten years of investment, representing the best and the worst scenario. A five years
payback period can be obtained for a plant size between 3 and 20 kW only in presence of the only
electro-mechanical costs. Hence, the research is now focused on low cost, reliable EPDs to be installed
with limited installation and maintenance costs.
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Figure 8. Real data on the dissipated power in Pressure Reducing Valves (PRVs) [18] showing (a)
the numbers of valve for class of dissipated power, and (b) the Annual Net Income (ANI) for ten years
investment in case of specific installation cost of 3700€/kW and 7400€/kW.

In many situations, only a small amount of energy is necessary in the dissipation node, in order
to create a stand-alone monitoring node with remote control ability. A smart solution, Figure 9 is
represented by the Green Valve System (GVS), replacing in line an existing pressure reducing valve,
allowing a perfect energy supply and connection to a control and metering station in a node of a WSS.



Water 2020, 12, 3278 8 of 15
Water 2020, 12, x FOR PEER REVIEW 8 of 15 

 

 
Figure 9. Green Valve System [18]. 

A pump operated as turbines (PATs) is probably the most promising EPD for WSS, due to the 
reduced costs in comparison with classic turbines, to the low maintenance costs and to the large 
industrial production. The major obstacle that inhibits the practical application of PATs in actual 
projects is the lack of performance data (best efficiency point data, characteristic curves). The 
availability of relationships between the pump and turbine mode performance data could remove 
this obstacle, at least in preliminary design stages. In the past, a number of models were published 
operating this kind of prediction (see [12] for a literature review), but the performance is frequently 
poor. These models were calibrated for large, single stage, centrifugal PATs and the extrapolation to 
smaller units of a different type is critical. This problem can be overcome by introducing a correction 
function or by recalibrating an existing model. The first approach was used for Multistage Submersed 
Pumps [26], while the second is proposed by [19] with an extension of Derakhshan and Nourbakhsh 
model [27]. The new calibration has been performed using experimental data on 20 ESOB (End 
Suction Own Bearing) devices, 7 MSV (Multi-Stage Vertical), 6 MSH (Multi-Stage Horizontal) and 
one MSS (Multi-Stage Submersible) industrial pumps, collected within the Reduction Energy 
Dependency in Atlantic area Water Networks (REDAWN) Interreg Atlantic Area project. In Figure 
10, the results of the new model are compared to MSV data and to the Derakhshan and Nourbakhsh 
model. 

  

Figure 10. Experimental and theoretical performance curves for MSV pumps used in inverse mode. 

New and reliable data of PAT are useful for the design of future micro hydro power plants. An 
interesting procedure for the selection is suggested in [20], where the lack of reliable data from the 
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Figure 9. Green Valve System [18].

A pump operated as turbines (PATs) is probably the most promising EPD for WSS, due to
the reduced costs in comparison with classic turbines, to the low maintenance costs and to the large
industrial production. The major obstacle that inhibits the practical application of PATs in actual projects
is the lack of performance data (best efficiency point data, characteristic curves). The availability of
relationships between the pump and turbine mode performance data could remove this obstacle, at
least in preliminary design stages. In the past, a number of models were published operating this
kind of prediction (see [12] for a literature review), but the performance is frequently poor. These
models were calibrated for large, single stage, centrifugal PATs and the extrapolation to smaller units
of a different type is critical. This problem can be overcome by introducing a correction function or by
recalibrating an existing model. The first approach was used for Multistage Submersed Pumps [26],
while the second is proposed by [19] with an extension of Derakhshan and Nourbakhsh model [27].
The new calibration has been performed using experimental data on 20 ESOB (End Suction Own Bearing)
devices, 7 MSV (Multi-Stage Vertical), 6 MSH (Multi-Stage Horizontal) and one MSS (Multi-Stage
Submersible) industrial pumps, collected within the Reduction Energy Dependency in Atlantic area
Water Networks (REDAWN) Interreg Atlantic Area project. In Figure 10, the results of the new model
are compared to MSV data and to the Derakhshan and Nourbakhsh model.
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Figure 10. Experimental and theoretical performance curves for MSV pumps used in inverse mode.

New and reliable data of PAT are useful for the design of future micro hydro power plants.
An interesting procedure for the selection is suggested in [20], where the lack of reliable data from
the pump manufacturers is overcome by direct pump testing in inverse mode on a new experimental
rig, Figure 11. Based on the daily distribution of flow rate and pressure head in the dissipation node,
the choice of the best PAT speed can be performed by specific tests, and the daily distribution of
pressure drop can be exactly evaluated, Figure 12.
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2.3. Industrial Technologies and Control Algorithms

The last series of contributions refer to industrial application of existing technologies. A correct
analysis of the potentiality of any innovation is fundamental to obtain a good exploitation for
the technology. In the presence of mature technologies, this analysis can be performed with high
accuracy, involving also the environmental benefit of the design solution. A technology that is
exhibiting large advancement is the desalination [21]. In the case of the Saudi Arabia sites of Figure 13,
great savings in terms of water cost and impressive reductions in terms of CO2 emission will be
obtained by upgrading the existing design plans by introducing the most advanced technology of
water production and a more rational scheme of hydraulic supply (Table 1).
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Table 1. Impact of new technologies and decentralization on energy consumption and CO2 emissions [21].

City Plant
Length (km)
Height (m)

Water Flow
(M3/day)

Existing Plan
Transmission Pipeline + Current Plants

Proposed Plan
Decentralized-ADD without Pipeline

Water-Transmission
Energy Cost

(MUSD/year)

Emissions
(tons CO2/year)

Water-Production
Energy Cost

(MUSD/year)

Emissions
(tons CO2/year)

Makkah Shoaibah 90
240 550,000 82.9 653,943 12.8 101,671

Madinah Yanbu 162
631 450,000 99.5 784,530 10.5 83,186

Abha Shoqaiq 105
2084 100,000 25.1 198,165 2.3 18,485

Riyadh Jubail 400
612 950,000 290.6 2,291,034 22.2 175,615
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Wastewater pumping and treatment is another sector where promising environmental benefits
could be pursued by the introduction of new technologies and control systems. One of the main
limitations in the exploitation of PAT technology is the necessity of a local use of the recovered energy.
A possibility is represented by the use of turbo-pumps, with a direct coupling of a PAT and a pump [22].
The theory was already discussed for freshwater application but has been extended to the energy
transfer from the freshwater to the wastewater network (Figure 14). The viability of the new technology
is expressed by an economic comparison with a more conventional design solution presenting a hydro
power plant in the dissipation node of the freshwater network and a wastewater pumping system,
working in on/off mode. A positive difference in the Net Present Value (NPV) between the two solutions
expresses an economic advantage of the turbo-pump technology. The benefit of the new technology is
larger on the small period and is strongly affected by the runoff coefficient of the drainage network
(Figure 15).
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According to the basics of the eco-design, a pumping group, made by a pump, motor, speed
driver, and regulation devices, working with variable speed is considered the best opportunity for
the reduction of energy use in water systems. A pump scheduling optimization consists of finding, for
each time step, the rotational speed of the group in order to minimize the total energy adsorbed during
the day. Variable flow conditions have not been implemented yet for wastewater pumps operating
in small wet tanks for a number of reasons: the optimization problem is more complicate including
on/off scheduling and rotational speed value; the presence of sediments in the water might change
the performance of the group with the pump age; there are issues concerning the pump clogging when
the flow rate is reduced. The first two issues have been treated in [23]. Laboratory experiments have
been performed on a chopper pump affected by progressive wear, obtaining accurate performance
curves (Figure 16). Then a pump scheduling optimization problem was solved for a real outflow
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measured in the drainage network of Napoli (Italy), for different plant curves (Figure 17a). The global
efficiency of the group working in variable flow conditions has been compared with the efficiency
of the group working in constant flow conditions (on/off) (Figure 17b). The mechanical wear was
found to affect the potential benefit of the pump speed control. In particular, an accurate maintenance
program is necessary in pumping system with large geodetic head in order an economic advantage
from the use of a variable speed control.
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The automatic control of the water level in an irrigation canal by automatic regulation of
intermediate gates was the last topic treated in the Special Issue. Canal automation has recently
evolved to the point where most new canal designs and canal modernization projects include a large
level of automation. In the first paper [24], a numerical result to the problem of gate regulation
was proposed on three scenarios on a channel presenting six adjacent pools, each of one supplying
a different irrigation network (Figure 18). Despite the simplicity of the classic Saint Venant equations
describing the physical process, the solution of the gate control optimization required a powerful
Model Predictive Control (MPC). MPC is a control strategy that explicitly uses a simplified process
model of the real system to obtain control actions by minimizing an objective function.
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The control strategy was applied in [25] to the largest open canal water transfer project in China,
the Middle Route Project (MRP) for South-to-North Water Transfer (Figure 19). Thirteen pools were
considered in the model, for a total length of the canal of 227.3 km. The results of the simulation
demonstrated that the MPC system deals with both known and unknown disturbances, albeit with
a degree of resonance in some short pools. However, the calculation times for the whole MRP network
are at present too long to satisfy the requirements of real-time control. Therefore, from the perspective
of shortening the calculation time of the control system, it is important to set up some reservoirs to
divide the MRP into several separate canal systems.Water 2020, 12, x FOR PEER REVIEW 13 of 15 
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3. Conclusions

Product innovation is the real key for improving the management of Water Supply Systems,
increasing the global efficiency of the water transfer and leading to the application of circular economy
models. In the framework of the water–energy–food nexus, the ultimate goal is to distribute water to
the end users with the optimal energy and quality values. For the complexity of the WSS supply and
network geometry, for the variability of the ground altimetry, and for the daily variation of the water
demand, an optimal distribution is possible only by an active control of all components of the network,
i.e., pumps, gates, valves, meters, etc.

All products and control algorithms might be distributed in a structured decision tree, and all
data acquired in the network might undergo a multi-level proactive analysis for simulating the future
states of the system, supporting the WSS management in their decision. In this view, the contributions
to this Special Issue are strongly homogeneous, watching different WSS aspects, but with the same
perspective of increasing the active control and the energy efficiency of the network. The readers
will find real innovation, but all Authors were aware of the importance of the transferability of their
technologies or the modeling approach to the real WSS management.
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The water sector, generally considered a very traditional sector, will be completely changed by
the new paradigms of Industry 4.0, Big Data and the Internet of Things (IoT). We hope that this volume
will open a window on this next future change.

Author Contributions: A.C. conceived and led the development of this Special Issue and this paper; M.G. and
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Acronyms:

CFD Computational Fluid Dynamics
DMA District Metered Area
EPD Energy Production Device
ESOB End Suction Own Bearing
GVS GreenValve System
IoT Internet of Things
MEI Minimum Efficiency Index
MHP Micro-hydropower
MPC Model Predictive Control
MSV Multi-Stage Vertical
MSH Multi-Stage Horizontal
MSS Multi-Stage Submersible
NPV Net Present Value
PAT Pump as turbine
PRV Pressure reducing valve
PSH Pumped-storage hydropower
WDN Water distribution network
WSS Water supply system
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