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Abstract: Total suspended matter (TSM) concentration is an extremely important parameter for
water quality definition. The aim of this work is the evaluation of the effect of the Three Gorges
Dam on total suspended sediments using remote sensing data at different temporal and spatial
resolutions. TSM is estimated for the middle Yangtze river, China, before and after the construction
of the Three Gorges Dam. The retrieved values are correlated to ground daily discharge values,
finding relations between the physical quantities and discharge. Then, the application of the obtained
relations to the discharge dataset provides continuous daily estimations of TSM values, also covering
the days for which satellite scenes were lacking. This daily dataset will allow us to estimate the
annual volume of river solid sediments. According to this work, both low spatial resolution MODIS
(Moderate Resolution Imaging Spectroradiometer) data and high-resolution. Landsat 5 and 7 are
able to detect the changes in TSM distribution over space and time induced by the building of the
Three Gorges Dam, with a variation of even 50 mg/L over summer season. The confrontation of solid
discharge with daily estimated TSM values shows that the single band MODIS algorithm performs
better for medium-low concentrations, while the dual-band algorithm for MODIS and the selected
Landsat algorithm perform better with high concentrations.

Keywords: remote sensing; total suspended sediments; discharge; MODIS; Landsat 5 and 7;
three gorges dam

1. Introduction

Water quality is a key issue in environmental problems, and remote sensing optical sensors
can be used to quantify, among others, one fundamental water quality parameter such as Total
Suspended Matter (TSM). TSM can be defined as the net weight of the material, including organic
(detritus and phytoplankton) and non-organic fractions (minerals), collected by a 0.7 µm GF/F filter
after water filtration [1,2]. The importance of TSM for water quality management is recognized by
several authors: high values of TSM significantly contribute to the filling-in of streambeds, and also
dams, reducing water body capacity and expanding the temporal intensity and the strength of
floods, thus requiring expensive water treatment plants, bigger basins and frequent maintenance
operations [3–7]. In addition to the previous statements, TSM influences primary production,
pollutants transport [1], and water clarity/opacity.

The Three Gorges Dam (TGD) along the Yangtze river (China) project was implemented to contain
the major threat posed by the heavy floods to the populations of the riverine cities and to tackle with
the necessity of a drastic change in Chinese energy generation policy. However, TGD also affects
two more aspects of the Yangtze River, flow regulation and sediment transport, thus influencing the
downstream discharge and water level, and also the ecological environment with soil erosion and
sediments depositions [8]. Many authors discuss the variations of solid discharges (sediment) in
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respect to the hydrological regimes (discharges and rainfall) before and after the Three Gorges dam
construction; mainly reporting a gradual decline in sediment production of Yangtze prior to TGD
building, partially due to building of many dams, and to the reduced amount of rainfall in the Jialing
basin, one of the most important tributaries of Yangtze river [8–24]. The TGD is operational since 2003,
and, after that period, the mean annual sediment load at Yichang gauging station decreases drastically
by 84% compared to the pre-TGD period (1986–2002), from an average value of 500 million tons/year
to 60 million tons/year [21]; the Yangtze sediment discharge drastically declines too. Compared to
the pre-1970 values, the sediment load after 2003 dropped by about 70% [14,17]. It is then reasonable
to assume that 2003 is a critical year [22–24]. All these papers rely on ground measurements or
hydrological-hydraulic modeling to assess these changes, without any involvement of satellite data.

Traditionally, TSM has been quantified with in-situ monitoring which requires a network of
gauging stations or the organization of sampling ship-based cruises, leading to data with wide temporal
extent but related to one single point, or to transects valid only for the time of the measurement.
Since the first years of 1970s, remote sensing techniques allowed to go beyond the limits of the
traditional monitoring of several physicochemical indicators. Thanks to the constant improvements in
the spectral and spatial resolutions of the sensors and in the development of dedicated algorithms,
in recent years [25–31], remote sensing techniques have been successfully and progressively extended
from open to inland waters [3,27–39]. Satellite TSM retrieval presents several advantages over
traditional methods in monitoring TSM concentration at high spatiotemporal resolution: one of
the main benefits of the application of satellite remote sensing to water quality monitoring is the
characterization of spatial and temporal variability of TSM and turbidity at the same time, which leads
to synoptic views characterized by high temporal frequency, reducing the cost of in-situ sampling to
the minimum and allowing us to reconstruct water quality variations at a big spatial and temporal
scales. Moreover, the revisit time of many remote sensors was progressively reduced, intensifying the
frequency of availability of water quality data, and allowing us to organize them in vast and easily
accessible archives. However, some limitations should be considered, as the satellite-derived TSM
concentrations are sensitive to the satellite sensor’s radiometric properties and its spatial resolution [39],
atmospheric correction approaches, and temporal resolution, which are limited by the cloud coverage
and the intrinsic limitations of specific TSM algorithms [27,37]. Different procedures exist to retrieve
TSM from satellite: a first distinction can be made between empirical models, using the relations
between the reflectance of one or more bands and TSM, and IOP-based (inherent optical properties
(IOP)) or semi-analytical models. The reflectance response at a given band is influenced by color,
dimension, and shape of the suspended sediment and by its concentration as well. For these
reasons, regional relationships are usually developed, valid for similar sediments. As an example,
the single-band empirical model developed by [34] established a robust linear relationship between
the MODIS Terra Band 1 (0.62–0.67 µm) surface reflectance and in situ measurements of TSM, but the
relation quickly saturates with the increase in TSM. To go beyond the above-mentioned limitations,
some models include two or more algorithms based on two bands in visible and near-infrared (NIR)
differences or ratios [35], taking the resulting value of one or another algorithm according to the
ranges of TSM. These models are more insensitive to backscatter variability. Some authors [36–38]
developed semi-analytical models defining reflectance as function of inherent optical properties,
such as absorption and backscattering, applying an inversion to establish the reflectance spectra best
fitting the measured reflectance. The retrieval of TSM in inland waters, especially along rivers network,
is still an open issue in remote sensing, mainly due to the problem of distinguishing land from water
caused by the low satellite spatial resolution and the changing water levels of rivers. In literature,
different studies are available on the analysis of the variability of TSM along the Yangtze river by the
means of remote sensing information [11–13,25,30,40], which are mainly focusing on the estimation of
TSM along the river and especially on the estuary [13,40–42] or its main lakes [11], or evaluating the
effect of TGD on suspended sediment in the Yangtze Estuary and its adjacent coastal waters [12].
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However, very few papers use satellite data, or even multi-satellite data, to evaluate the effect of
TGD on sediments just downstream of the dam, with an analysis on the comparison of TSM differences
among the reservoir and the upstream and downstream areas. To authors’ knowledge, in literature,
there is just one paper, by Chen et al. [43], which uses the coarse resolution MODIS data to retrieve
TSM with a Neural Network algorithm and then to investigate the sediment changes downstream of
TGD from Yichang to the estuary area.

In this context, the aim of this paper is the time continuous estimation of the variations of total
suspended matter concentrations induced by the construction of the Three Gorges Dam, one of the
biggest dams in the world, and also by flood events along the middle Yangtze river and in the Three
Gorges Dam Reservoir, China. Remote sensing data at different spatial and temporal resolutions are
used to estimate TSM: daily MODIS data at 250 m, and Landsat 5 and 7 data every 16 days at 30 m.
These estimates are subsequently correlated to daily discharge values measured along the Yangtze
river to obtain continuous daily estimations of TSM values, covering also the days for which satellite
scenes are lacking, allowing to compute the annual solid sediments volumes.

With respect to previous studies, three important innovations are introduced:

(1) Estimates of the effect of the Three Gorges Dam on total solid sediments volumes using only
remote sensing information from MODIS and Landsat, since 99% of solid transport in Yangtze
river occurs in suspension [19];

(2) Time continuous estimates of TSM from remote sensing along the Yangtze river, thanks to the
correlations between TSM satellite estimates and ground measured river discharges, which were
used as a proxy to obtain daily TSM values with very limited dependence from cloud cover and
satellite overpass time;

(3) Impact of the different remote sensing data spatial and temporal resolution on the derived
TSM products.

Study Area

The Yangtze River, the longest river in Asia, originates on the Qinghai-Tibet Plateau at 5100 m
above sea level, spanning 6300 km eastward before flowing into the East China Sea (Figure 1). The whole
river basin spans for 1,722,115 km2 and it is conventionally subdivided into three sub-basins: the upper
one, where the river flows in mountain areas with a steep river channel from the spring to Yichang,
the middle one from Yichang to Hankou, and the lower basin from Hankou to the estuary [9–13].
Rainfall in the Yangtze Basin follows a typical monsoonal regime [16], with more than 60% of annual
precipitation falling during the wet season between June and July [17,18]. The annual areal precipitation
ranges from 859 mm in the upper reach to 1528 mm in the lower reach [16].

Water and sediment discharge from affluents of the Yangtze vary considerably along the river
course and during the year. The major sediment supply is originated from the Tibetan plateau
western affluents upstream of Yichang, as well as from highly-erodible loess deposits in northern
affluents [17]. The increasing use of mineral compounds for agriculture such as herbicides and
pesticides, together with the massive discharge of heavy metals and POP (persistent organic pollutants)
as a consequence of the population growth and the intensive industrial activity, made the Yangtze
river one of the most polluted rivers in the world: the considerable impacts on the river are attenuated
by the notable dilution effect originated by the big water discharge of the river, although the pollutants
may accumulate in trophic chains and sediments [18].

The TGD achieved operational status in 2003, it is actually the world’s largest dam in terms of
installed power capacity, and it closes the upper sub-basin of Yangtze River with its 185 m high wall
that stores a water volume of 39.3 × 109 m3 [9,44]. On the other hand, the dam building required
the relocation of millions of people, and its socio-economic and environmental aspects are still under
investigation: for instance, the TGD building could aggravate the fragmentation of aquatic biodiversity
caused by the Gezhouba Dam building [45], modifying also flow regulation and decreasing downstream
sediment transport, [8,21–24].
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Figure 1. Yangtze river and Three Gorges Dam location.

In the current study, three scenarios are investigated: the year 2002 was selected as
pre-impoundment year with “ordinary” discharge, 2004 was post–impoundment with severe floods,
and 2006 was chosen as post-impoundment with severe droughts. This variability of TGD behavior
is clearly visible from Figure 2, where different Landsat images are shown. During the year 2002,
visible are the TGD still under construction and the absence of the reservoir; while in the 2004 and
2006 images both the dam and the lake are clearly detectable. As an example, the RGB image of
3 January 2002 shows a water color of the river clearer than on 4 June 2002. The RGB image of
3 October 2004 shows what happens in case of flood, the white glint originating from the dam wall is
caused by the discharge water flowing through the spillway gates to regulate the flood: in addition to
this, the impact of the turbulent water makes the downstream water more turbid. The RGB image of
30 October 2006 shows the ends of the flood season.
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2. Materials and Methods

Total suspended matter concentrations are estimated from MODIS and Landsat 5 and 7 data along
the Yangtze river basin testing different retrieval algorithms, which have been previously developed
and validated against ground data in the Yangtze river. TSM values are subsequently correlated
to daily discharge values measured on the ground, leading to relations between the two physical
quantities and discharge. The application of the obtained relations to the discharge dataset made it
possible to obtain daily estimations of TSM values, also covering the days for which satellite scenes
were lacking. The estimations from the various retrieval algorithms and sediment discharge values are
finally compared with literature values of solid discharge measured on the ground to detect annual
changes in TSM formation. This approximation is possible because 90% of the suspended load occurs
in suspension rather than in the riverbed, and the riverbed load is less than 1% of the suspended
load [8].

2.1. MODIS and Landsat 5 and 7 Satellite Data

The satellite data to used retrieve the variations of total suspended matter (TSM) are MODIS and
Landsat 5 and 7 satellites sensors. The Moderate Resolution Imaging Spectroradiometer (MODIS) is
carried on the two Terra and Aqua satellites, launched by NASA in 1999 and in 2002, respectively.
The two satellites trace sun-synchronous, polar orbits around the Earth, acquiring data in 36 spectral
bands at different spatial resolution each 1–2 days: 250 m for Band 1 and 2, 500 m for Bands from
3 to 7, and 1000 m for the other Bands. In this work, data from the MODIS Surface-Reflectance
Product (MOD09GQ) (pixel size 250 × 250 m), surface reflectance Band 1 (620–670 nm) and Band 2
(841–876 nm) are used (https://modis.gsfc.nasa.gov/about from NASA US and downloadable from
https://search.earthdata.nasa.gov/search), which has then been converted in the remote sensing
reflectance, Rrs, dividing for the Pi number [46]. The MODIS dataset has been firstly reduced
considering cloud coverage: if the image has a cloud area that covers more than 40% of the total
interested area, the image is discarded. Since the middle Yangtze river basin area is affected by the
Monsoons during summer, it was frequently covered by clouds for several days. After this selection,
only 10% of the dataset for each year was retained and a total of 126 atmospherically corrected scenes
from the MOD09GQ are selected: 35 for 2002, 56 for 2004, and 35 for 2006 (Table 1).

Table 1. Available data used in the study: number of satellite images selected, ground discharge data
and sediment data.

2002 2004 2006

MODIS 35 images 56 images 35 images

Landsat 5 8 images 5 images 10 images

Landsat 7 11 images 15 images 7 images

Yichang Discharge data Daily data from
January to December

Daily data from
January to December

Daily data from
April to October

Yichang Sediment data Monthly data Monthly data Monthly data

NASA images from Landsat 5 and Landsat 7 (https://www.usgs.gov/core-science-systems/nli/
landsat from NASA US and downloadable from https://search.earthdata.nasa.gov/search) are also used
to retrieved TSM at a spatial resolution of 30 m for the visible bands; while the temporal resolution
is of 16 days. The remote sensing reflectance data, Rrs, in the visible range of the electromagnetic
spectrum, are atmospherically corrected using the FLASH method [47]. The images selected during
the analyzed period considering only clear sky days, are 33 in total for Landsat 7 and 23 for Landsat 5,
of which: 11 for 2002, 15 for 2004, and 7 for 2006 for Landsat 7, while for Landsat 5, 8 for 2002, 5 for 2004,
and 10 for 2006 (Table 1).

https://modis.gsfc.nasa.gov/about
https://search.earthdata.nasa.gov/search
https://www.usgs.gov/core-science-systems/nli/landsat
https://www.usgs.gov/core-science-systems/nli/landsat
https://search.earthdata.nasa.gov/search
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Due to the different revisit time of the two satellites and the extremely frequent cloud cover,
the number of available scenes of Landsat 5 and 7 coincident with MODIS images is significantly low:
11 and 16, respectively.

2.2. Land Water Separation

The dataset of satellite scenes needs to be refined prior to the application of the algorithms: a first
and fundamental step is an accurate land/water separation, required due to the temporal variability of
the surface of the reservoir. Due to the narrow river water area in respect of open water, the correct
separation of water pixels from land pixels is of extreme importance. In any case, the Yangtze river
upstream and downstream of the Three Gorges Dam has a mean width of 700 m, ranging from 500 to
1500 m, which guarantees a complete coverage of the river with at least a MODIS pixel. Fewer problems
are present in Landsat data thanks to the higher spatial resolution. The land water separation analysis
is carried out extracting a mask of the water body with a threshold in the NIR surface reflectance
band of MOD09GQ at 0.002 sr−1, taking advantage of the very low reflectance of water in this band.
After this step, a distinction of the water body from the clouds is still necessary, since water vapor will
interfere with the results of the algorithms: to do this, each image undergoes a trial and error approach
in which the highest reflectance value absent in land and clouds is set as a threshold. Last but not
least, an adjacency effect occurs in the water pixels near to the water banks: the reflectance of those
water pixels will be affected by a contribution from the sub vertical and bright river banks. The effect is
amplified by the significant changes of the water level throughout the investigated period, at seasonal
and yearly scale [8].

To deal with adjacency effect and to further refine the geometry of the mask, the river banks from
the city of Badong to the city of Yichang are digitized with a spatial resolution of 5 m on Google Earth™.
The superimposition of the two rasters upon the NIR masks of the various years allows to extract
exclusively the permanently submerged pixels, creating new water masks subsequently rescaled at
250 m. The masks are then further refined with manual checks (i.e., a few pixels just downstream of the
TGD are excluded, due to the constant presence of whitecap generated by the dam’s spillways) and
the MODIS reflectance dataset is then masked using the rescaled water masks at 250 m. In Figure 3,
the extracted water area is reported, with a focus on the Three Gorges Dam reservoir, highlighting the
pixels characterized by the perennial presence of water and not affected by adjacency effects.
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Figure 3. Partition of the Yangtze river into the three distinct zones of analysis: violet marks the
upstream area, yellow the reservoir area, and light blue the downstream area. A zoom of the dam
reservoir is shown reporting the water/land separation with the different masks: water, high and low
resolutions masks, soil mask difference between low and high resolution masks.
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Landsat 5 and Landsat 7 data are elaborated with the same mask.
The partition of the river into three distinct zones is shown for the subsequent analysis, to better

understand the effect of the TGD and to take into consideration the spatial variability of TSM.
In particular, the Yangtze river between the discharge station of Badong and the beginning of the dam
reservoir is the “upstream area”, the dam reservoir, and then the “downstream area” is defined from
the dam to the Yichang station.

2.3. MODIS Retrieval Algorithms

The algorithms choice is limited to those developed for the same sensors and the same water type
of the study, starting from the review. To evaluate TSM from MODIS two different algorithms are
tested: the relationship developed by Shi et al. [11] and the conditional algorithms developed by Feng
et al. [12]: the first one (Equation (1)) is a single band algorithm relying on 645 nm Band 1 (red region)
of MODIS, which is designed to retrieve TSM values ranging from 1.7 to 343.9 mg/L in the water of
Taihu Lake in the Yangtze river basin:

TSM = 9.65 × exp(58.81 × Rrs(645 nm)) (1)

The other algorithm applied to MODIS imagery was originally developed for the Yangtze Estuary
by Feng et al. [12], it is valid for TSM values ranging from 0 to 5000 mg/L. It consists of three equations
for different ranges of TSM. It relies on MODIS Band 1 exclusively for low TSM values, switching to a
band ratio between Band 1 and 2 (859 nm in the NIR region)) for TSM higher than 50 mg/L, a value for
which usually the Band 1 saturates. The first relation (Equation (2)) is intended for relatively clear
waters (TSM < 50 mg/L):

TSMlow = 2.49 × exp(97.19 × Rrs(645 nm)) (2)

and a second relation exploiting the band ratio between Band 2 and Band 1 is applied when Equation (2)
gives TSMlow higher than 150 mg/L (Equation (3)):

TSMhigh = 57.58 × exp [3.48 × ((Rrs(859 nm))/Rrs(645 nm))] (3)

For the intermediate cases, a third relation is applied (Equation (4)), as function of TSMlow

and TSMhigh:
TSM = α × TSMlow + β × TSMhigh (4)

where α = ln(TSMlow/50)/ln(150/50) and β = ln(150/TSMlow)/ln(150/50). The final TSM values are
inferred from Equation (2) for relatively clear waters, from Equation (4) for TSM values spanning from
50 to 150 mg/L, and from Equation (3) for extremely turbid waters.

2.4. Landsat Retrieval Algorithms

Wang et al. [13] developed an algorithm for TSM (mg/L) retrieval, which they proved to be suitable
for various sites along the for the Upper and Middle Yangtze River. The algorithm is based on the
reflectance on band 4 of Landsat 7, Rrs at 843 nm in the NIR band:

TSM = 3.18236 × ln(Rrs(843 nm)) − 1.40060 (5)

The same algorithm is applied also to Landsat 5, which relies on the same wavelength bands of
Landsat 7.

2.5. In-Situ Discharge Data

The daily discharge data were obtained by the hydrometric gauging station of Yichang, operated
by the Changjiang Water Resources Commission, located immediately downstream of the TGD.
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While data for 2002 and 2004 were complete, data for 2006 were available to the authors only from the
beginning of April to the end of October (Table 1).

2.6. Solid Discharge Literature Values

Beside the daily liquid discharge data at Yichang, monthly solid and liquid discharge measurements
at Yichang station for several decades are obtained from literature. In particular, data from [8,21–24]
were used, which have as a source the Changjiang Water Resources Commission of the Ministry of
Water Resources (http://www.cjw.gov.cn/) (Table 1). All these considered papers of the selected data
lead to the observation that both mean annual water discharge and annual sediment load decrease
throughout several decades, from 1950 to 2004: the observed decline is gradual because none of the
dams built during the past few years is erected on the mainstream of the Yangtze, unlike the TGD,
and their construction was phased in over time. While the annual water discharge did not increase
between the 1950s and the 2010s, the work of [22] highlights that, after 2002, the mean annual water
discharge increases, while the mean annual sediment load recorded at Yichang drops.

2.7. Statistical Indices

The mean absolute difference (MAD) is used to quantify the TSM discharge and volume errors:

MAD =

∑n
i=1

∣∣∣Xsim
i
−Xobs

i
∣∣∣

n
(6)

where Xsim is the estimated value from satellite data while Xobs is the observed data, and n is the
number of compared data.

Furthermore, the Nash–Sutcliffe efficiency was calculated as (Equation (7)), where qlit (t) is
the literature value of sediment discharge for month t, qretr (t) is the sediment discharge value
retrieved by the algorithm for month t, and qlit is the literature discharge value averaged over the N
comparison period:

NSE = 1−
{ ∑N

t=1 [qlit(t)−qretr(t)]
2∑N

t=1 [qlit(t)−qlit]
2

}
(7)

3. Results

3.1. MODIS and Landsat 5 and 7 Reflectances Extraction and Comparison

Prior to the application of any retrieval algorithm, the remote sensing reflectances Rrs from
MODIS, Landsat 5, and Landsat 7 are compared with discharge data to verify the effective variation of
Rrs with discharge, the reflectance being the base for TSM retrieval. Rrs of RED and NIR bands are
firstly averaged over the entire area of study; then, the reflectances are plotted versus the observed
discharge at Yichang station (Figure 4). For MODIS data, Rrs in the RED band shows a constant
variation and a good linear correlation with discharge for each examined year (R2 always greater
than 0.6). Interestingly, the linear relation of NIR band with discharge is strong for 2002, before the
dam reached the operational state, and it becomes weaker for 2004 and 2006. Data from Landsat 5
and Landsat 7 are characterized by a bigger uncertainness given by the very low number of available
images. For Landsat 5, the relations between reflectance and discharge exhibit a strong linearity
(R2 > 0.6) in the RED band for 2002 and 2006, slightly decreasing in 2004, with R2 = 0.4. Reflectance in
the NIR band appears moderately linear for all the three years considered.

http://www.cjw.gov.cn/
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Figure 4. Correlations between ground measured discharge data (Yichang gauging station) and MODIS
reflectances at 645 nm in the RED band and 859 nm in the NIR band, and the reflectances at 645 nm of
RED band and at 843 nm in the NIR band from Landsat 5 and Landsat 7.

For Landsat 7, a high correlation is observed just in 2006 for RED band (R2 = 0.78) and in 2004
for the NIR band (R2 = 0.73). In 2004, the multiple reflectance values of the RED band do not show
linear correlation with discharge values inferior to 10,000 m3/s, giving an overall R2 = 0.47, while in
2006, the linearity of the RED band reflectance with discharge is suggested by R2 = 0.78. The different
accuracy of the relationship between the reflectances from different satellites and discharge data may
be mainly due to the number of available images each year (e.g., satellite temporal resolution).

3.2. TSM Retrieval and Correlation with Discharge

In Figure 5, TSM maps from MODIS and Landsat 5 and 7 are depicted, showing its spatial
distribution in different representative periods of the year (e.g., flood and dry periods): the lowest
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values are always located in the reservoir, due to the sedimentation induced by the dam; the highest
values are registered during summer, with monsoonal rains.

Figure 5. Daily total suspended sediment maps of two representative days (flood and dry periods) for
each year: 2002, 2004, and 2006, values expressed in mg/L from MODIS, Landsat 5 and 7.

The first noticeable features are the morphology of the river after 2002 and the striking difference
between the local TSM values in March 2002—always lower than 20 mg/L, rising to no more than
30 mg/L in the following months—and the extremely high TSM values registered in the end of the
monsoonal season of 2002, reaching a homogeneous maximum of 1574 mg/L. Even in September and
October 2002, there is still a strong mixing of high–very high TSM along the whole river. All satellites
are detecting similar TSM variations and absolute values. In the first and last months of 2004 and 2006,
TSM values are sensibly lower than the corresponding ones in 2002. This depends on the reduction of
the stream velocity caused by the full operability of the dam and on the morphological changes of
the hydraulic section, resulting in an increased sedimentation rate. MODIS and Landsat 7 images are
almost in agreement, while Landsat 5 images seem to produce a little overestimation. Comparing the
summer months of the three years, a diminishing in TSM of one order of magnitude is noticeable,
partially due to the previously exposed reasons, and also because of the drastic reduction of regulated
discharge during the three years.

The produced maps allow us to appreciate the effect of the differences in spatial resolution between
MODIS and Landsat 5 and 7, especially on finer features such as differences inside the sediment plumes
and near the river bank and the dam (Figure 5). In fact, from Landsat data, it is possible to observe
along the river how TSM values are slightly lower near the banks with respect to the middle of the
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reservoir; a fact almost unnoticed with MODIS imagery. This is allegedly caused by the lower stream
velocity along the banks, coupled with the hydrodynamic shadowing created by the numerous docks
built perpendicularly to the river.

Daily TSM mean area values are then plotted against the in-situ daily discharge values at Yichang
station to examine daily relative variations (in Figure 6) for the three satellites estimates. The most
immediate outcome is that discharge in 2006 is significantly lower, and for every year any major
discharge peak is followed by increments of TSM mean values, while a decrease in TSM and discharge
is observed at basin scale. Moreover, is interesting to note that, even for the lowest discharge values
(~5000 m3/s), TSM mean values never drop below 30 mg/L. TSM increases after each discharge peak.
For MODIS, the Feng 2014 algorithm seems to be able to reproduce to discharge dynamic, on the
contrary to the MODIS-Shi algorithm [11] due to the problems the saturation for MODIS reflectances
corresponding to 50 mg/L and beyond. Landsat 5 and 7 are both able to follow the discharge dynamic,
with a similar behavior to MODIS data.
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The correlations are then identified between daily discharge and TSM values in order to obtain
daily estimations of TSM values, also covering the days for which satellite scenes were lacking.
Linear relations are calculated at basin scale, and also for the three sub-areas, considering 2004 and
2006 together due to differences in discharge respect to 2002 and because the two years are following
to the operational status of the dam:

TSM = a × Q + b (8)

where Q is the daily liquid discharge, a and b coefficients (Table 2).

Table 2. Determination coefficients and a, b coefficients between TSM calculated for the various years
and sub-areas.

YEARS MODIS−Shi et al. 2015 MODIS−Feng 2014 Landsat 5 Landsat 7

R2 a
(b) R2 a

(b) R2 a
(b) R2 a

(b)

basin

2002 0.57 0.004
(31.3) 0.69 0.043

(−131.6) 0.83 0.047
(−0.7) 0.27 0.025

(165.5)

2004 0.76 0.004
(−0.73) 0.7 0.021

(−143.6) 0.47 0.019
(48.4) 0.36 0.012

(74.1)

2006 0.77 0.75 0.66 0.0264
(−120.6) 0.89 0.031

(615)

reservoir

2002 0.53 0.004
(34.7) 0.61 0.042

(−100.8) 0.61 0.045
(0.94) 0.3 0.047

(288.1)

2004 0.77 0.004
(−6.5) 0.73 0.015

(−89.5) 0.83 0.0129
(0.43) 0.1 0.001

(139)

2006 0.74 0.003
(3.9) 0.66 0.018

(−131.6) 0.82 0.025
(−125.7) 0.8 0.2

(−173)

upstream

2002 0.59 0.004
(28.9) 0.67 0.044

(−141.7) 0.59 0.0412
(25.6) 0.62 0.107

(133.4)

2004 0.76 0.004
(−0.84) 0.67 0.019

(−120.1) 0.21 0.0083
(64.5) 0.39 0.016

(51.6)

2006 0.45 0.002
(20.3) 0.74 0.043

(−354) 0.39 0.016
(32.3) 0.73 0.191

(−152)

downstream

2002 0.56 0.004
(32.2) 0.6 0.044

(−122.9) 0.71 0.045
(−113.1) 0.66 0.102

(−212.5)

2004 0.73 0.005
(−5.7) 0.65 0.025

(−171) 0.99 0.025
(−230.7) 0.84 0.04

(−222.3)

2006 0.68 0.003
(9.3) 0.7 0.042

(−330.6) 0.64 0.101
(−842.4) − −

The scatter plots are computed and highlight how relations between TSM values generated by the
algorithms and discharge appear weaker for pre-dam period than the post-dam period. For MODIS
data the determination coefficients are computed, with R2 = 0.57 and R2 = 0.69 for MODIS-Shi and
MODIS-Feng in 2002, and R2 = 0.77 and R2 = 0.75 for the post-dam period, respectively. For Landsat 5,
the computation showed R2 = 0.83 in 2002 and R2 = 0.58 in the post-dam period, and for Landsat 7
R2 = 0.47 in 2002 and R2 = 0.19 in the post-dam period. The results may be related to the operational
state reached by TGD in 2003: the sedimentation induced by the dam provokes a lowering of turbidity
inside the reservoir, while the turbulent waters discharged by the power station increase the turbidity
in the area immediately downstream to the TGD. The lowest correlations with discharge are correctly
found in the reservoir lake, which is characterized mainly by still water, either from MODIS and
Landsat datasets. Moreover, it is important to note that the relationships obtained with Landsat data,
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especially Landsat 7, are generated considering a small number of data, which may decrease the
robustness of the retrieved correlation between TSM and discharge.

Hence, applying the best reliable empirical relations of Table 2, daily TSM mean values are
calculated with the different methods for each day of the analyzed period, taking advantage of the
continuity of the discharge dataset for the days in which satellite information is missing due to cloud
coverage or satellite problems. The inferred daily TSM values will allow us to calculate the monthly
average values of TSM, which will be compared to monthly sediment discharge values available
from literature.

Comparison of Daily Estimates between Different Satellites

An inter-sensor validation of the TSM estimated products is shown in Figure 7 to evaluate
the impact of different spatial resolutions of the satellite sensor, the sensor’s radiometric properties,
and atmospheric corrections, on the quantification of TSS concentration in riverine waters of Yangtze
river. As previously mentioned (Paragraph 2.1), only 16 dates are comparable between Landsat 7
and MODIS along the three analyzed years, while even fewer images, 11 dates, are available for the
comparison with Landsat 5.
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Figure 7. Comparison between TSM estimates from MODIS and Landsat 5 (a) and 7 (b) for the
same dates.

The comparison between MODIS data and Landsat 7 (Figure 7a) a R2 = 0.64, an angular coefficient
of 0.91 showing a good agreement of the two estimates with most of the points falling along the 1:1
line, and a MAD 96.3 mg/L report better results than the comparison between MODIS and Landsat 5
(Figure 7b) data with a R2 = 0.8, an angular coefficient of 0.74, and a MAD of 117.3 mg/L.

Due to high intra annual variation of TSM (e.g., discharge), an inter-comparison among the
satellite estimates is performed considering the high (TSM > 400 mg/L) and low (TSM < 400 mg/L) TSM
values. These high values are measured during the Monsoon season, approximately between the days
145 and 265. Both Landsat 5 and Landsat 7 in comparison with MODIS have a better agreement during
low TSM values period than high value period. R2 of 0.5 and 0.81 are found for low TSM values for
Landsat 5 and 7, respectively, while R2 around 0.1 are obtained for both satellites for high TSM values.

3.3. Seasonal Variations of Total Suspended Matter

To better understand TSM variability in space and time, a Box-plot comparison of TSM estimates
from the MODIS-Feng algorithm by [12] and the Landsat 5 and 7 for the different years and areas of
interest is shown in Figure 8. In general, all estimates are able to trace the decrease in the TSM from
2002 to 2006 in the three sub-areas examined. The statistics also highlight the small number of Landsat
data with respect to MODIS data, as well as a high number of outliers and the relative abundance
of data for 2002 compared to other years. Mean upstream TSM values decrease ofabout 200 mg/L,
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while downstream values decrease of about100 mg/L. Interestingly, the lake sub-area presents the
highest TSM value of in 2002, while during the years following the TGD operational activity the same
area shows the lowest value. Similar statistical values (mean, median, max, and min) are of the same
order of magnitude for the different satellites in the same year and same area of analysis.

Water 2020, 12, x FOR PEER REVIEW 14 of 23 

 

TSM value of in 2002, while during the years following the TGD operational activity the same area 
shows the lowest value. Similar statistical values (mean, median, max, and min) are of the same order 
of magnitude for the different satellites in the same year and same area of analysis. 

 
Figure 8. Box-plot comparison of TSM estimates from all satellite sensors during the analyzed years 
and the considered areas of interest. The box shows the interquartile range, the central line is the 
median and the whiskers represent the distribution tails while the circle points are the outliers. 

For MODIS, the difference between the TSM mean values calculated over the three sub-areas 
varies even by 70 mg/L, showing the smallest TSM value in the lake sub-area. For Landsat data, 
similar results are obtained with differences of about 60 mg/L for Landsat 5 and of 40 mg/L for 
Landsat 7. For flood events with high liquid discharges (Q > 30,000 m3/s), the total suspended 
sediments are considerably more abundant than during the other periods and are similarly estimated 
by the different satellites. The TGD construction attenuated the TSM peaks from a maximum value 
of 1900 mg/L to 1000 mg/L. 

Furthermore, to analyze the seasonal variability of TSM, seasonal mean TSM maps are obtained 
averaging the daily values of TSM for each season (e.g., winter from December to February; spring 
from March to May; summer from June to August, and autumn from September to November). 
Seasonally averaged values show that TSM typically ranges from 1 to 90 mg/L considering the 
different years and satellites (Table 3). 

TSM shows a cycle, being low during the first months of the year, increasing to maximum in 
spring and summer, and gradually decreasing during autumn. After the reaching of the dam’s 
operational status in 2003, the TSM distribution changed over the year, with low values classes 
standing out in a quasi-normal distribution during winter and spring, and the highest class cut out 
from the distributions compared to the pre-dam period. In fact, the effect of the Three Gorges Dam 
operational working is dramatically evident looking at the summer period, especially August, in 2004 

Figure 8. Box-plot comparison of TSM estimates from all satellite sensors during the analyzed years
and the considered areas of interest. The box shows the interquartile range, the central line is the
median and the whiskers represent the distribution tails while the circle points are the outliers.

For MODIS, the difference between the TSM mean values calculated over the three sub-areas
varies even by 70 mg/L, showing the smallest TSM value in the lake sub-area. For Landsat data, similar
results are obtained with differences of about 60 mg/L for Landsat 5 and of 40 mg/L for Landsat 7.
For flood events with high liquid discharges (Q > 30,000 m3/s), the total suspended sediments are
considerably more abundant than during the other periods and are similarly estimated by the different
satellites. The TGD construction attenuated the TSM peaks from a maximum value of 1900 mg/L to
1000 mg/L.

Furthermore, to analyze the seasonal variability of TSM, seasonal mean TSM maps are obtained
averaging the daily values of TSM for each season (e.g., winter from December to February;
spring from March to May; summer from June to August, and autumn from September to November).
Seasonally averaged values show that TSM typically ranges from 1 to 90 mg/L considering the different
years and satellites (Table 3).
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Table 3. Seasonal variations of the TSM mean values calculated for the whole area (* Autumn 2006
November data not available).

Season, year (mg/L) Winter 2002 Spring 2002 Summer 2002 Autumn 2002

MODIS 1.1 8.7 73.2 8.9
Landsat 5 3 13 89.3 13.5
Landsat 7 3.1 11 58.3 11.5

Season, year Winter 2004 Spring 2004 Summer 2004 Autumn 2004
MODIS 0.2 1.4 17.8 17.4

Landsat 5 2 2.5 21.9 20.9
Landsat 7 0.3 4.6 18.1 16.1

Season, year Winter 2006 Spring 2006 Summer 2006 Autumn 2006
MODIS - - 6.7 2.4 *

Landsat 5 - - 8.3 6.1 *
Landsat 7 - - 9.7 3.4 *

TSM shows a cycle, being low during the first months of the year, increasing to maximum in spring
and summer, and gradually decreasing during autumn. After the reaching of the dam’s operational
status in 2003, the TSM distribution changed over the year, with low values classes standing out in a
quasi-normal distribution during winter and spring, and the highest class cut out from the distributions
compared to the pre-dam period. In fact, the effect of the Three Gorges Dam operational working is
dramatically evident looking at the summer period, especially August, in 2004 and 2006, where the
differences in TSM is striking in respect to summer 2002: 27 mg/L in 2004 and 60 mg/L in 2006.

During the whole of 2002, the total suspended sediment appears heavily influenced by the works
in the dam’s construction site. In fact, the spring 2002 mean value of 11 mg/L shows how high TSM
values are compared to the 2.5 mg/L obtained for spring 2004. TSM reaches its yearly maximum in the
summer 2002, ranging between 60 and 90 mg/L depending on the satellite. This summer tendency
is constant for all the three years examined, even with an important decrease in the mean values in
2004 and 2006, reaching 19 and 8 mg/L, respectively. This fact is of course due to the monsoonal
discharge peaks, especially because 2004 is a flood year compared to the other ones investigated,
during which higher TSM values should have been expected. In autumn 2002, TSM shows a spatial
pattern comparable to the spring one, and also similar values are obtained in autumn 2004 and 2006.
Interestingly, the area immediately downstream of the Three Gorges Dam is frequently characterized
by TSM values higher than in the reservoir, allegedly because of the sediment re-suspended by the
dam spillways and a consequence of the sedimentation induced by the dam [13].

3.4. Comparison of Satellite Retrieved TSM with Literature Data

Literature values of monthly sediment discharge from [8,21–24] are compared with the daily
satellite continuous estimates obtained from the relationships in Table 2. In Figure 9, monthly sediment
discharge values in millions of tons are reported at Yichang station for 2002, 2004, and 2006 for the
three satellites.
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Literature values confirm the diminishing of the sediment discharge in Yangtze river during the
three years examined due to the Three Gorges Dam and also the variability during the year with higher
values during summer than the other seasons.

Looking at MODIS results, in the first four months of 2002, TSM values generated by the
MODIS-Shi algorithm are constantly lower than the real values, and the major difference is observed
in summer, characterized by monsoons. In fact, the MODIS-Shi algorithm predicts values of 7, 6,
and 14 Mtons/month for June, July and August while the corresponding literature values are 45, 38,
and 115 Mtons/month, respectively. After the monsoonal peak the underestimation progressively
decreases, until November and December when the values practically correspond to literature values.

The TSM values generated by the MODIS-Feng algorithm for the 2002 appear to be in a closer
accordance to literature values compared to the ones generated by the MODIS-Shi algorithm, even if
they are overestimated of an order of 10 Mtons/month during the monsoonal peak. During the first four
months of 2004 both MODIS algorithms give values in good agreement with literature values, while in
May and June they overestimate literature values: from July to September MODIS-Shi algorithm did not
match the peak value of TSM, while the MODIS-Feng algorithm performs very good. In the following
months the two algorithms slightly overestimate literature values. For the whole year the entity of
the distance of TSM values from the MODIS algorithms from literature values decreases compared to
2002. In 2006 the measured discharge dataset covers only the period from May to October, thus the
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relations are applied only for the same period. In May and June both MODIS algorithms overestimate
literature values: in July the peak value of TSM is underestimated by MODIS-Shi algorithm and
overestimated by MODIS-Feng algorithm. TSM literature value in August is underestimated by both
MODIS algorithms, in September it is underestimated by MODIS-Shi algorithm and overestimated by
the MODIS-Feng algorithm. In October values from MODIS-Shi algorithm match literature values,
while the MODIS-Feng algorithm overestimates it.

TSM estimations resulting from the application of the algorithm by Wang et al. [13] are examined
both for Landsat 5 and Landsat 7: just as for the MODIS results for the first months of 2002, there is
no relevant difference between the results of the two satellites, and TSM values appear even closer
to those in the literature than MODIS results. In May 2002, the significant increase in TSM values
registered by literature—allegedly caused by the start of the Monsoon—is overestimated by both
Landsat satellites, although Landsat 7 results show perfect accordance with the values from the MODIS
dual-band algorithm. Following this fluctuation, Landsat 7 values fully match the literature values,
both in June and July, while Landsat 5 constantly overestimates the values. The August peak reflects
the same tendency to overestimation of Landsat 5, while it is underestimated by Landsat 7. In the last
four months, both Landsat satellites converge on very similar values, but are still high compared to
literature values.

During the first four months of 2004, both Landsat satellites overestimate the TSM values,
giving values very similar each other: in June, July, and August, the Landsat 7 shows the very same
overestimation rate of the MODIS-Feng results, but it underestimates the biggest peak recorded in
September, which is, by contrast, precisely matched by the Landsat 5. The following drop in TSM values
is overestimated by all the algorithms, with the Landsat values producing results resembling each other
and a more contained overestimation by MODIS algorithms. In the reduced period of 2006, a constant
and rather contained overestimation of the TSM values by the Landsat algorithms is noticeable,
once again with very few differences between the two Landsat estimations. This overestimation is
probably due to the few satellite images available for correlation purpose.

It is interesting to note that differences between literature values and retrieved values progressively
diminish during the years. The statistical analysis shows (Table 4) that the Landsat 7 retains the
minimum volume error in percentage in 2002 and 2004 while, on the contrary, this parameter reaches the
absolute maximum in 2006. The MODIS-Feng algorithm and the Landsat show generally comparable
efficiency, although, in 2006, Landsat 5 efficiency drops to 0.1. With equal efficiencies, the most suitable
result for 2002 and 2004 would be Landsat 7, while for 2006, the MODIS-Feng algorithm leads to fewer
volume errors in percentage and lesser RMSE. The NSE results confirmed the best performances of the
MODIS-Feng algorithm, and the medium-low efficiency of the MODIS-Shi algorithm.

Table 4. Statistical analysis for the monthly TSM estimates respect to literature values.

2002 2004 2006

Volume
Error, % NSE RMSE

(mg/L)
Volume
Error, % NSE RMSE

(mg/L)
Volume
Error, % NSE RMSE

(mg/L)

MODIS-Shi −83.7 0.3 32.7 −57.6 0.3 12.7 −57.7 0.1 3.3
MODIS-Feng 36.9 0.9 5.6 68.6 0.7 8.2 27.6 0.6 2.4
Landsat 7 −1.3 0.9 8.0 54.4 0.7 6.8 117.0 0.7 4.4
Landsat 5 38.7 0.8 14.1 70.7 0.6 7.1 60.2 0.1 3.1

A comparison between the cumulated solid discharge volumes calculated from literature and the
ones calculated from the retrieved values of TSM shows the significant volume reduction during the
three years, and the systematic underestimation of the MODIS-Shi algorithm. Looking at the cumulated
values for all the three years, the good performance of the MODIS-Feng algorithm clearly emerges,
but it is interesting to note how, for 2002, the best performance overall is given by Wang et al.’s [13]
algorithm applied to Landsat 7. More available satellite scenes would surely improve the results,
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predicting TSM mean values more accurately, and leading to better overall TSM estimations. In 2002
and 2004, the overestimation of the MODIS-Feng algorithm presents the same order of magnitude
(about 50 Mtons). Comparing the slopes of the cumulative curves, it can be seen that 2006 is
characterized by a very low slope, meaning that, beside the significant observed reduction in volume,
the major volume input is also ceased, or at least delayed in time.

4. Discussion

In this paper, the effect of Three Gorges Dam along the Yangtze river network on suspended
sediments has been analyzed using multi-satellite information at different spatial and temporal
resolutions, which, thanks to the correlation to daily river discharges, allowed obtaining continuous
daily estimations of TSM values, also covering the days for which satellite scenes are lacking, allowing us
to compute the annual solid sediments volumes.

The obtained results are in line with the literature where the impact on the hydrological regimes
of TGD construction, impoundment, and operation has been extensively studied [8–24], altering the
hydrodynamic conditions, increasing the sediments deposition, and thus reshaping the riverscape.
In particular, Zhou et al. [48], observed a significant reduction on the incoming sediment with the
flushing ratio of sediment being only 24.2% from June 2003 to December 2015 suggesting that a
large amount of sediment has been retained by TGD after water impoundment. Yang et al. [19]
and Guo et al. [49] found that 65% of the sediment flux decline since 2003 can be attributed to the
TGD and that this reduction notably accelerated since 2003. According to different authors [16,17,19]
the highest values of TSM are located upstream of the dam, while, in the Three Gorges Reservoir,
TSM appears constantly lower than in the rest of the river. Xu and Milliman [8] found that during
2003–2006, the decreased water discharge led to a drop of 110 Mt in sediment discharge upstream
of the TGD. Before TGD impoundment, sediment discharge at the two stations of Qingxichang and
Yichang (just upstream and downstream of TGD), was similar, while, after 2003, a sensible decrease
has been observed at Yichang station. Downstream of the TGD prior to 2000, sediment transport was
only dependent on climatological seasonal variation, with high peaks during the Monsoon season;
while, after 2003, a sensible decrease is observable. Similar results are obtained in the present paper
(Figure 8), even though a possible point of uncertainty may be related to the selection of the upstream
basin, which in this paper has been defined from the Badong city to the TGD reservoir. Generally,
TSM concentrations follow a decreasing gradient from Badong to the dam, with a local maximum in
the river stretch after Badong due to the sediment input of the Xiangxi river, increasing after the dam
due to the resuspension caused by the hydropower activity. However, this area may also be affected by
the backwater effect of the reservoir: the flow velocity at Badong is thus reduced since the reservoir
was created, causing sedimentation upstream of Badong. Sedimentation in TGD reservoirs has been
studied by different methods showing quite different values among each other [8,19,22,50], mainly due
to the different stations used as the upstream limit of the reservoir and the influence of the sediment
from the ungauged areas.

A source of uncertainty in the applied methodology is the underlying assumption that the total
sediment load in the Yangtze river is represented by 99% of the suspended sediments, while the
riverbed load is less than 1% of the suspended load [19]. This allowed us to estimate the total annual
sediment volumes using only remote sensing data, obtaining good agreements with ground observed
data (RMSE in between 2 to 14 mg/L). These estimates are based on the robustness of the linear relations
between solid transport and TSM (in some cases weakened just by the lack of data), which were used
as a proxy to obtain daily TSM values with no dependence from cloud cover. This different accuracy of
the relationship between the reflectances of different satellites and discharge data may be mainly due
to the number of available images each year (e.g., satellite temporal resolution).

Another factor, influencing the TSM variability during the seasons of the year, may be the local
meteorological conditions, especially wind and precipitation, which are negatively and positively
correlated with TSM, respectively [51]. Precipitation was, on average, 3% lower after TGD function
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than before, but the decreased precipitation can explain only 14% of the post-TGD decreased sediment
flux relative to 1993–2002 [19].

The advantage of using satellite information for TSM retrieval is given by its spatial and temporal
sampling, while several uncertainties should be considered, ranging from TSM algorithm retrieval,
land/water mask separation, clouds, and atmospheric correction [39]. Discriminating between
water and land for inland waters is still an open issue [51]. This is usually based on automatic
classifications of combination of bands or vegetation indices (like NDVI and/or NDWI) that lead to
large uncertainties, mainly due to the frequent changes in water level of river, and thus to its width.
Thus, the procedure developed in this paper allows us to overcome this problem, taking advantage of
very high-resolution data.

The main uncertainty of satellite data is that they do not provide direct measurements of the
physical variables. Generally, site-specific empirical relationships between TSM and reflectance (in one
or two bands) are used, depending on water characteristics (e.g., suspended solids, chlorophyll,
and yellow substance) [40]. The RED region (645 nm) is the best correlated with TSM, while in very
turbid waters (exceeding 50 mg/m3) the NIR bands (689 nm) is higher correlated [3,52], also with a
lesser influence from chlorophyll and colored dissolved organic matter [53]. In addition to single bands,
reflectance ratios between the NIR and visible bands are also well correlated to TSM [27], also allowing
us to reduce the effect of sky light reflection and the influence of particle grain-size, especially for highly
turbid waters [54]. The present study found similar results for MODIS data, where the dual-bands
algorithm by Feng [12] is able to reproduce the discharge dynamic while, on the contrary, the single
band Shi algorithm [11] does not have the same ability due to some problems of saturation for MODIS
reflectances corresponding to 50 mg/L and beyond [13,40]. TSM from Landsat 5 and 7, whose algorithm
is based on NIR data, are both able to follow the discharge dynamic. Due to their high variability and
uncertainty between the remotely sensed reflectance and the sediment concentration, these retrieval
algorithms are usually site-specific and need to be calibrated against ground data [31,32,34,38,40,41].
Additionally, the various nature of sediment (i.e., the very fine sediment coming from the Loess plateau,
sometimes mixed with coarser sediments detached by runoff of the heavy rains) could create variability
in the relation discharge-reflectance.

Atmospheric correction of satellite data is another source of uncertainty that can impact the TSM
retrieval, especially in an area, like the middle Yangtze river, characterized by several days of partial
cloud cover [35,47]. Indeed, the uncertainties induced by the atmospheric correction are implicitly
compensated by the empirical regression coefficients in Table 2.

Satellite temporal and spatial resolutions are another point of discussion that could impact the
variability and robustness of TSM estimates. MODIS data have been selected thanks to their very
high temporal resolution (twice a day during daytime hours considering Aqua and Terra satellites),
a characteristic of paramount importance due to the frequency of cloud cover in the area. This aspect is
of extreme importance for the correlation with liquid discharge and the estimates of total sediment
volumes. In the analyzed area, the Yangtze river upstream and downstream the Three Gorges Dam
has a mean width of 700 m, ranging from 500 to 1500 m: this guarantees at least two pixels of width
in the maps. Of course, Landsat 5 and 7 data with their higher spatial resolution allow us to have a
better spatial representation but the low temporal frequency degrades the quality of correlations with
discharge, especially if during floods events no images are available.

Horowitz [54] found that at least 20 TSM data covering a broad range of values are required to
build a reliable correlation between TSM and river discharge. The present study demonstrates that
about 25 clear sky MODIS images allow to derive a robust correlation with river discharge, which is
weaker with the about 10 images of Landsat 5 and 7. Nonetheless, the value of 10% is a reasonable
estimate of the upper limit of the differences in TSS to be expected simply due to differences between
sensor algorithms. The difference between MODIS and Landsat spatial resolutions is clearly visible
from the results on the ability in identifying and mapping the fine features near the river banks and the
dam itself, and also the differences inside the sediment plumes (Figure 5). The choice of using different
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spatial and temporal resolutions sensors should be weighted on the cost and benefits of a more defined
and detailed TSM distribution versus more robust correlation with discharge data.

5. Conclusions

In this paper, different available algorithms based on NIR and RED bands, previously developed
in the study area, have been tested to estimate suspended sediments from remote sensing data
along the Yangtze river to understand the impact of the Three Gorges Dam on total monthly
volumes of solid sediments. MODIS and Landsat 5 and 7 satellite data have been analyzed,
providing suspended sediments at both high and low spatial resolutions with low and frequent
temporal resolutions, respectively.

Based on the results shown above, the following conclusions can be drawn:

(1) The TSM estimates from MODIS and Landsat are affected by the changes in discharge caused by
the Three Gorges Dam operation and all estimates are, in general, able to trace the decrease in the
TSM from 2002 to 2006 in the three sub-areas examined. In fact, the highest values of TSM are
located upstream of the dam, while in the Three Gorges Reservoir TSM appears constantly lower
than in the rest of the river. The reduction of Yangtze river’s TSM may be considered as a proxy
of the sediment entrapment effect resulting by the combination of the decreasing of sediment
discharge and the presence of the TGD. The concerning consequences of this effect may lead to a
sequestration and magnification of heavy metal ions and organic pollutants in the sediments of
the reservoir and the erosion of the riverbed downstream of the TGD until the Yangtze outlet.

(2) High correlations have been found between satellite TSM with daily discharge, leading to the
estimation of solid sediment annual volumes, which has been possible using exclusively satellite
data due to the fact that, in the Yangtze river, the suspended sediment discharge almost represents
the total sediment load of the river (99%).

(3) Seasonally averaged TSM maps’ comparison with literature show that both variables are strongly
influenced by the monsoonal discharge peaks, and that both of them progressively decline during
the years, as well discharge does.

(4) An inter-sensor comparison of the TSM estimated products from MODIS, Landsat 5, and 7 shows
a mean better agreement during low TSM values period than high values period. More robust
correlation is found between MODIS data and discharge thanks to the higher temporal resolution
of satellite data; while Landsat data, thanks to a better spatial resolution, allow observing lower
TSM values near the banks compared with the middle of the reservoir, a fact almost unnoticed
with MODIS imagery.

(5) A good agreement is found between literature values of monthly sediment discharge and the
remotely sensed TSM values, confirming the correctness of the hypothesis of the correlation
between daily satellite TSM and liquid discharge.
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