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Abstract: Debris-covered glaciers are common features on the eastern Pamir and serve as important
indicators of climate change promptly. However, mapping of debris-covered glaciers in alpine
regions is still challenging due to many factors including the spectral similarity between debris
and the adjacent bedrock, shadows cast from mountains and clouds, and seasonal snow cover.
Considering that few studies have added movement velocity features when extracting glacier
boundaries, we innovatively developed an automatic algorithm consisting of rule-based image
segmentation and Random Forest to extract information about debris-covered glaciers with Landsat-8
OLI/TIRS data for spectral, texture and temperature features, multi-digital elevation models (DEMs)
for elevation and topographic features, and the Inter-mission Time Series of Land Ice Velocity and
Elevation (ITS_LIVE) for movement velocity features, and accuracy evaluation was performed to
determine the optimal feature combination extraction of debris-covered glaciers. The study found
that the overall accuracy of extracting debris-covered glaciers using combined movement velocity
features is 97.60%, and the Kappa coefficient is 0.9624, which is better than the extraction results using
other schemes. The high classification accuracy obtained using our method overcomes most of the
above-mentioned challenges and can detect debris-covered glaciers, illustrating that this method can
be executed efficiently, which will further help water resources management.
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1. Introduction

Glaciers are important indicators of climate change and play an indispensable role in the global
water cycle [1]. In the context of global warming, the global glaciers experienced large-scale glacier
melting during 2003–2009, accounting for 29 ± 13% [2] of the global sea-level rise during the same
period. Glacier changes in alpine areas of Asia not only contribute to sea-level rise [3], but most
importantly, they affect the runoff patterns and sizes of dozens of rivers around alpine areas of Asia [4],
which have the largest population density in the world. Besides, in recent years, hydrogeological
disasters caused by glacier changes have occurred frequently, threatening the lives and properties of
downstream people [5]. Some studies also predict that in the next few decades, glaciers in alpine areas
of Asia will continue to decrease [6,7]. Therefore, it is of great significance to study the characteristic of
glaciers in alpine areas of Asia.

Accurately extracting glacier areas and monitoring glacier morphology are the basic requirements
for glacier research [8]. Currently, with the requirement of glacier inventory establishment and
more in-depth research in glaciers, several prominent methods of identifying and classifying glaciers
to extract clean glacier boundaries, mainly including artificial visual interpretation [9], the band
ratio threshold method [10,11], supervised classification [12], and unsupervised classification [13,14],
have been extensively developed. Due to the fact that the band ratio threshold method is the most
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efficient, least manual intervention, and is more accurate, it has been widely used in glacier inventory
and glacier research on a large geographic scale [15,16]. The threshold segmentation method of
optical images effectively extracts clean glaciers is well [11], but it remains a tough mission to detect
debris-covered glaciers. To date, the automatic identification methods of the debris-covered glaciers
include the terrain-based method [17], radar interferometry [18] and thermal infrared remote sensing
method [19]. For now, it is unfortunate that detecting the boundary of the debris-covered glaciers
based on human visual interpretation has higher accuracy [15,16].

Detecting the boundary of a glacier is challenging due to debris-covered glaciers which have
similar spectral characteristics to the adjacent rocky mountain surface, cloud cover, and shadows cast
from mountains and clouds and seasonal snow, making identification of the debris-covered glaciers still
a harsh task [20], and a defect of the terrain-based method is that areas with no obvious topographical
changes compared with glacier areas can be misjudged as glaciers [17,21]. Additionally, the accuracy of
the debris boundary extracted by this method also relies on the quality of the DEM and the type of the
debris; radar interferometry cannot achieve good results in the identification of small glaciers or glacier
boundaries with weak changes [18]; the thermal infrared remote sensing method cannot identify glaciers
whose debris thickness exceeds 40–50 m [19]. Another challenge in glacier mapping over the eastern
Pamir, where spatial inhomogeneity of the glacial surface remains an obstacle to glacier identification,
increasing the difficulty of observing and understanding glacial changes, is enormous due to the
cold, dry climate and coupled with high mountains in the southwest; in particular, the distribution of
glaciers is mainly affected by clouds and mountain shadows with large areas [15,16]. Most studies in
this area [22–24] have focused on non-debris-covered glaciers or manual glacier mapping, owing to
problems in identifying debris. Therefore, determining how to optimize effective data to automatically
classify the presence or absence of debris-covered glaciers needs more thorough and deeper research.
Faced with the ever-increasing amount of remote sensing data, making efficient use of remote sensing
data is a critical factor in glacier research. However, traditional manual digitization is time-consuming
and laborious and has difficulty in application [25,26]. Therefore, it is well worth developing an
efficient and high-precision automatic mapping method for glaciers based on remote sensing data [27].

Random Forest is one of the most established algorithms in ensemble learning [28,29]. It can be
understood as the organic fusion of Bagging ensemble learning and Decision Tree algorithms [30],
which can effectively get over the problem of overfitting to the training data set, thereby improving
the accuracy of the classification and the stability of the model. Moreover, compared with
traditional machine learning algorithms, Random Forest also has significant advantages in providing
generalization and algorithm operational efficiency [31,32]. Random Forest, as an integrated classifier,
has a wide range of applications in hydrology, including large-scale discharge simulation [33],
short-term daily streamflow forecast [34], groundwater salinity susceptibility mapping [35], river water
salinity prediction [36], accurate estimation of groundwater nitrate concentration [37], flood and
erosion susceptibility mapping [38], susceptibility mapping of soil water erosion [39], and snow
avalanches [40,41]. The studies above show that Random Forest can be successfully developed for
geographical datasets.

Zhang [42] took advantage of multi-temporal Landsat imagery and multi-source digital elevation
model data, combined with various surface information and the Random Forest method to detect
the boundary of debris-covered glaciers, and through the integration of multi-phase image results,
the impact of clouds and seasonal snow cover on the classification results is reduced. Hussain and
Khan [43] compared Support Vector Machines, Artificial Neural Networks, and Random Forests based
on Sentinel-2, Landsat 8, DEM and other data in the study of debris-covered glaciers recognition;
Random Forests showed the highest classification accuracy. Alifu [27] contrasted the classification
results of the six classifiers of K-NearestNeighbor, Support Vector Machine, Gradient Boosting Tree,
Decision Tree, Random Forest and Multi-Layer Perceptron, which showed that the use of Random Forest
classifier combined with multi-source remote sensing images obtained the highest classification accuracy,
and information on debris-covered glaciers could be accurately obtained. Based on Random Forest
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methods and satellite remote sensing data, different types of glaciers can be quickly extracted [27,42,43].
However, none of the above studies considered the characteristics of glacier movement.

Landsat-8 satellite data have abundant spectral bands and high spatial resolution that provide
multi-dimensional feature space for land cover classification. However, multi-dimensional features
participating in classification easily cause information redundancy, leading to reduced classification
speed and accuracy [44,45]. Therefore, determining how to make full use of the rich spectral and spatial
information of Landsat-8 data and optimising the features through high-dimensional feature space
dimensionality reduction is highly significant in improving classification accuracy [46]. The velocity of
glacier movement is the result of many internal and external glacial factors [47,48]. Identifying the
characteristics of glacier movement velocity is requisite for understanding the spatial distribution
of glaciers [49,50]. Introducing the characteristics of glacier movement velocity (ITS_LIVE dataset),
which no studies have added, in glacier mapping, and studying the relationship between glacier
movement and the surface topography, will steadily help in the further detection of glaciers.

To date, automated methods of glacier boundary mapping are limited to seasonal snow,
shadows and debris-covered factors, and manual methods have a high labor cost. The timely
acquisition of glacier boundary information using mature automatic glacier boundary extraction
methods will provide significant value. Therefore, it is necessary to develop mature automatic glacier
boundary extraction methods. Although machine learning has opened up many fields in glacier
research, the application of machine learning in the glacier mapping is still rarely seen, and the glacier
classification algorithm is relatively simple, which cannot effectively improve the accuracy of automatic
glacier classification. Considering the advantages of stable performance of Random Forest algorithm,
high classification accuracy and convenience for feature importance evaluation, it was selected as an
automatic classification algorithm to extract information about debris-covered glaciers, and accuracy
evaluation was performed to determine the optimal feature combination extraction of debris-covered
glaciers. We used the eastern Pamir glaciers as an example, classified various types of glaciers and
summarised the characteristics and distribution of glaciers.

2. Research Area

The eastern Pamir [51] is situated at the intersection between the southwestern part of the Xinjiang
Uygur Autonomous Region of China and the Tarim Basin, which is mainly at the intersection of the
Tianshan, Kunlun and Karakorum Mountains, with an average altitude of 3200 to 4500 m. The study
area is a subregion of the eastern Pamir (Figure 1) located in the Qinghai–Tibet Plateau, with a
geographic location between 38◦06′ N–38◦46′ N and 75◦00′ E–75◦31′ E. The glaciers on the remote
sensing image are mainly located in the Kongur Tagh where the incline is steep, the altitude generally
above 7000 m and the modern snow line approximately 5900 m above sea-level. The great height of
these mountains in the eastern Pamir provides a vast accumulation space and hydrothermal conditions
for the formation of glaciers and the glaciers are therefore well developed.
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Figure 1. Location and elevation of the study area in the eastern Pamir.

3. Datasets

3.1. Pre-Processing

3.1.1. Spectral Features

The Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) scenes of
World Reference System 2 (WRS2) path 149 and row 33, acquired on 20 October 2017, with 3.74% cloud
coverage, were acquired in GeoTIFF format from the Geospatial Data Cloud site, Computer Network
Information Center, Chinese Academy of Sciences. The images were chosen with cloud cover below
10% and were selected at the end of the ablation period in the same year (2017) to minimise the impact
of seasonal snow on the mapping of glaciers in the same measurement. In the entire image taken
on 20 October 2017, there was almost no cloud cover over the glacier, and therefore this image was
selected as the main image of the study and other images were employed to compensate for the impact
of mountain shadows and cloud cover [52] (Table 1). The pre-processing of the Landsat-8 OLI image
was undertaken with ENVI 5.3 software, including radiometric calibration and atmospheric correction.
The spectral reflectance features included seven bands from the Landsat-8 OLI images (Coastal/Aerosol,
Blue, Green, Red, NIR, SWIR1 and SWIR2).

Spectral indices features were extracted by calculating the Normalised Difference Vegetation Index
(NDVI) [53], Normalised Difference Water Index (NDWI) [54] and Normalised Difference Snow Index
(NDSI) [55]. These were calculated as follows:

NDVI =
ρNIR − ρred

ρNIR + ρred
(1)

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(2)

NDSI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
(3)
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where ρgreen, ρred, ρNIR and ρSWIR1 are surface reflectance in the green, red, near-infrared and short-wave
infrared bands, respectively.

Table 1. A list of OLI and TIRS spectral bands of Landsat-8.

Band

Landsat-8 Operational Land Imagers (OLI) &
Thermal Infrared Sensor (TIRS)

Name Wavelength
(micrometres)

Resolution
(meter)

1 Coastal/Aerosol 0.435–0.451 30
2 Blue 0.452–0.512 30
3 Green 0.533–0.590 30
4 Red 0.636–0.673 30
5 NIR 0.851–0.879 30
6 SWIR1 1.566–1.651 30
7 SWIR2 2.107–2.294 30
8 PAN 0.503–0.676 15
9 Cirrus 1.363–1.384 30

10 TIR1 10.60–11.19 100
11 TIR2 11.50–12.51 100

NIR, near-infrared; SWIR, shortwave infrared; PAN, panchromatic; TIR, thermal infrared.

3.1.2. Textural Features

Using the Co-occurrence Measures tool (GLCM), a 3 × 3 window was selected to calculate eight
kinds of texture information which, based on the second-order matrix, can be applied. The information
included mean, variance, homogeneity, contrast, dissimilarity, and information entropy, second moment
and correlation. The computational formulae of these features were defined by Haralick et al. (1973) [56].
They were calculated in sequence as follows:

fMEA =
∑

i

∑
j
i× p(i, j) (4)

fVAR =
∑

i

∑
j
p(i, j) × (i− µ)2 (5)

fHOM =
∑

i

∑
j

p(i, j)

1 + (i− j)2 (6)

fCON =
∑

i

∑
j

(i− j)2p(i, j) (7)

fDIS =
∑

i

∑
j

∣∣∣i− j
∣∣∣p(i, j) (8)

fENT = −
∑

i

∑
j
p(i, j) log(p(i, j)) (9)

fASM =
∑

i

∑
j

{
p(i, j)

} 2 (10)

fCOR =
∑

i

∑
j

(i, j)p(i, j) − µxµy

σxσy
(11)

where i and j are coordinates of the GLCM, p(i, j) refers to the value at the (i, j) position in the GLCM
and µ and σ represent the means and standard deviations of px and py.
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3.1.3. Temperature Features

Land Surface Temperature (LST) plays an important role in energy exchange between the land
surface and atmosphere [57]. The ENVI module [58,59] was used to calculate the LST in Landsat 8
TIRS of band10. The LST of Landsat-8 TIRS images was used to calculate the following:

Lλ(Tλ) = τλ
[
ελLλ(TS) + (1− ελ)I

↓

λ

]
+ I↑

λ
(12)

where Lλ(Tλ)
(
W·m−2

·sr−1
·µm−1

)
is the TOA radiance converted from band 10 of Landsat-8, Tλ(K) is

the TOA brightness temperature converted from the sensor calibration parameters provided in the
header file, Lλ(TS)

(
W·m−2

·sr−1
·µm−1

)
is the blackbody radiance, which is given by the Planck’s law,

TS(K) is the land surface temperature, τλ is the atmospheric transmittance, ελ is the land surface
emissivity, I↓

λ

(
W·m−2

·sr−1
·µm−1

)
is the down-welling atmospheric radiance, and I↑

λ

(
W·m−2

·sr−1
·µm−1

)
is the upwelling atmospheric radiance.

3.1.4. Topographic Features

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital
Elevation Model Version 2 (GDEM V2) data, derived from multiple ASTER images between
2000 and 2010, had a vertical accuracy of ±15 m and a horizontal resolution of 30 m [60].
The GDEM V2 data were downloaded in GeoTIFF format from the Geospatial Data Cloud
site, Computer Network Information Center, Chinese Academy of Sciences. The GDEM V2
data were employed to provide topographic information: elevation, slope, aspect, shaded relief,
profile convexity, plan convexity, longitudinal convexity, cross-sectional convexity, minimum curvature,
maximum curvature, and root-mean-square error.

3.1.5. Movement Velocity Features

The Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) was extracted from
NASA’s MEaSUREs project (https://its-live.jpl.nasa.gov/), extracted from Landsat-4, -5, -7 and -8.
The glacier data product contained data on all glacial movements and elevation changes from 1985
to 2018. During the processing, Landsat-4 and Landsat-5 images with 1–4 bands, and Landsat-7 and
-8 panchromatic bands, were employed to supplement the missing data in Landsat-7 with random
data for local normalisation, oversampling, feature tracking, etc., to extract the glacier movement
velocity [61]. The data had two resolutions of 120 m and 240 m. The multi-year average data resolution
accepted in this study was 120 m, the single-year data resolution was 240 m and the data version
employed was V0. The bilinear interpolation method was adopted to resample the ITS_LIVE data to
the same resolution as the Landsat-8 data [50].

3.1.6. Verification Features

Additionally, the second glacier inventory dataset of China (version 1.0) (2006–2011) was obtained
from the Cold and Arid Regions Sciences Data Center in Lanzhou [15]. Tibetan Plateau glacier
data—TPG2017 (version 1.0)—was provided by the National Tibetan Plateau Data Center [24]. The CCI
dataset (Glacier inventory of the Pamir and Karakoram) was downloadable [23]. These datasets were
applied to estimate the effectiveness of the glacier boundary detection, based on the Random Forest
algorithm, in this experiment.

All datasets were projected to the same coordinate system of the 1984 World Geodetic System
(WGS 84), with the Universal Transverse Mercator (UTM) Zone 43 North (Table 2).

https://its-live.jpl.nasa.gov/
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Table 2. List of datasets used in this study.

Data Date Resolution (m) Utilization

Landsat-8 OLI&TIRS

20 October 2017

30 Glacier delineation27 April 2017

13 May 2017

ASTER GDEM V2 2009 30 Estimation of glacier elevation

ITS_LIVE 1985–2018 120,240 Glacier delineation

The second glacier inventory
dataset of China (CGI2) 2006–2011 Estimation of glacier area change

Tibetan Plateau glacier
data—TPG2017 2017 Estimation of glacier area change

Glacier inventory of the Pamir and
Karakoram (CCI) 2018 Estimation of glacier area change

3.2. Analysis Features

We analysed the average surface reflectivity of different surface cover samples (Figure 2) and
studied the spectral characteristics of different types of surface cover. It can be seen that the reflectance
information of the glacier, debris-covered glaciers and land cover overlap with each other. Vegetation
has high reflectance in the near-infrared band and low reflectance in the red band. NDVI can distinguish
vegetation cover with high NDVI value from other land cover types with low or negative NDVI
value. In the same way, useful information can be obtained from the NDWI features of water bodies.
The first and second blue bands of Landsat-8 OLI image data have a high degree of recognition for
the glaciers in the shadow area [62], which are the dominant band, and this helps distinguish glacier
information in the shadow area. Snow-ice has high spectral reflectance in the visible spectrum (VIS)
but low reflectance in the short-wave infrared (SWIR) band [63,64]. Based on the significant difference
between the glacial spectral reflectance in the VIS and SWIR bands, snow and ice are identified by
thresholding NDSI features. This indicates that using the reflectance information for each class may
make it slightly possible to distinguish the classes. Therefore, extraction of some other useful feature
information is also necessary.

When analysing the texture features in more detail, combined with the correlation coefficient
matrix of the spectral index (Figure 3), we noticed that the visible spectrum (VIS) of texture features
was more suitable for describing the characteristics of the glacier surface. In addition, the correlation
analysis between the 8 texture features was performed to obtain the correlation coefficient (Figure 4).
There is a consistent correlation between the mean and other texture features, which plays a decisive
role in the mapping of glaciers. Since variance, homogeneity, contrast, and dissimilarity are all texture
features that measure pixel deviation, the correlation between the four features is relatively high,
and these features can play an auxiliary role in the classification of glaciers. The combination of three
texture features of entropy, second moment and correlation makes it difficult to distinguish glaciers
from other area classes.

Examples of texture features for the Random Forest classification method for a portion of the
study area in ArcGIS shown that the general outline of the glacier was visible on the mean feature
image, but, in other texture features, identification of glacier areas was not distinct (Figure 5).
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Since the debris had similar spectral characteristics to the surrounding bare land, it was very
difficult to decide or classify based on surface reflectance only [65]. The difference in LST between the
debris and surrounding terrain is helpful to distinguish as debris-covered glaciers always have lower
temperature than the surrounding bare land. To show the difference of LST in comparison with glaciers
and debris-covered glaciers, we demonstrated this difference using the LST map shown in Figure 6.
The brown area represented the LST of the debris-covered glaciers, typically Karayaalak glacier and
Qimgan glacier. The deeper the blue colour, the more sparsely the debris was covered and the green
area represented the LST of the clean snow-ice coverage completely. Last but not least, the purple area
represented shadow-covered glaciers. We noted that LST retrieved from remote sensing is not the
actual surface temperature, but an apparent temperature that makes distinguishing different surface
types easier. Therefore, with the support of the LST information map, glaciers and debris-covered
glaciers can be differentiated.

In summary, these features are very supportive to determine glaciers, debris-covered glaciers,
and other area classes. Thus, the spectral, textural, temperature, topographic and movement velocity
features were combined into a final 81-layer superposition that was exploited as the classification input
feature of the Random Forest classifier.
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4. Random Forest Classification

Random Forest is a combination algorithm, based on a decision tree, proposed by Breiman
(2001) [66]. It is an ensemble learning algorithm that is carried out in sample space and feature
space at the same time [32,45]. Immediately, each decision tree in the forest relies on a random
vector composed of parameters determined by training. Each tree generates an independent and
identically distributed training sample set through the Bagging algorithm and uses these sample
sets for training while selecting some features in the feature set to construct the decision tree [30,67].
Random has two meanings. One is to randomly select data as training samples with replacement in
the training data, and the other is to randomly select the part of the features to construct the model
when building a decision tree model. This reduces the correlation between the constructed decision
trees, thereby improving the accuracy of the model. The Random Forest algorithm performs better
on large data sets and can be used to process high-dimensional data [31,32]. At the same time, it can
adapt to various types of data and has high accuracy in complex and large-scale data setting degrees.
Furthermore, in the entire algorithm implementation process, random feature selection is introduced
to enhance the feature extraction ability, which can often screen out the most important features, have a
certain degree of anti-noise ability, and also avoid overfitting problems to a certain extent.

Random Forest is an ensemble learning method that integrates decision trees through
bagging [29,68]. In this paper, a Random Forest model is constructed through the machine learning
platform Scikit-Learn (http://scikit-learn.org, 2018). By adjusting the parameters of the Random
Forest Classifier in Scikit-Learn, the specific structure of the constructed Random Forest is adjusted.
The parameters can be divided into bagging integration method parameters and decision tree
parameters [30,67], according to the experimental plan of this research; through a large number of
experiments, it is found that the specific parameter settings are those shown in Table 3.

http://scikit-learn.org
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Table 3. Random Forest algorithm parameter setting.

Name Explanation Value

n_estimators Maximum number of weak learners (decision trees). 100

criterion Criteria for evaluating features when dividing decision trees. The options
are “Gini” of Gini Impurity and “entropy” of information gain. Gini

max_features Maximum number of features considered when dividing. None

max_depth Decision tree maximum depth. None

min_samples_split Minimum number of samples required for internal node subdivision. 10

min_samples_leaf Minimum number of samples for leaf nodes. 1

Considering the information mentioned above, the NDSI, NDVI, NDWI and LST images were used
as inputs to perform rule-based image segmentation of satellite images. Generally, the determination
of the rule-based segmentation depends on the characteristics of the study area; NDVI ranges from
0.65 to 1.0, representing dense vegetation or tropical rainforest. Vegetation has much smaller values,
which enable easy distinguishing between vegetation from water bodies. NDSI results confirmed the
threshold of 0.4, widely used in the literature, as ideal for mapping snow. When the threshold of NDSI
is between 0.25–0.45, it can effectively distinguish between snow and non-snow. Another important
consideration is LST. We assumed that most of the glaciers, particularly debris-covered parts,
have experienced a significant change in surface land temperature. Other features are used as
auxiliary parameters. The specific rules are shown in the workflow of the Random Forest Classifier
Model (Figure 7).
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In this study, the classification scheme considered six major land cover types: snow, mixed ice
(glacier), supraglacial debris and debris (debris), bare soil, water bodies, vegetation, and shadow
(shadowed ice and terrain shadows). We used the shadow as a category because the glaciers in the
research area were mainly distributed in high valleys and undulating mountainous areas. A glacier
situated in the shadow of a mountain was easily covered by the shadow of the mountain in the
image. The area of the glaciers covered by the shadow on the image could not be ignored [69].
A flowchart of this study is illustrated in Figure 7. There are two main steps: firstly, we need to extract
training features, mainly spectral, texture and temperature features extracted from Landsat images;
elevation and topographic features extracted from DEMs; and movement velocity feature extracted
from ITS_LIVE. Secondly, it is necessary to combine all these features into a 1 × N-dimensional vector
of each pixel, and train and test the Random Forest classifier to generate classification maps for each
category (glaciers, debris-covered glaciers, and others). The most important is that a region-based
accuracy evaluation is performed by comparing the classification results with reference data to evaluate
the performance of the proposed method of the Random Forest classifier.

4.1. Selection of Classification Samples

We only used the images collected on 20 October 2017 for classification, sample selection and
training the Random Forest classifier; we used Google Earth high spatial resolution images to visually
interpret Landsat-8 images and collected and classified samples of six land cover types (Figure 8).
In the Random Forest algorithm [30,67,70], each iteration will generate a sample subset. Nearly 33%
of the samples in the entire sample will not appear in each sample subset and these data are called
Out-Of-Bag (OOB) data. OOB data can be used to estimate the generalization error of a combined
classifier or to estimate the importance of individual features. To obtain the Random Forest’s OOB data
misclassification rate, it is necessary to count the classification results of these trees for the sample, and
calculate the proportion of the number of misclassified samples to the total number of samples [29,68].
Breiman (2001) [66] proved that the OOB data misclassification rate is an unbiased estimate of the
Random Forest generalization error. More specifically, 70% of the random samples were utilised for
training and the remaining 30% were utilised for testing to evaluate the classification results.
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Figure 8. Different land cover classes where training samples were selected based on visual interpretation
of the Landsat-8 image. A false-colour composite with a band combination, R = shortwave infrared
band (band 6), G = near-infrared band (band 5) and B = blue band (band 2). The letters in rose red
indicate water (with pattern in blue) (a), (b) shadow (with pattern in brown), (c) glacier (with pattern
in white), (d) debris (with pattern in pink), (e) bare soil (with pattern in orange) and (f) vegetation
(with pattern in green).
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4.2. Selection of Experimental Scheme

Five characteristic variables were used in the study area, including spectral, texture, temperature,
topographic and glacier movement velocity features. Three different combination test schemes were
constructed for the above characteristic variables. Random Forest was used to screen out the best
combination information suitable for glacier classification (Table 4).

Table 4. Experimental Scheme Information.

Experimental Scheme Feature Combination

Scheme 1 Spectral features + Textural features + Temperature features

Scheme 2 Spectral features + Textural features + Temperature features + Topographic features

Scheme 3 Spectral features + Textural features + Temperature features + Topographic features
+ Movement velocity features

5. Results

When using images for classification, there were still some incorrectly classified areas, and these
pixels needed to be deleted in post-processing; therefore, we used the spatial analysis tool in ArcGIS
10.2 to manually reclassify the incorrectly classified areas. We reclassified shadowed ice to glaciers and
subsequently obtained the final glacier classification map. Then, the final glacier classification map
was obtained. Preliminary classification results based on the Landsat-8 image acquired on 20 October
2017 (Figure 9) illustrated that when used for classification, Random Forest can provide the spatial
distribution of the glaciers’ surface and other land cover types better than traditional algorithms.

Figure 9. Preliminary classification results based on the Landsat-8 image acquired on 20 October 2017,
using Scheme 3 methods with Random Forest.

5.1. Accuracy Assessment

For pixel-based Random Forest classification, the most common accuracy evaluation indicators,
including overall accuracy based on the classification confusion matrix, Kappa coefficient, producer’s
accuracy, and user’s accuracy [71], were applied for debris-covered glaciers. Classification results of
the three test schemes were compared and classification accuracy is illustrated in Table 5.
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Table 5. Accuracy Statistics of Classification Results.

Classification Scheme 1 Scheme 2 Scheme 3

Overall Accuracy (%) 97.42 97.43 97.60

Kappa Coefficient 0.9596 0.9598 0.9624

Bare Soil
PA (%) 96.77 96.70 96.80
UA (%) 99.16 99.09 99.39

Vegetation PA (%) 98.95 98.87 99.22
UA (%) 95.93 96.00 95.84

Debris
PA (%) 96.20 96.46 97.17
UA (%) 90.19 89.82 91.59

Glacier
PA (%) 96.22 96.73 96.84
UA (%) 95.11 95.16 95.43

Shadow
PA (%) 93.13 93.81 93.36
UA (%) 96.40 97.24 97.19

Water
PA (%) 99.71 99.89 99.87
UA (%) 99.72 99.57 99.56

PA, producer’s accuracy; UA, user’s accuracy.

Results showed that the overall accuracy of Scheme 1 was the lowest, at 97.42%; those of Schemes
2 and 3 improved by 0.01% and 0.18%, respectively, and the Kappa coefficient increased by 0.0002 and
0.0028, indicating that the addition of topographic feature information and movement velocity features
can effectively improve classification accuracy. For the user’s accuracy and producer’s accuracy of a
single scheme, topographic features and movement velocity features again proved to be beneficial
for improving classification accuracy. Although there were differences in classification accuracy of
individual features between different methods, the feature selection method proposed in this study
can generally effectively improve the accuracy of glacier classification. The optimal classification result
of Scheme 3 is illustrated in Figure 10.

Figure 10. Accuracy assessment of land cover classification results.

Areas of six types of land cover were estimated by the Random Forest classifier based on the
Landsat-8 image acquired on 20 October 2017 (Table 6). The study area was dominated by glaciers
(including snow ice, mixed ice, debris, and shadow ice) covering an area of 15.18%.
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Table 6. The area for each land cover class obtained by the Random Forest classifier.

Land Cover Class Area (km2) Percent (%)

Bare Soil 1626.82 66.34
Vegetation 28.27 1.15

Debris 135.46 5.52
Glacier 372.23 15.18
Shadow 283.19 11.55
Water 6.23 0.25
Total 2452.30 100

5.2. Spatial Characteristics of Mountain Glaciers

In the study area, the total area occupied by glaciers was 605.117 km2, of which 85.398 km2

were covered by debris and 519.718 km2 were not covered by debris. The altitude at which glaciers
occurred varied from 2832 to 7577 m. The glaciers’ area and elevation were divided into five equal parts
according to their respective attributes. The spatial distribution of changes in the area of glaciers and
debris-covered glaciers is illustrated in Figure 11. The area and elevation distribution of glaciers show
typical patterns of mountain glaciers. The mean elevation of glaciers in different areas indicates that
the distribution of small glaciers is higher than that of large glaciers. Figure 11 also illuminated that
clean glaciers are generally distributed at a higher elevation than debris-covered glaciers. All glaciers
larger than 80 km2 are covered by debris, which indicates that there is a higher possibility of debris
cover on large glaciers. The results of this study are consistent with previous observations [17,72].

Figure 11. Glacial area and elevation with a hillshade view of ASTER GDEM V2 in the background.
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There was a strongly asymmetrical pattern in the number and total area of small glaciers (<1 km2)
and large glaciers (≥10 km2). Although small glaciers accounted for 63.32% of the total area occupied
by glaciers, these only accounted for 6.83% of the total glacial area in the study area and this finding
was consistent with the characteristics of glaciers in mid-latitude mountains. The largest glacial area
contained only 11 glaciers larger than 10 km2 in size, accounting for 61.69% of the total glacial area.
The mean elevation of different glaciers showed that the elevation of small glaciers was lower than that
of large glaciers (Figure 12a). The distribution number and area of glaciers according to the glacier
mean slope (Figure 12b) illustrated that the glacial slope from 20◦ to 35◦ accounted for a large part of
the total area. Only a few glaciers had slopes with a total of less than 20◦ or more than 50◦. In terms
of the number of glaciers present, ice bodies were mainly oriented north: 44 ice bodies faced north
and 117 flowed in a northeasterly direction, and 28 glaciers faced northwest (Figure 12c). A total of
61% of the glaciated surface area faced north. The spatial distribution of the glaciers revealed that the
location of glaciers was mainly affected by local topography. Figure 12d illustrates that the elevation of
the eastern Pamir glacier in the study area fluctuated greatly, with the average altitude being 5040 m,
the lowest altitude 4608 m, and the highest altitude 5482 m.

Figure 12. (a) Distribution of glacier number and area, and mean altitude for different size classes;
(b) glacier number and area for different mean slopes; (c) glacier number and area for various aspects
of the study area; and (d) boxplots of minimum, mean and maximum elevations of the glaciers.

The elevation, slope, and aspect of the glacier were combined with the geographic location,
and then the number of glaciers in each category were counted (Figure 13). The analysis shows that
the glaciers in the study area are mainly distributed between 38.4◦ and 38.7◦ N, and between 75.0◦ and
75.6◦ E. The distribution of glaciers is uneven with the increasing elevation, and the distribution of
glaciers is denser in high and low elevation areas; meanwhile, the slope of glaciers in the study area
is mainly concentrated between 20◦ and 35◦. Along with the increase in the latitude and longitude,
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slope and aspect both have the tendency of ascension, which symbolizes the steep mountains in the
study area and demonstrates good geographical conditions for the development of glaciers.

 

2 

Figure 13. Three-dimensional distribution of elevation, slopes, and aspect of the glaciers.

The climate was dry and cold, and humid monsoon air in the west and southwest was intercepted
by high mountains in the study area, providing an ideal physical and geographical basis for the
accumulation of glaciers. These conditions were consistent with our observation that the altitude of the
glaciers in this area varied from 2832 to 7577 m (Figure 14a). According to DEM data, the glacial elevation
map was reclassified into 11 elevation gradients at 500 m intervals. Hypsometry of debris-covered
glaciers, non-debris-covered glaciers and total glaciers area based on the mean elevation on the eastern
Pamir is illustrated in Figure 14b. During the hypsometrical analysis, the glacial area was 353.053 km2

(58.34% of the total glacial area) at 4500 to 5000 m, 112.223 km2 (18.55% of the total area of the glaciers)
at 5000 to 5500 m, and 135.715 km2 (22.43% of the total area of the glaciers) at 5500 to 6000 m.

Figure 14. (a) Distribution of glacier elevation (background: a false-colour composite with a band
combination: R = shortwave infrared band (band 6), G = near-infrared band (band 5) and B = blue
band (band 2) of the Landsat-8 OLI image acquired on 20 October 2017); and (b) hypsometry of all
glaciers in the study area.
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6. Discussion

6.1. Uncertainties and Limitations in Mapping Glacier Outlines

Samples. Classification samples of the study area were mainly based on Landsat-8 data, but, at a
resolution of 30 m, the boundaries of some small features (only a few pixels) were indistinct and difficult
to identify. This problem could be partially avoided through the achievement of higher-resolution
remote sensing images (GaoFen series or Sentinel series data). Detailed information regarding glacial
surface and classification samples covering the entire area is needed to improve the accuracy of Random
Forest classification results.

DEM. DEM accuracy was another key factor in this study that directly affected the topographical
features of glaciers in the Random Forest classification process. The surface of the glacier and the
surrounding environment presented a complex pattern. The 30 m resolution DEM might not have
reflected key surface features. ASTER GDEM V2 global digital elevation data were acquired in 2009
and officially released on 6 January 2015. There was a time difference between the acquisition time of
the Landsat-8 image selected in this experiment and the release of ASTER GDEM, although there were
no obvious elevation changes in the eastern Pamir during the periods. However, it is necessary to
match the time scale with experimental data.

Debris cover. Although the thermal infrared bands of optical images can be used to identify
debris-covered glaciers [73], the extraction method of thermal infrared bands is based on the assumption
that the edge of the glacier has a higher temperature than the inside of the glacier, which is not applicable
for the Qinghai–Tibet Plateau, which has thicker debris coverage [74]; more manual correction is
needed to get a more accurate glacier boundary. Detailed field surveys could help identify pixels as
debris-covered glaciers or other types of land cover. Collecting large quantities of ground data could
further improve understanding of glaciers in the region.

Seasonal snow. The high spatial resolution Google Earth images from the study area were generally
acquired in winter, therefore thicker snow cover increased the difficulty of accurately identifying
glaciers and debris. Seasonal snow, however, impacted on the result, as it should be excluded in a
glacier inventory but is difficult to distinguish from glaciers in topographic depressions that can be
included [75]. In this research, seasonal snow is detected by comparing multiple Landsat images
acquired during the ablation season [52].

Shadows. For glaciers in the alpine region, remote sensing images usually have a large area of
mountain shadows. The shadow causes the amount of information reflected by the ground object to
be lost or interfered, and the DN value is low in the remote sensing image data, which is difficult to
interpret (Figure 2). Failure to identify glaciers in the shadows can lead to incorrect estimates of the
glacier area. Supervised and unsupervised classification methods cannot effectively identify glaciers
in the shadows [62]. The segmentation thresholds of the conventional ratio method and snow cover
index method are not intuitive enough. It is still a difficult task to identify glaciers in shadow areas of
large-scale glacier extraction located in in alpine regions.

Cloud coverage. Although the effect of low cloud cover was deliberately selected as the first
choice in the initial selection of images, clouds that existed in the study area were not excluded in the
experiment. Cloud cover was not regarded as a category in this classification system. The emissivity
and shadow caused by cloud cover would also affect the classification results to a certain extent.
Special attention should be paid to cloud analysis in future research.

Others. Rule-based image segmentation technology did not detect a small number of glaciers
(missing errors). Since the result of the rule-based image segmentation technique is used as the region
for extracting the new predictor data set of Random Forest, the error will be propagated to the result.
Namely, those glaciers not detected by the former method are not part of the latter’s observations.

Considering all these possibilities, it is obvious from our results that the feature dataset we chose
and the threshold used are very suitable for mapping glaciers in high mountain regions.
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6.2. Comparison with Previous Glacier Classification Methods and Glacier Inventories

Automatic classification results of Random Forest were compared with three existing glacier
inventory datasets: The second glacier inventory dataset of China (CGI2), the Tibetan Plateau glacier
data-TPG2017 (TPG2017) and the Glacier inventory of the Pamir and Karakoram (CCI) [23]. CGI2 was
based on Landsat TM/ETM+ and ASTER remote sensing images after 2004, regarding CGI and other
documents, and included technical links such as image correction, automatic interpretation, field
surveys, manual revisions, interactive inspections, and result verifications. TPG2017 was based on
Landsat satellite images from three periods and took the uncertainty caused by the limited span of
each period into account. Under the guidance of SRTM DEM v4.1 and Google Earth images, the glacier
contours (TPG1976, TPG2001 and TPG2013) were manually digitised. To achieve complete multi-time
coverage in a reasonable time, only ice cubes without debris were depicted. CCI utilised 28 Landsat TM
and ETM + scenes acquired in 2000 to arrive at a homogeneous inventory of the Pamirs and Karakoram
Mountains. CCI applied standardised methods and utilised coherent images from advanced land
observation satellites to perform automatic digital mapping and manual correction of digital glaciers.
These three types of data were obtained by the human–computer interaction method of comprehensive
expert experience and knowledge.

A comparison between the results of the Random Forest classification and the other three
glacier datasets is illustrated in Figure 15. Some differences in glacier regions are more likely to be
caused by changes in glaciers. Our total glacier area was about 5.7% larger than that of the CGI2.
Our results showed that the edge of the debris-covered glaciers was slightly larger than inventories
mentioned above (Figure 15a,b) and these debris-covered glaciers are mainly distributed in areas with
lower elevations. There are more small glaciers in the middle and high-altitude areas than the low
altitude areas. The boundaries of these glaciers (G075083E38637N; G075085E38663E; G075102E38655N
and G075116E38641N) (Figure 15c) are consistent with CGI2 and TPG2017. Since there are many
debris-covered glaciers in the Qinghai–Tibet Plateau, TPG2017 has not yet drawn a complete glacier
map. We compared the glacier boundary drawn by TPG2017 with results obtained by Random Forest
and noted that there was no distinct difference between the TPG2017 and CGI2 datasets on most glacier
boundaries, or these were identical but there were still significant differences. In the Qimgan Glacier,
boundary data of Figure 15b demonstrated that Random Forest results are closer to CGI2, but there was
no Nan Qimgan Glacier in TPG2017, mainly because this was classified as debris and not considered a
glacier. The boundary between the CCI and CGI2 datasets in the study area fitted perfectly and only
a small part of the difference in the outline of the boundary could be due to seasonal ice and snow
caused by the difference in the acquisition time of the images. The inconsistency of CGI2, TPG2017
and CCI (Figure 15d) may be due to seasonal snow cover or glacial retreat in the area, as had also been
mentioned in other studies [76].

Although the Landsat image was obtained at the end of the ablation season, the classification
result of Random Forest depended entirely on the selected remote sensing image. We considered the
impact of seasonal snowfall on glacier recognition. Therefore, the use of a single image may not be the
best choice for describing the outline of a glacier. Using multi-time images would be a more effective
method of minimising the influence of seasonal snow on the extracted glacier contours.

The accuracy of Random Forest is similar to (or even better than) other studies [33,42,43]. The glacier
movement provided important information for understanding glacial changes. The velocity of glacier
movement was related to slope, aspect, and debris. We introduced the feature of movement velocity to
identify glaciers with the help of Random Forest classification and favourable results were obtained.
In contrast, obstacles to the recognition of some debris areas remain, Random Forest classification
results of the five types of features entered in this study identified glaciers in the clean ice area and
this was consistent with the glacier contours of inventories mentioned (Figure 15). All uncertainty
values must be viewed from the perspective of method uncertainty, such as including possible snow
cover at high altitudes that can easily increase the existence of small glaciers. Excluding these factors,
the uncertainty given above is usually much smaller.
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In summary, the proposed method is highly robust to all forms of interference and challenging
factors encountered in the process of glacier mapping. The outline of the glaciers shows good
consistency with the previous datasets, and this method may solve the current inconsistency between
the entire glacier inventory datasets.

Figure 15. (a–d) Results of the Random Forest classification (yellow lines) compared with those of
the three inventories CGI (orange lines), TPG2017 (rose red lines) and CCI (blue lines) with a false
color band combination image acquired 20 October 2017, R = shortwave infrared band (band 6),
G = near-infrared band (band 5) and B = blue band (band 2).

7. Conclusions

The outline of debris-covered glaciers varies amongst the scientific literature. In this research,
we proposed a Random Forest algorithm for debris-covered glaciers’ mapping that automatically minify
limitations of traditional monitoring such as mountain and cloud shadows, cloud cover, seasonal snow
cover, and debris. The method consists of rule-based image segmentation and the Random Forest
classifier model. Rule-based technology extracts discrete objects of interest from Landsat-8 images.
The predictive indicators are NDSI, NDWI, NDVI and LST. Then, according to the trained model,
glaciers, debris-covered glaciers, and non-glaciers are predicted. The method was tested in the eastern
Pamir and demonstrated that the potential of the Random Forest method has high robustness in all
glaciers of the eastern Pamir. The proposed method can potentially be used for glacier mapping in
other alpine regions.

The proposed machine learning classification method allowed accurate and relatively rapid
mapping of debris-covered glaciers while having the advantage of being transferable to other areas and
datasets. More importantly, the combination of movement velocity characteristics and the Random
Forest algorithm can promote the progress of debris-covered glaciers’ mapping work to a certain extent.
Therefore, the methods introduced in this study can fill data gaps in areas with a lack of historical
(and/or current) glacier mapping.
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In the absence of an appropriate ground truth reference dataset, we used various methods
for uncertainty assessment and compared our profile with previous inventories covering the same
area. The use of statistics showed that using the rule-based image segmentation and Random Forest
algorithm to extract the glacier and automatically map the glacier surface is feasible. Compared with
previous inventories, this new inventory, developed by machine learning algorithm, will benefit future
glacier studies and provide technical support for rapid glacier inventory.

Although there is no cloud in the glacier area we chose, what can not be ignored is the consideration
of clouds, in order to better promote the method adopted in this article. The extraction accuracy of
debris-covered glaciers using SAR interference coefficients is significantly better than that of optical
images, owing to the ability to penetrate clouds and fog. Moreover, we hope to use higher resolution
multi-source satellite data based on fully automated machine learning methods to extract glacier
features. It can be expected that this will greatly reduce the manpower required and will help improve
the classification accuracy for mapping debris-covered glaciers.
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