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Abstract: Although the Tropical Rainfall Measurement Mission (TRMM) has come to an end,
the evaluation of TRMM satellite precipitation is still of great significance for the improvement
of the Global Precipitation Measurement (GPM). In this paper, the hydrological utility of TRMM
Multi-satellite Precipitation Analysis (TMPA) 3B42 RTV7/V7 precipitation products was evaluated
using the variable infiltration capacity (VIC) hydrological model in the upper Yangtze River basin.
The main results show that (1) TMPA 3B42V7 had a reliable performance in precipitation estimation
compared with the gauged precipitation on both spatial and temporal scales over the upper Yangtze
River basin. Although TMPA 3B42V7 slightly underestimated precipitation, TMPA 3B42RTV7
significantly overestimated precipitation at daily and monthly time scales; (2) the simulated runoff

by the VIC hydrological model showed a high correlation with the gauged runoff and lower bias at
daily and monthly time scales. The Nash–Sutcliffe coefficient of efficiency (NSCE) value was as high
as 0.85, the relative bias (RB) was −6.36% and the correlation coefficient (CC) was 0.93 at the daily
scale; (3) the accuracy of the 3B42RTV7-driven runoff simulation had been greatly improved by using
the hydrological calibration parameters obtained from 3B42RTV7 compared with that of gauged
precipitation. A lower RB (14.38% vs. 66.58%) and a higher CC (0.87 vs. 0.85) and NSCE (0.71 vs.
−0.92) can be found at daily time scales when we use satellite data instead of gauged precipitation
data to calibrate the VIC model. However, the performance of the 3B42V7-driven runoff simulation
did not improve in the same operation accordingly. The cause might be that the 3B42V7 satellite
products have been adjusted by gauged precipitation. This study suggests that it might be better to
calibrate the parameters using satellite data in hydrological simulations, especially for unadjusted
satellite data. This study is not only helpful for understanding the assessment of multi-satellite
precipitation products in large-scale and complex areas in the upper reaches of the Yangtze River,
but also can provide a reference for the hydrological utility of the satellite precipitation products in
other river basins of the world.

Keywords: TMPA; hydrological model; the Yangtze River basin; China

Water 2020, 12, 3230; doi:10.3390/w12113230 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-8045-3952
https://orcid.org/0000-0003-1823-6049
https://orcid.org/0000-0002-4411-8196
http://dx.doi.org/10.3390/w12113230
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/11/3230?type=check_update&version=2


Water 2020, 12, 3230 2 of 20

1. Introduction

Precipitation is a fundamental part of the hydrological cycle, which is of great significance in
meteorology, hydrology, ecology and other scientific research areas [1,2]. Precipitation is a complex
natural phenomenon which is characterized by a significant variability both in time and space [3–5].
Therefore, accurate precipitation data are extremely important for water resource-related research.
Currently, the main methods of obtaining precipitation data are the ground rain gauge, ground radar
and space-borne passive radiometer [6–8]. Although the rain gauge is considered to be the standard
for measuring precipitation, the gauge networks are unfortunately sparse or nonexistent in many
remote areas of the world. Remote sensing can break through this limitation by directly providing high
spatial and temporal resolution of precipitation in large areas. Satellite-based precipitation products
will hopefully be an alternative to ground-based precipitation estimates for the current and foreseeable
future [9].

In recent years, more and more various satellite precipitation products with different temporal and
spatial resolutions have been easily obtained [8,10,11]. Among them, the Tropical Rainfall Measurement
Mission (TRMM) is a widely used satellite precipitation product and large numbers of researchers
have evaluated the quality of TRMM Multi-satellite Precipitation Analysis (TMPA) estimates by
comparing it with other satellite productions and the ground rain gauge of various regions around the
world [9,12–14]. For example, Mehran et al. [15] proved that CPC MORPHing (CMORPH) showed a
better precipitation detection skill, while the TMPA satellite data led to a relatively smaller level of
false alarms above the heavy precipitation thresholds. Dinku et al. [16] demonstrated that the TMPA
productions performed slightly better agreement both at lower and higher rainfall accumulations than
the Global Precipitation Climatology Project (GPCP) and the National Oceanographic and Atmospheric
Administration Climate Prediction Center (NOAA-CPC) merged analysis (CMAP). Naumann et al. [17]
conducted a comparative analysis between the TMPA and the Global Precipitation Climatology Centre
(GPCC) datasets and showed that for reliable drought monitoring in Africa particularly, the TMPA
datasets with higher spatial resolution were more reliable than the GPCC datasets.

The TMPA 3B42 dataset consists of two standard products: the near-real-time version (3B42RT)
and the post-real-time version (3B42) [18]. The post-real-time product (3B42) is released 10–15 days
after each month, covering the global latitude zone from 60◦ N to 60◦ S, and the near-real-time product
(3B42 RT) is released approximately 9 h after real time with the coverage of the latitude belt from 50◦ N
to 50◦ S [19]. Many studies have reported comparisons between the two versions [20,21]. For example,
Zhu et al. [18] reported that the post-real-time TMPA 3B42V7 overestimates precipitation, while the
near-real-time TMPA 3B42RTV7 underestimates the precipitation from the positive/negative sign of
bias in the Huifa River basin in Northeast China. Tang et al. [22] found that TMPA 3B42V7 had
slightly better performance in the precipitation estimation than TMPA 3B42RTV7 at both daily and
monthly scales; meanwhile, both of these two productions overestimated the precipitation when the
value of precipitation was over 30 mm/day or below 1 mm/day. Hao et al. [23] found that TMPA
3B42V7 performs better than TMPA 3B42RTV7, while TMPA 3B42RTV7 can roughly capture the
spatial precipitation pattern but overestimation exists throughout the upper Yellow River and Yangtze
River basins.

Although the TRMM has come to an end, the observation of hurricanes and precipitation from
space will not end after TRMM. The Global Precipitation Measurement (GPM) mission was launched in
February 2014 to improve upon the TRMM project and the development of GPM algorithms to improve
precipitation retrievals can be addressed through the lessons learned from the former TRMM [20,24].
Both TMPA and the Integrated Multi-satellite Retrievals for GPM (IMERG) use a constellation of
passive microwave satellites, and within the general umbrella groups of “sounder” and “imager”,
the inputs are much the same. At the back end of the multi-satellite algorithms, both TMPA and
IMERG use the same scheme for combining satellite data with the GPCC analysis, although IMERG
uses the GPCC Final analysis up through 2018, which tends to be more accurate than the GPCC
Monitoring analysis that TMPA used for the last ~nine years [25]. Up to now, due to the long time
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series and advanced algorithm of TRMM, there is still a lot of research centering on TRMM [26,27],
and the accuracy estimates of the GPM precipitation products are usually compared with the TRMM
products [20]. For example, Liu et al. [28] reported that the GPM showed better performance in
precipitation estimation than TMPA, but in terms of precipitation detection, TMPA showed a lower
false alarm ratio than GPM in the Yellow River basin. Tan et al. [29] found that GPM had better
performance in the characterization of spatial precipitation variability and precipitation detection
capability compared to the TMPA products over Singapore. In addition, both of them overestimated
moderate precipitation events (1–20 mm/day) while underestimating light (0.1–1 mm/day) and heavy
(>20 mm/day) precipitation events. Guo et al. [30] reported that both GPM and TMPA 3B42V7 show
similar performances. GPM showed a favorable performance in capturing the spatial patterns of
precipitation compared with TMPA 3B42V7. However, both of them demonstrate poor performance in
winter with the largest relative bias and smallest Pearson linear correlation coefficient. Tang et al. [31]
also found that the GPM showed appreciably better performance than TMPA 3B42V7 at both daily
time scales and spatial scales, especially at the mid- and high latitudes, as well as relatively dry climate
regions. Therefore, the evaluation of TRMM satellite precipitation is still of great significance for the
improvement of the GPM.

There is much work that has been carried out to evaluate the suitability of satellite products as
input to hydrological models in different basins around the world [32]. For example, Hughes et al. [33]
reported that TMPA 3B42 V7 has a good hydrological ability to detect intense tropical cyclones
precipitation at the Okavango River basin in Africa. Su et al. [34] reported that the simulated flows
driven by TMPA had good consistency in the reproduction of seasonal and interannual streamflow
variability at the La Plata Basin. Zhang et al. [20] used the variable infiltration capacity (VIC) and
Xin’anjiang (XAJ) hydrological models to compare TMPA’s and GPM’s hydrologic performance
in a humid river basin of China. Tobin and Bennett [35] estimated the hydrological simulation
performance of gauge observations and 3B42 data in South Texas and Northern Mexico. Jiang et al. [36]
reported that the three widely used satellite precipitation products (TMPA 3B42V6, TMPA 3B42RT
and CMORPH) showed a better skill in streamflow simulations through the test of the XAJ model
within the Mishui basin, South China. Xue et al. [27] selected the Coupled Routing and Excess Storage
(CREST) hydrologic model to explore the improvements of the TMPA productions in the mountainous
Wangchu basin of Bhutan, which found that TMPA 3B42 proved a significant improvement in terms of
potential hydrological utility. However, it is still insufficient to assess the capability and limitation
of TMPA 3B42V7 and 3B42RT as input to a hydrological model for streamflow simulation in a
large river basin. Usually, previous works focused on the model parameters obtained from the
gauged precipitation, and few researchers tried to calibrate model parameters based on the satellite
products. Tang et al. [22] used TMPA 3B42RTV7/V7 and gauged-based observations for CREST model
parameters gaining and then used these parameters for runoff simulation in the Ganjiang River basin.
The comparison results demonstrated that the TMPA-driven runoff simulation using parameters
obtained from TMPA had better performance than that using parameters obtained from gauged-based
observations. Wang et al. [37] drew similar conclusions when they conducted a similar simulation
study with the VIC model in the source region of the Yellow River.

The upper reaches of the Yangtze River occupy more than 40% of the area of the whole Yangtze
River basin and have a large area with a complicated topography and climate. The change in streamflow
in the upper reaches of the Yangtze River directly affects water security in the middle and lower
reaches. Most of the existing studies use gauged precipitation data to drive the hydrological models to
obtain the hydrological model parameters and then apply them to the hydrological simulation using
satellite precipitation products [32]. There is a lack of comparative studies using satellite precipitation
products to drive hydrological models to obtain parameters for the simulation. Therefore, it is of
great practical significance to evaluate the hydrological performance of TMPA 3B42V7 and 3B42RTV7
satellite precipitation products in a large river basin [19,38]. The objectives are to (1) assess the
capability and limitation of TMPA satellite-based precipitation products as input to a hydrological
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model for streamflow simulation in a large watershed with complex terrain in the upper Yangtze
reach; and (2) evaluate the hydrological performance of TMPA 3B42RTV7 and 3B42V7 using the
VIC hydrologic model driven by the parameters obtained from gauged and satellite precipitation,
respectively. This study is not only helpful for understanding the assessment of multi-satellite
precipitation products in large-scale and complex areas in the upper reaches of the Yangtze River,
but also can provide a reference for the hydrological utility of satellite precipitation products in other
river basins of the world.

2. Materials and Methods

2.1. Study Area

The Yangtze River is the longest in China [39]. It originates from “the roof of the world”,
the Qinghai–Tibet Plateau. Its mainstream flows from west to east through 11 provinces [40]. The river
is about 6300 km long and the basin lies in southern China with an area of 1,800,000 km2 that accounts
for almost one fifth of China’s territory. The total amount of water resources in the Yangtze River basin
is 976 km3 [40]. The importance of the Yangtze River lies not only in its geographical location, large
scale and complex landforms, but also in the role that the river plays in the regional water cycle, energy
balance, climate change and ecosystems, as well as in China’s economic and social development [41,42].

The upper reaches of the Yangtze River occupy more than 40% of the area of the whole Yangtze
River basin. The climate and the underlying surface conditions are complex, and the problems related
to water resources are prominent in the upper Yangtze River basin.

2.2. Data

The TMPA (Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis)
precipitation estimates are based primarily on a combination of microwave (MW) and merging infrared
(IR) estimates from multiple satellites [19]. The Tropical Rainfall Measuring Mission (TRMM) is a
satellite launched by NASA in November 1997 [38]. It has provided a wealth of scientific information
for the structure, evolution and other characteristics of tropical precipitation systems. Its unique
combination of precipitation measurement instruments had become the premier satellite platform
for tropical precipitation diagnosis [38,43]. The TMPA 3B42 dataset is available in two versions:
a research-quality product (3B42) released 10–15 days after each month, covering the global latitude
zone from 60◦ N to 60◦ S, and a near-real-time product (3B42 RT), which is released approximately
9 h after real time with the coverage of the latitude belt from 50◦ N to 50◦ S. The main difference
between the two versions is the use of the rain gauge data for bias reduction, which is unavailable in
real time [19,44].

The TMPA 3B42V7 and 3B42RTV7 datasets from 2003 to 2010 used in this study were obtained
from the National Aeronautics and Space Administration (NASA) website (http://trmm.gsfc.nasa.gov/).
They have a high temporal (3 h) and spatial (0.25◦ × 0.25◦) resolution. The gauged precipitation data
for 2003–2010 were recorded by the rainfall gauges distributed within the upper Yangtze River basin.
The gauged precipitation data were interpolated by the Kriging interpolation method by ArcGIS
10.5 (Esri China, Hong Kong, China). The runoff data used for validating the simulation results were
obtained from the Cuntan hydrologic station located at the basin (Figure 1).

http://trmm.gsfc.nasa.gov/
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2.3. Hydrological Model

VIC is a semi-distributed and macro-grid hydrological model that solves the complete balance
of water and energy, originally developed by Liang Xu of the University of Washington, and then
applied in various forms in most major river basins in the world [45]. The VIC model shares several
basic characteristics with the other land surface models (LSMs) that are commonly coupled to global
circulation models (GCMs), making the model applicable as a fully coupled water and energy balance
system [45].

VIC-2L is comprised of a simple two-layer characterization of the soil column and uses an
aerodynamic representation of the latent and sensible heat fluxes at the land surface based on a
simplified soil-vegetation-atmosphere transfer schemes (SVATS)-type representation of vegetation
cover. The upper layer is characterized by the usual VIC spatial distribution of soil moisture capacities,
and the lower layer is spatially lumped and uses the Arno drainage term [45,46]. The VIC-3L model
separates a thin layer (usually 0.1 m) from the top of the VIC-2L model, which allows soil moisture to
diffuse between the soil layers, and considers bare soil and different vegetation coverage types in the
cell grid [47]. Evaporation and transpiration are parameterized by a Penman–Monteith formulation,
applied separately to bare soil and vegetation classes. Evaporation from water intercepted by vegetation
is also represented. Besides, the model contains an energy-based snow accumulation and ablation
parameterization [45].

One of the most notable characteristics of the VIC model is that it has a good ability to solve the
problem of water and surface energy budgets in each grid unit and at each time step. In this study,
VIC 4.1.2 version was chosen for the runoff simulation [48].

2.4. Statistical Method

This study used relative bias (RB), correlation coefficient (CC) and root mean square error (RMSE)
to measure the difference between 3B42 RTV7 and 3B42 V7. The relative bias (%) was selected to
measure the consistency between the average of the measured data and the average of the gauged data.
To evaluate the correlation linearity of the datasets and the average error magnitude, the correlation
coefficient (CC) and root mean square error (RMSE) were respectively used. Meanwhile, the RB and CC
were also used to evaluate hydrology skills through the assessment of simulated runoff performance.
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Moreover, the Nash–Sutcliffe coefficient of efficiency (NSCE), which is commonly used to verify the
quality of hydrological model simulation results, was used to evaluate the performance of the VIC
hydrological model [20]. The false alarm ratio (FAR) measures the proportion of actual rain that is
falsely reported [49]. The probability of detection (POD) indicates the proportion of rain events that
were correctly detected, whereas the critical success index (CSI) is a combination of false and missed
events detected by satellites [50].

The RB, CC, RMSE and NSCE are expressed by the following formulas:

RB =

∑N
n=1

(
Satn −Gagn

)
∑N

n=1 Gagn

(1)

CC =

1
N

∑N
n=1

(
Satn − Sat

)(
Gagn −Gag

)
(SDSat) ×

(
SDGag

) (2)

RMSE =

√√√
1
N

N∑
n=1

(
Satn −Gagn

)2
(3)

NSCE = 1−

∑N
n=1

(
Satn −Gagn

)2

∑N
n=1

(
Satn − Sat

)2 (4)

where n is the number of samples; Satn is the satellite precipitation estimate; Gagn is the gauged
precipitation; Sat is the averaged satellite precipitation; Gag is the averaged gauged precipitation;
SDSat is the standard deviations of satellite precipitation; SDGag is the standard deviations of gauged
precipitation [27,51,52];

The FAR, POD and CSI are expressed by the following formulas:

POD =
Csg

Csg + CgMS
(5)

FAR =
CsMg

Csg + CsMg
(6)

CSI =
Csg

Csg + CsMg + CgMS
(7)

where Csg is the event captured by satellite and gauge; CsMg is the event captured by satellite and
missed by gauge; CgMs is the event captured by gauge and missed by satellite [51].

3. Results

3.1. Evaluation of the TMPA Precipitation Products

The spatial distribution of the mean annual precipitation in the upper Yangtze reaches showed a
decreasing trend from east to west (Figure 2). TMPA 3B42RTV7 can roughly capture the entire spatial
pattern of mean annual precipitation, with the high values of precipitation mainly appearing in the
middle and north-western parts of the region. However, the tendency of significant overestimation
compared to the gauged data for the entire region was visible, especially in the Jinshajiang River basin,
where the average elevation was above 3000 m and precipitation was around 400 mm/year (Figure 2b).
The TMPA 3B42V7 precipitation product resembled well the gauged precipitation in terms of the
spatial pattern of mean annual precipitation, however, it underestimated the precipitation in the upper
Yangtze reaches (Figure 2c).
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The spatial distributions of the precipitation relative bias (%) from the TMPA 3B42RTV7/V7 data
against the gauged precipitation data in the upper Yangtze reaches are shown in Figure 3. It can be
found that the precipitation relative bias fluctuation of the 3B42V7 product was slight with a range
between −30% and 10%, and over 66% (negative bias) parts of the spatial distribution of precipitation
were underestimated in the whole basin. Besides, near half of the relative bias of 3B42V7 maintained
between −10% and 10% in the whole study region (Figure 3b). The precipitation relative bias of
3B42RTV7 overestimated more than 75% of parts of the entire study area, and about 20% of parts of a
large positive bias even beyond 100%, which mostly appeared in the northwestern parts of Jinshajiang
River basin and Mintuojiang River basin. From the perspective of spatial precipitation bias percentage,
the capacity of TMPA 3B42V7 was better than 3B42RTV7 in the precipitation estimation.Water 2020, 12, x FOR PEER REVIEW 7 of 20 
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The areal mean of TMPA 3B42 RTV7/V7 and gauged annual precipitation at different time scales in
the upper Yangtze River basin from 2003 to 2010 are shown in Figure 4. Both TMPA 3B42 productions
followed the tendency variations of the gauged precipitation very well for all three time scales.
The monthly variations of the 3B42V7 product agreed much better with the gauged precipitation,
while the underestimation was visible on the daily and annual scales. Although 3B42RTV7 roughly
captured the tendency variations of the gauged precipitation, it significantly overestimated the
precipitation. Notably, for the monthly scale, 3B42RTV7 usually agreed well with the dry seasons
(October–May) but overestimated precipitation during the wet seasons (June–September). Similar to
the spatial analysis results, TMPA 3B42V7 also showed better performance than 3B42RTV7 in terms of
time scales.
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Figure 4. Changes in the areal mean of precipitation from TMPA and gauged precipitation in the upper
Yangtze reaches: (a) daily; (b) monthly; (c) annual.
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The comparison of statistical indexes of precipitation between TMPA products and gauged
precipitation is listed in Table 1. Comparisons suggest that 3B42V7 had a better performance
than 3B42RTV7 at both daily and monthly scales with a significantly improved reduced bias ratio.
The 3B42RTV7 significantly overestimated the precipitation at both daily and monthly time scales,
and the RB is as high as 34.68% and 34.71%, respectively. Meanwhile, 3B42V7 maintained a relatively
low RB at both daily (−6.24%) and monthly (−6.21%) scales, which demonstrates that 3B42V7 slightly
underestimates the precipitation. The RMSE and CC values were 2.2 mm/day and 0.84 for the 3B42RTV7
product at daily time scales. When it comes to the monthly scale, the RMSE rises to 1108.3 mm/month;
the CC rises to 0.97 at the same time. However, 3B42V7 had a higher correlation (CC = 0.92) than
3B42RTV7 at daily time scales. For the RMSE of 3B42V7, a similar increase occurred from the daily time
scale (1.1 mm/day) to the monthly scale (196.2 mm/month), which was still much lower than 3B42RTV7.
Generally, the 3B42V7 product had a significant improvement in bias ratio reduction, with a lower RB
and RMSE. Meanwhile, 3B42V7 also had a slight advantage over 3B42RTV7 in terms of correlation
with the gauged precipitation.

Table 1. Statistical summary of the comparison of the precipitation estimates between TMPA
3B42RTV7/V7 products and the gauged precipitation for daily/monthly time scales in the upper
Yangtze River (relative bias (RB), correlation coefficient (CC) and root mean square error (RMSE)).

Precipitation Product
Daily Monthly

RB (%) RMSE (mm) CC RB (%) RMSE (mm) CC

TMPA 3B42RTV7 34.68 2.2 0.84 34.71 1108.3 0.97

TMPA 3B42V7 −6.24 1.1 0.92 −6.21 196.2 0.99

The statistical indexes (POD, CSI, FAR) of different precipitation thresholds at daily time scales are
shown in Figure 5. In terms of the values of POD, 3B42RTV7 maintained a high value throughout (>0.8),
which indicated 3B42RTV7 was sensitive to precipitation events. In contrast, the POD of 3B42V7 was
above 0.7 when the precipitation was below 4 mm/day. Once the precipitation continued increasing,
the POD decreased significantly, indicating that 3B42V7 was more sensitive to slight precipitation
events, and it was difficult to accurately detect heavy precipitation events (Figure 5a). However,
Figure 5c revealed that the probability of errors reporting precipitation events for both 3B42RTV7
and 3B42V7 will increase with increasing precipitation, and 3B42RTV7 performed worse (Figure 5c).
The CSI index, which is related to both POD and FAR, showed the same behavior for both types of
products (Figure 5b). The decrease in the CSI values along with the precipitation increase demonstrated
that both 3B42RTV7 and 3B42V7 had a better skill in detecting slight precipitation events than large
precipitation events (Figure 5b). Above all, 3B42RTV7 was more sensitive to precipitation events,
while 3B42V7 showed better ability and accuracy in slight precipitation events detection in the upper
reaches of the Yangtze River.
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Figure 5. Statistical indices for different precipitation thresholds at the daily time scale: (a) probability
of detection (POD); (b) critical success index (CSI); and (c) false alarm ratio (FAR).
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3.2. Hydrologic Model Calibration

Based on the gauged runoff data, the VIC hydrological model was driven by the gauged
precipitation and satellite precipitation products, and different calibration parameters of the hydrological
model were obtained. Then, the simulation study of the gauged precipitation and satellite precipitation
products was conducted by using the parameters to test the effect of satellite products in the runoff

simulation. This paper used the MOCOM-UA algorithm to automatically calibrate the parameters of
the VIC hydrological model. This method is an effective method for solving multi-objective global
optimization problems [31]. The calibration parameters and calibration values of the VIC model in
the upper reaches of the Yangtze River are shown in Table 2. (1) Variable infiltration curve parameter
(B); (2) three base flow parameters which determine how quickly the water stored in the third layer
is withdrawn, including the fraction of maximum soil moisture (Ws) where a non-linear base flow
begins, the fraction of maximum base flow (Ds) and the maximum velocity of the base flow (Dsmax);
and (3) the three soil layer thicknesses (d1, d2, d3) which affect the maximum storage available in the
soil layers [53,54]. The values of B, Ws, Ds, Dsmax, d1, d2 and d2 were 0.4, 0.2008, 0.01, 6.008, 0.01,
0.1 and 1.24 when the gauged precipitation was used as input data to calibrate the VIC hydrological
model, respectively. However, when using the precipitation products of TMPA 3B42RTV7 and TMPA
3B42V7 to calibrate the hydrological model, the new calibrated parameter values of B, Ws, Ds, Dsmax,
d1, d2 and d2 are shown in Table 2.

Table 2. The variable infiltration capacity (VIC) model calibrated parameters and calibrated values in
the upper Yangtze River basin.

Parameters Definition Value Range Calibration Value

OBS 3B42RTV7 3B42V7

B Variable infiltration curve
parameter (binfilt) 0–0.4 0.4 0.1872 0.4

Ws Fraction of maximum soil moisture
where a non-linear base flow occurs 0–1.0 0.2008 0.6004 0.2008

Ds Fraction of Dsmax where a
non-linear base flow begins 0–1.0 0.01 0.001 1

Dsmax Maximum velocity of the baseflow
(mm/day) 0–30 6.008 4.009 12.006

d1 Thickness of each soil moisture
layer (m) 0.1–2.0

0.01 0.01 0.01
d2 0.1 0.6067 0.1
d3 1.24 2 1.8733

Figure 6 shows comparisons between the gauged runoff and simulated runoff forced by the gauged
precipitation at (a) daily and (b) monthly time scales. The correlation coefficient of the simulated
hydrograph was as high as 0.93, with a negative relative bias of 6.36%, and NSCE reached 0.85 at daily
time scales (Figure 6a). For the monthly time scale, the relative bias (−6.34) and correlation coefficient
(0.98) were slightly better than those of the daily time scale, but the NSCE increased to 0.95 (Figure 6b).
Therefore, the results of the model calibration indicated that the VIC model had good skills in the
hydrological simulation when forced by the gauged precipitation.

To further verify the performance of the VIC model on the monthly scale, the comparison of the
monthly cumulative average runoff between the simulated runoff and the gauged runoff is shown
in Figure 7. The simulated monthly accumulated average runoff agreed well with the gauged runoff

from 1996 to 2010. The runoff simulation curve was very close to the gauged in the dry seasons,
where it decreased from October to the following March. In the rainy seasons, from June to September,
the simulated runoff was lower than the gauged, although the simulated runoff in June was similar to
the gauged (Figure 7). The simulation results in September were worse than those in June, possibly
due to the simulation deviations accumulated in July and August.
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Figure 6. The runoff simulation in the upper Yangtze reaches using the VIC hydrological model:
(a) daily; (b) monthly.
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Figure 7. Comparison of monthly accumulated average runoff.

3.3. Hydrologic Model Simulation

To investigate how differences between precipitation estimates affect the accuracy or quality of
VIC runoff simulations, different VIC model parameters obtained from the gauged precipitation and
the TMPA precipitation were compared in Figure 8 and defined in Table 3. The red fitting line was very
close to the 1:1 blue line, and the numerical aggregation degree of the runoff simulation was higher
than that of previous dispersion, which demonstrated that the runoff simulation driven by 3B42RTV7
using the hydrological parameters obtained from 3B42RTV7 (R = 0.87) was superior to the parameters
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obtained from the gauged precipitation (R = 0.85) (Figure 8a,b). However, the runoff simulation using
parameters obtained from the gauged precipitation (R = 0.90) had a slightly better performance than
using parameters obtained from 3B42V7 (R = 0.87). From the analysis of results in Figure 8, 3B42RTV7
showed a better improvement for the runoff simulation when used for model parameters obtainment
and model driving data in the upper reaches of the Yangtze River.Water 2020, 12, x FOR PEER REVIEW 12 of 20 
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Table 3. The definition of the simulated runoff driven by TMPA 3B42TRV7/V7 using different
hydrological parameters in the upper Yangtze reaches.

Simulated Runoff Driven by the Precipitation Hydrological Parameters

RRTV7_RTV7 3B42RTV7 3B42RTV7
RRTV7_OBS 3B42RTV7 Gauged

RV7_V7 3B42V7 3B42V7
RV7_OBS 3B42V7 Gauged

Figure 9 shows the daily simulated runoff with the driven data from the gauged precipitation and
the TMPA precipitation over the upper Yangtze reaches from 2003 to 2010. In terms of runoff simulation
using the VIC model parameters obtained from the gauged precipitation, the 3B42RTV7-driven runoff

simulations tended to overestimate the peak flows through the entire time scale, resulting in an RB of
66.58%, a CC of 0.85 and an NSCE of −0.92. The simulation results improved a lot when using the
parameters obtained from 3B42RTV7, which followed the gauged runoff curve well. The simulation
results showed a lower bias (RB = 14.38) and higher correlation (CC = 0.87), and an NSCE as high as
0.71 (Figure 9a and Table 4). It can be seen from Figure 9b that the 3B42V7-driven simulation runoff

using the calibration parameters obtained from the gauged precipitation agreed well with the gauged
runoff. The statistical indexes were relatively well correlated with the values of RB, CC and NSCE
of −5.77%, 0.90 and 0.79, respectively (Table 4). When using the parameters obtained from 3B42V7
to simulate runoff, the simulations got worse, with an RB, CC and NSCE of −19.17%, 0.87 and 0.73,
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respectively, which showed varying degrees of overestimation and underestimation (Figure 9b and
Table 4). Overall, the 3B42RTV7-driven runoff simulations had a better performance when using the
VIC model parameters obtained from 3B42RTV7; in particular, it can accurately describe the peak flow
after adjustment.Water 2020, 12, x FOR PEER REVIEW 13 of 20 

 

 

Figure 9. Comparison of gauged and simulated runoff based on the TMPA 3B42RTV7 and TMPA 

3B42V7 precipitation products by using the VIC hydrological model in the upper Yangtze reaches 

from 2003 to 2010 at daily scale. (a) Simulated runoff using the parameters obtained from the gauged 

precipitation and TMPA 3B42RTV7; (b) simulated runoff using the parameters obtained from the 

gauged precipitation and TMPA 3B42V7. 

Similar to the daily runoff simulation comparisons, the monthly comparisons are shown in 

Figure 10. The 3B42RTV7-driven runoff simulation had a greater improvement using the parameters 

obtained from 3B42RTV7 than from the gauged precipitation. The simulation results were more 

reliable with a lower bias (RB decreased from 66.61% to 14.41%) and higher correlation (CC increased 

from 0.93 to 0.95), and an NSCE as high as 0.86 (Figure 10a and Table 4). The correction for peak flow 

was visible. For 3B42V7, runoff simulation results were far from ideal. Comparing the runoff 

simulation driven by the parameters obtained from two different methods, the runoff simulation by 

using the parameters obtained from 3B42V7 got worse with the RB expanding from −5.75% to 

−20.90%, the NSCE decreasing from 0.94 to 0.87 and the CC (0.97) nearly the same (Figure 10b and 

Table 4). From the perspective of the monthly scale, the 3B42RTV7-driven runoff simulations still had 

better skills than the TMPA 3B42V7-driven runoff simulations when using parameters obtained from 

the TMPA products. 

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

2003/1/1 2005/1/1 2007/1/1 2009/1/1
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

(b)

R
u

n
o

ff
(m

3
)

 OBS

 Sim-RTV7 

 Re-sim-RTV7

(a)

R
u

n
o

ff
(m

3
)

Daily

 OBS

 Sim-RTV7

 Re-sim-V7

Figure 9. Comparison of gauged and simulated runoff based on the TMPA 3B42RTV7 and TMPA
3B42V7 precipitation products by using the VIC hydrological model in the upper Yangtze reaches
from 2003 to 2010 at daily scale. (a) Simulated runoff using the parameters obtained from the gauged
precipitation and TMPA 3B42RTV7; (b) simulated runoff using the parameters obtained from the
gauged precipitation and TMPA 3B42V7.

Table 4. The statistical summary of the simulated runoff driven by TMPA 3B42TRV7/V7 using different
hydrological parameters in the upper Yangtze reaches (relative bias (RB), correlation coefficient (CC)
and the Nash–Sutcliffe coefficient of efficiency (NSCE)).

Hydrological
Parameters

Driven by the
Precipitation

Daily Monthly

RB (%) CC NSCE RB (%) CC NSCE

Gauged 3B42RTV7 66.58 0.85 −0.92 66.61 0.93 −0.81
3B42RTV7 3B42RTV7 14.38 0.87 0.71 14.41 0.95 0.86

Gauged 3B42V7 −5.78 0.90 0.79 −5.75 0.97 0.94
3B42V7 3B42V7 −19.17 0.87 0.73 −20.90 0.97 0.87

Similar to the daily runoff simulation comparisons, the monthly comparisons are shown in
Figure 10. The 3B42RTV7-driven runoff simulation had a greater improvement using the parameters
obtained from 3B42RTV7 than from the gauged precipitation. The simulation results were more reliable
with a lower bias (RB decreased from 66.61% to 14.41%) and higher correlation (CC increased from
0.93 to 0.95), and an NSCE as high as 0.86 (Figure 10a and Table 4). The correction for peak flow was
visible. For 3B42V7, runoff simulation results were far from ideal. Comparing the runoff simulation
driven by the parameters obtained from two different methods, the runoff simulation by using the
parameters obtained from 3B42V7 got worse with the RB expanding from −5.75% to −20.90%, the NSCE
decreasing from 0.94 to 0.87 and the CC (0.97) nearly the same (Figure 10b and Table 4). From the
perspective of the monthly scale, the 3B42RTV7-driven runoff simulations still had better skills than the
TMPA 3B42V7-driven runoff simulations when using parameters obtained from the TMPA products.
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Figure 10. The VIC model driven by the upper reaches of the Yangtze River and the TMPA 3B42RTV7/V7
precipitation products used to obtain different parameters from 2003 to 2010 at monthly scales: (a) TMPA
3B42RTV7 simulated runoff based on the calibration parameters obtained from the gauged precipitation
and TMPA 3B42RTV7; (b) TMPA 3B42V7 simulated runoff based on the calibration parameters obtained
from the gauged precipitation and TMPA 3B42V7.

4. Discussion

Satellite precipitation products are very important for regional and global hydrological studies,
particularly for remote regions and ungauged areas. TMPA precipitation products were widely used
for quantitative measurement of tropical and subtropical precipitation [55]. The spatial pattern of
the TMPA precipitation estimations and precipitation relative bias suggested that the TMPA satellite
products had a close association with elevation [56]. Results of the precipitation estimation in this
study demonstrated that TMPA 3B42V7 can well capture the spatial pattern of precipitation, though it
underestimated through the whole basin. However, TMPA 3B42RTV7 showed poor performance with
unrealistic overestimation, especially in the area where the average elevation was above 3000 m and
precipitation was around 400 mm/year. Hao et al. [23] also drew a similar conclusion in the upper
Yellow River and Yangtze River basins on the Tibetan Plateau. These results were in agreement with
Tian et al. [57], who suggested that current satellite-based precipitation products are more reliable over
areas with strong convective precipitation and flat surfaces, and measurement uncertainties would
emerge in the areas with complex terrains, inland water bodies, cold surfaces, high latitudes and light
precipitation. However, the uncertainty of TMPA satellite products for high-altitude precipitation
estimation is probably caused by algorithms. Both TMPA 3B42 RTV7 and TMPA 3B42 V7 are based
primarily on a combination of microwave (MW) and merging infrared (IR) estimates from multiple
satellites [19]. However, high-latitude regions pose an effect on satellite rainfall estimation from either
MW or IR sensors due to the snow cover, glaciers and ice aloft [32]. Therefore, climatologic adjustments
and algorithm improvements ought to be considered to minimize bias and uncertainty in future
research [58]. Besides, another probable reason might be the sparse meteorological sites which cannot
adequately depict the spatial distributions over the complex research region [59]. Although the TMPA
products used similar algorithms, 3B42V7 showed better agreement with the gauged precipitation than
3B42RTV7 at both daily and monthly time scales. This is because 3B42V7 was adjusted by the monthly
gauged precipitation [56]. In terms of precipitation detections, 3B42RTV7 tended to overestimate peak
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precipitation, while 3B42V7 underestimated peak precipitation in the wet seasons at all three time
scales. These results are similar to previous studies. For example, Li et al. [8] found that the daily
TMPA precipitation data had better abilities to determine rain occurrence and mean values than to
determine extreme precipitation. Ward et al. [60] found that the daily TMPA 3B42V7 could not capture
small precipitation and underestimated the precipitation during the dry season. Narayanan et al. [61]
validated the TMPA 3B42 data with the India Meteorological Department (IMD) rain gauge’s data and
showed that the satellite algorithm did not pick up very high and very low daily precipitations. TMPA
3B42 had a better ability to detect heavy rain events, although it did not capture the same amount of
precipitation [62].

Large amounts of research tested the suitability of satellite products as input to VIC hydrologic
models in different basins around the world [32]. During the phase of runoff simulation, the gauged
precipitation was firstly used for the acquisition of model parameters. Based on the parameters
obtained by the gauged precipitation, the runoff simulation results were significantly overestimated
when using 3B42RTV7 as precipitation input to the VIC model at daily and monthly scales. Runoff

simulations driven by 3B42V7 followed the gauged runoff well under the same hydrologic parameters.
A similar conclusion was drawn by Huang et al. [63], who used the VIC hydrological model driven by
the TMPA 3B42RTV7/V7 precipitation products in the Ganjiang River basin. Tong et al. [32] found
that 3B42V7 showed comparable performance to the China Meteorological Administration data in
both monthly and daily streamflow simulations using the VIC hydrological model, while 3B42RT7
showed little capability for streamflow simulations over the Tibetan Plateau. These were consistent
with our results. For land surface hydrology models, errors in precipitation inputs can cause significant
uncertainties in runoff simulations and predictions [64]. It is also clearly shown that the TMPA-driven
runoff simulations had better abilities in capturing gauged runoff in dry seasons than wet seasons
(Figure 6). The probable reason is that the model can withstand smaller errors during the process
of extensive integration of the basin. Once the input error increases to a certain extent beyond the
tolerance level of the VIC model, the model behaves unrealistically and generates amplified errors
in the output [56]. During the precipitation estimation phase, 3B42RTV7 severely overestimated
the precipitation with 3B42V7 underestimating in the wet season, but it can accurately capture the
precipitation in the dry season. Due to error propagation, when the TMPA precipitation products
spread errors into the runoff simulation, the runoff simulation showed a better performance in the dry
seasons than the wet seasons.

It is worth noting that this research then focused on the comparative studies on the calibration
parameters obtained from observation and TMPA 3B42RTV7/V7 precipitation. The 3B42RTV7-driven
runoff simulations using the calibration parameter obtained from 3B42RTV7 were significantly better
than those using the calibration parameter obtained from the gauged runoff. Unfortunately, the runoff

simulations driven by TMPA 3B42V7 performed even worse with the same method. The cause might
be that the TMPA 3B42V7 satellite products have been adjusted by gauged precipitation. Different
from ours, Tang et al. [24] used the recalibration parameters obtained from the TMPA products for the
CREST model, which found that the runoff simulation performed better than the gauged ones using the
calibration parameter based on gauged runoff in the Ganjiang River basin, and the runoff simulation
driven by 3B42V7 showed a better performance than the one driven by 3B42RTV7. Wang et al. [37]
found that the TMPA 3B42V7-driven runoff simulation using the calibration parameter of the VIC
model obtained from TMPA 3B42V7 agreed well with the gauged runoff in the source region of the
Yellow River. The probable reasons were the model uncertainties of calibration parameters which were
important to the runoff simulation for the VIC model. Therefore, it is important to conduct a study
about the strategies to reduce the uncertainty of model parameters in the future. Overall, it is possible
to use real-time TMPA 3B42RTV7 satellite precipitation data to drive hydrological models for real-time
hydrological simulation or prediction in remote regions and ungauged areas.
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5. Conclusions

This study evaluated the hydrological utilities of TMPA 3B42RTV7/V7 products against gauge
observations using the VIC hydrological model over the upper Yangtze River basin from 2003 to 2010.
The main findings of this study can be summarized as follows:

(1) The spatiotemporal comparisons of precipitation over the upper Yangtze River basin suggest
that 3B42V7 had a reliable performance in the precipitation estimation. Although 3B42V7
(RB = −6.24%, RMSE = 1.10 mm/day and CC = 0.92) slightly underestimated precipitation,
3B42RTV7 (RB = −34.68%, RMSE = 2.2 mm/day and CC = 0.84) significantly overestimated
precipitation at the daily time scale. 3B42V7 well captured the distribution of precipitation
but underestimated almost 66% of parts of the entire study area. 3B42RTV7 overestimated
more than 75% of parts of the entire study area, especially in the northwestern parts of the
Jinshajiang River basin. Besides, 3B42RTV7 was more sensitive to precipitation events (POD > 0.7),
while 3B42V7 showed better ability and accuracy in slight precipitation events detection
(precipitation < 4 mm/day, POD > 0.7). Overall, the good performances of the 3B42RTV7/V7
precipitation products suggest that they are feasible for runoff simulation.

(2) The VIC hydrological model has good adaptability in hydrological simulation in the upper
reaches of the Yangtze River. The simulated runoff using the VIC hydrological model has a good
correlation with the gauged runoff at daily/monthly time scales using the gauged precipitation
for parameter calibration. The NSCE value was as high as 0.85, the RB was −6.36% and the
CC value was 0.93 at daily scales, while the NSCE and CC rose to 0.95 and 0.98 at monthly
scales, respectively. The VIC model simulation results indicated that it was reliable in runoff

simulation over the upper Yangtze River basin. When using 3B42RTV7/V7 as the input data,
the 3B42V7-driven runoff simulation agreed well with the gauged runoff, where the CC was
0.90, the RB was −5.78 and the NSCE was 0.79 at the daily scale. Although the 3B42RTV7-driven
runoff simulation had a good correlation with the gauged runoff (CC = 0.85/daily, 0.93/monthly),
it over-simulated the gauged runoff with a significant bias (RB = 66.58%/daily, 66.61%/monthly),
and the NSCE was −0.92/daily and −0.81/monthly.

(3) The accuracy of the 3B42RTV7-driven runoff simulation (daily/monthly) had been improved
by using the hydrological calibration parameters obtained from 3B42RTV7 compared with
parameters obtained from the gauged precipitation. The NSCE rose from −0.92 to 0.71, the RB
decreased from 66.58% to 14.38% and the CC rose from 0.85 to 0.87 at daily time scales. However,
the performance of the 3B42V7-driven runoff simulation (daily/monthly) was not improved in the
same operation accordingly. In particular, the negative RB increased from −5.78% to −19.17% and
from −5.75 to −20.90 at daily and monthly time scales, respectively. The outcomes of this work
suggest that it might be better to calibrate the parameters using satellite data in hydrological
simulations, especially for unadjusted satellite data. It also provides a reference for the application
of satellite data to hydrological simulations in other river basins of the world, especially in regions
lacking gauged data.
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