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Abstract: The main outlets of karst systems are springs, the hydrographs of which are largely
affected by flow processes in the unsaturated zone. These processes differ between the epikarst
and transmission zone on the one hand and the matrix and conduit on the other hand. However,
numerical models rarely consider the unsaturated zone, let alone distinguishing its subsystems.
Likewise, few models represent conduits through a second medium, and even fewer do this explicitly
with discrete features. This paper focuses on the interest of hybrid models that take into account both
unsaturated subsystems and discrete conduits to simulate the reservoir-scale response, especially the
outlet hydrograph. In a synthetic karst aquifer model, we performed simulations for several parameter
sets and showed the ability of hybrid models to simulate the overall response of complex karst
aquifers. Varying parameters affect the pathway distribution and transit times, which results in a large
variety of hydrograph shapes. We propose a classification of hydrographs and selected characteristics,
which proves useful for analysing the results. The relationships between model parameters and
hydrograph characteristics are not all linear; some of them have local extrema or threshold limits.
The numerous simulations help to assess the sensitivity of hydrograph characteristics to the different
parameters and, conversely, to identify the key parameters which can be manipulated to enhance the
modelling of field cases.

Keywords: karst; hydrodynamics; unsaturated zone; vadose zone; hybrid model; numerical
experiments; hydrograph

1. Introduction

Most near-surface carbonate karst systems host groundwater reservoirs that supply freshwater to
20–25% of the global population [1]. Deeper carbonate formations contain around 60% of the world’s
conventional petroleum [2]. Despite increasing pressure on resources stored in karst reservoirs and
the consequent need for sustainable management tools, modelling fluid dynamics in karst systems
continues to be a challenge.

Specific karst features, especially conduit networks, are difficult to consider explicitly in models.
In addition to their high heterogeneity and anisotropy at all scales that they overprint to the medium,
karst conduits may undermine the hypothesis of the Darcian flows that are classically assumed for
underground flows. Additionally, the high level of contrast between the hydraulic properties of the
different media combined with the size and continuity of karst features makes it difficult to identify a
representative elementary volume (REV) for the characterization of properties and upscaling. Moreover,
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the hierarchical organisation of the conduit network concentrate flows to one or a few outlets [1].
These outlets are usually river springs whose hydrographs (spring discharge versus time, Figure 1a)
integrate all hydrologic processes occurring in the reservoir to varying degrees and with various delays.
For instance, the characteristics of the conduits, their density and connectivity and the structure of
the conduit network affect the system response and the hydrograph shape [3–7]. The distribution
of the recharge between diffuse and concentrated flows and the exchanges between the matrix and
conduits also control the characteristics of the hydrograph, such as peak discharge and base flow [8,9].
This integrative role of hydrographs combined with good accessibility make springs favourable
monitoring points. Consequently, spring hydrographs constitute primary variables to study karst
systems [10–16] or calibrate numerical models [17–20]. Such discharge rate time series nevertheless
differ from the usual piezometric monitoring approaches used to constrain groundwater models.

Figure 1. Schematic representation and corresponding model of karst system: (a) illustrations of
flows towards a spring and hydrograph; (b) mesh of the model with locations of the vertical conduits
(red points) and the outlet (blue arrow); (c) horizontal slice of the mesh with projection of the conduits
and location of cross-section (d); (d) vertical cross-section of the mesh with location of the terminal
conduit; (e) karst conduits network of the model.

The importance of the vertical structuration of karst on flow properties and processes at the
reservoir scale is widely acknowledged [1,21–24]. Notably, the epikarst and transmission zone constitute
very different subsystems, whose petrophysical properties differ enough to be distinguished in the
models [25]. The epikarst is the near-surface weathered zone of the karst system [1]. Its porosity may
reach 10%, while its hydraulic conductivity is generally higher than 10−5 m·s−1 and tends to be isotropic
due to alteration processes [26,27]. The transmission zone constitutes the relatively unaltered part of the
unsaturated zone, where water mainly flows vertically towards the saturated zone. In the transmission
and saturated zones, at the scale of the flow unit, the matrix porosity and hydraulic conductivity
are usually less than 2% and 10−4 m·s−1 respectively [24]. Flow processes in the unsaturated zone
(soil, epikarst and transmission zone) can vary greatly in time and space [28–31]. Variable connectivity



Water 2020, 12, 3221 3 of 21

inside the flow path network controls the infiltration processes [19,29,32–34]. Flows in the unsaturated
zone can be either direct through conduits or delayed because they slowly circulate in the matrix [32].
The karst unsaturated zone may therefore act as a main storage reservoir [35,36], whose complex
functioning largely affects the shape of hydrographs [26,36–43]. However, the unsaturated zone is
rarely represented explicitly in models of karst hydrodynamics [17,44–49]. Most modelling studies
only consider the saturated zone of the aquifer [18,20,50–55].

Introducing all these karst specificities into numerical models is difficult. Considering only
physically-based 3D models, to date, aquifer-scale karst hydrodynamics have mostly been modelled
using equivalent porous medium approaches [18,50,56]. These modelling methods represent the
entire karst aquifer (matrix, fractures and karst conduits) as a single equivalent porous medium
in which only Darcy’s law applies. This simplification corrupts the simulated global response [5].
The relevance of such models is therefore dependent of the scale of the problem studied and that
of reservoir heterogeneity [18,50,57]. In an opposite way, other modelling techniques enable the
explicit representation of discrete channel networks. They allow the simulation of turbulent flow in
karst conduit networks with complex geometry while neglecting the storage and flows in the matrix.
These models are thus mostly dedicated to fractured reservoirs or conduit flow-dominated karst
systems [58]. Taking into account both a mature karst conduit network and highly capacitive matrix
requires a dual media approach [52,59]. In double continuum models, matrix and karst conduits are
considered as two equivalent porous media linked by exchange terms. Such a dual representation does
not solve all the difficulties as, in most cases, karst conduits are represented through an equivalent
porous medium with Darcy flow. Moreover, the exchange term between the matrix and conduits
cannot be measured and may be difficult to calibrate [47].

Hybrid models have arisen recently; by coupling a 3D equivalent porous medium representation
of the matrix on a grid with networks of discrete 2D fractures or 1D conduits, they hold promise
for a realistic representation of karst geometries [20,25,51,55,60,61]. They allow the separate and
explicit consideration of some large conductive discontinuities that upscaling rules make it difficult to
encompass in the equivalent porous medium representation [62]. Some hybrid models allow different
flow physics in karst conduits to be taken into account [61,63–65]. However, in another paper [25],
we reported the difficulty of considering both turbulent flows in the conduits and unsaturated flows in
the matrix. We nevertheless showed the ability of hybrid models to simulate karst hydrodynamics
in unsaturated conditions and to reproduce most processes that occur at the conduit scale and that
are reported in the literature correctly. Moreover, we highlighted how varying the model parameters
affects the flow processes and the exchanges between the matrix and conduits in both the epikarst
and the transmission zone. Hybrid models thus seem mature enough, and their availability through
market software makes them easy to apply [66,67].

Therefore, the question arises of whether approaches taking into account both unsaturated
subsystems and explicit karst conduits enhance the simulation of both hydrodynamics at the karst
reservoir scale and the hydrograph at the outlet. This paper focuses on the impact of such a configuration
and the related parameters on the reservoir scale response, especially the spring hydrograph. First,
this approach requires the capacity to distinguish different behaviours in the hydrograph shape,
and particularly to determine the key descriptors of this response. Then, we study how these
descriptors vary as functions of model parameters, particularly regarding the range of responses that
we can expect from models whose parameters are consistent with literature values and how each
subsystem, epikarst or transmission zone affects the model response. Based on modelling methods,
results and commonly accepted concepts from the literature [25], we build a 3D hybrid model of a
hypothetical karst aquifer; we assess and compare the hydrographs resulting from the simulation of
recharge events for various sets of parameters. This work seeks to provide modellers with a range of
parameters, guidelines and useful tips to enhance the modelling of field cases.
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2. Materials and Methods

The next sections present the 3D hybrid model built to study the response of a hypothetical karst
reservoir, including an unsaturated zone and conduits, to a recharge event. First, we present the
hypothetical model and highlight the main characteristics of the considered karst system. Secondly,
we focus on flow equations and parameters. Finally, the evaluation criteria of the several simulations
are presented.

2.1. Description of the Hybrid Model and the Considered Karst Specificities

The model represents a hypothetical carbonate aquifer, as illustrated in Figure 1a, with a network
of karst conduits following a branchwork pattern from the top of the model to the outlet [68]. A set
of vertical conduits crossing the unsaturated zone drain towards a single outlet through a network
of horizontal conduits in the saturated zone represents this network (Figure 1e). The system has
a catchment area of 100 km2 and a uniform thickness (250 m for the reference model). The outlet
elevation is at 120 m. The Figure 1 presents several views of the model.

This finite elements model was built with FEFLOW 7.0 by DHI WASY (https://www.
mikepoweredbydhi.com/products/feflow) [66,69]. It is composed of 30 layers; i.e., 31 slices with
6585 vertices per slice (Figure 1c). The slice spacing is 10 m in the unsaturated zone and 20 m in the
saturated zone (Figure 1d). The mesh is refined around all discrete features to ensure convergence
(Figure 1b,c); the cell size ranges from 10−3 km2 to 10−1 km2. The mesh cells support the porous
fractured matrix, while a selection of mesh edges supports the discrete features that represent large
conductive karst conduits. Both are homogeneous.

A uniform recharge flux is applied on the top of the model, whereas the discharge is controlled by
a Dirichlet boundary condition equal to 150 m at the outlet of the conduit network. Other external
faces are no-flow boundaries.

For the sake of comparison, several features are the same as those in [25]: the recharge flux,
the structure of the unsaturated zone with conduits crossing it vertically, the flow equations and the
model parameters excepted for the conduits. All these characteristics of the model are presented below.

2.2. Flow Equations and Model Parameters

In the unsaturated zone, we applied the Richards equation [70] to simulate the variably saturated
water flow in the model’s matrix:

∂
∂x

[
K(ψ)xx

∂h
∂x

]
+
∂
∂y

[
K(ψ)yy

∂h
∂y

]
+
∂
∂z

[
K(ψ)zz

∂h
∂z

]
±U =

∂θ
∂t

, (1)

where t is time (s), x, y and z are the spatial coordinates (m) (positive upwards), θ is the volumetric
water content (-), h is the hydraulic head (m), K(ψ) is the unsaturated hydraulic conductivity (m·s−1) in
the function of the pressure head (ψ) and U is the sink-source term (s−1).

Our approach requires the definition of constitutive relationships for saturation as well as the
relative permeability. However, the huge heterogeneity of fractured and karstified carbonate rocks
causes not only petrophysical heterogeneity but also complex variations of capillary forces and
saturation over short distances, making it difficult to assess these relationships at the mesh-cell scale.
This is a poorly addressed issue in the literature and remains a challenge [25,70,71]. Based on the
literature, we applied the Van Genuchten model with constant and uniform parameters (Table 1).
The water content is equal to

θ(ψ) = θr +
θs − θr[

1 + (αψ)n
]m , (2)

https://www.mikepoweredbydhi.com/products/feflow
https://www.mikepoweredbydhi.com/products/feflow
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where θr and θs are residual and saturated water contents (-), respectively, and α (cm−1), n and m are
empirical parameters. The moisture content equals porosity multiplied by saturation. The relative
hydraulic conductivity Kr (-) in the unsaturated zone follows this relation:

Kr = S0.5
e

[
1−

(
1− S

1
m
e

)m]2

. (3)

where Se is effective saturation, generally defined as [72]

Se =
θ− θr

θs − θr
. (4)

The hydrograph changes depending on whether laminar or turbulent flow is considered in the
conduits [64]. However, several tests showed that the simulation fails if we consider both Richards
and Manning–Strickler equations for the matrix and the conduits, respectively. Therefore, we applied
the Darcy law to simulate the flow in the conduits that are always fully conductive. Thus, the product
of the cross-section area by hydraulic conductivity, the so-called flow capacity, is the key parameter for
advection in conduits. Moreover, matrix–conduit exchanges are implicit. Indeed, such kinds of finite
elements hybrid models compute hydraulic heads on mesh nodes that define both cells supporting the
equivalent porous medium and edges supporting the discrete features.

For the purpose of this study, we varied several parameters of the model, one at a time, around
a reference simulation (Table 1): the thickness (Thk), porosity (Φ) and hydraulic conductivity (K) of
the epikarst (EK: ThkEK, ΦEK, KEK) and transmission zone (TZ), respectively, and the flow capacity
of the conduits (KS). Petrophysical values for the saturated zone (SZ) are assumed to be equal to
those of the transmission zone (ΦTZ−SZ, KTZ−SZ). Due to the variable flooding of the epiphreatic zone,
the thicknesses of the transmission zone and the saturated zone vary while their sum remains constant.
The boundary condition at the outlet constrains the initial thickness of the saturated zone. Thus,
the initial thickness of the transmission zone (ThkTZ) is the only geometrical parameter of interest
for the lower subsystems. According to the literature, hydraulic conductivity is isotropic only in the
epikarst. In the other subsystems, the ratio between the horizontal hydraulic conductivity (KTZ−SZ)
and the vertical hydraulic conductivity is equal to 10, as usually assumed.

The discrete features of the model represent the major conduits whose size and flow capacity
increase with the scale of the model. Flow capacity is also set to preserve the interest in considering
explicit discrete conduits by avoiding too conductive discrete features that would be equivalent to
fixed-head boundary conditions [5,25] while preserving the contrast of conductivity between the matrix
and conduits. To respect this compromise, several tests led us to consider a reference value for flow
capacity equal to 100 m3

·s−1. For comparison, this value is 1000 times greater than that of the conduit
scale model of Dal Soglio et al. [25], while the area of the model is 100 times greater. Nevertheless,
the preliminary results led us to retain only values larger than this reference among all the tested values.
Indeed, the simulated groundwater level locally exceeds the ground level if considering smaller values
for conduit flow capacity together with other reference parameters. This highlights the importance of
this parameter and the difficulty of calibrating it.

Table 1 presents the reference values and the range of variations for all the variable parameters of
the model, based on a literature overview [25]. It must be emphasized that most of the values found
in the literature are not related to a given measurement volume and are generally independent of
the support. The upscaling issue is generally not addressed, and this should be kept in mind when
interpreting the simulation results.
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Table 1. Value ranges for the properties of karst systems and karst modelling reported in the literature
and model parameters [25].

Subsystem Property (Units) Values and Ranges of Values 1

from Literature
Model’s Values and Range of Values

Min–Ref–Max

Epikarst (EK)

Thickness
ThkEK (m)

(0; >30) [24]
(few meters; 10−15) [23]

(3; 10) [1]
(8; 12) [73]

0–20–35

Porosity
φEK (-)

(0.05; 0.1) [24,74]
(0.1; 0.3) [27]

>0.2 [1]
0.01–0.1–0.25

Horizontal 2 hydraulic
conductivity
KEK (m·s−1)

(10−7; 10−4) [41]
10−5 [39]

(5 × 10−5; 10−3) [75]
(2 × 10−4; 2 × 10−3) [76]

10−3 [77]
>1000 * KTZ-SZ [78]

10−5–10−2–10−1

Transmission and
saturated zones

(TZ–SZ)

Thickness
ThkTZ (m)

depending on the field site,
usually tens of meters,

<20; <50 [77]
up to 700 [32]

30–80–130

Porosity
φTZ-SZ (-)

(0.004; 0.01) [1]
0.005 [79]

(0.01; 0.02) [80]
(0.024; 0.3) [81]

0.005–0.01–0.025

Horizontal 2 hydraulic
conductivity

KTZ-SZ (m·s−1)

(10−10; 7 × 10−5) [81]
(10−7 [46]; 10−6 [1,47]) [75]
(5 × 10−7; 5 × 10−6 [39]) [9]
(10−6 [1,47]; 10−4 [79]) [80]

(10−5; 103) [17]

10−7–10−5–10−3

Conduit (C)

Diameter
D (m)

(0.08; 15) [64]
(2; 10) [60]

Flow Capacity
AC * KC
(m3
·s−1)

10−2–10−1–101

Section
AC (m2) (<1; >100) [82]

Hydraulic conductivity
KC (m·s−1)

(6 × 10−5; 4 × 10−1) [81]
(10−1; 10) [17,75]

(3; 10) [80]
10 [9,47]

Van Genuchten Model

Coefficient
α (m−1)

(3.28 × 10−3; 6.23 × 10−1) [44]
3.65 × 10−2 [47,49]

10−2 [17,46]
3.65 × 10−2

Empirical parameter
n (-)

(0.01; 3) [44]
1.83 [47,49]

2 [17,46]
1.83

Residual water content θr (-)
or Residual water saturation Sr (-)

θr = Sr = 0 [46]
θr ∈(0.01; 0.05) [44]

Sr = 0.05 [47]
θr = 0.171 [17]

Sr = 0.05

1 Ranges of values from the literature are shown in parentheses. 2 When anisotropy is considered, values concordant
to the strata are presented.

2.3. Simulations and Evaluation Criteria

For all the parameters sets, a single recharge event is simulated. The recharge boundary condition
is a uniform flux (i.e., without a focused recharge point on discrete features) applied on the top of the
model. Initials conditions result from a steady simulation with a recharge equal to 0.5 mm/day. A single
recharge event is added to this steady recharge at the beginning of the transient simulation, uniformly
providing 100 mm in two days, represented by an isosceles triangle reaching a peak of 100 mm/day
in one day. After numerous tests, this rather high event appeared to be the best compromise to
illustrate the results of this study. Note that such intense rainfall events are commonly observed in the
Mediterranean climate [83,84]. The simulation results reflect the hydrodynamic behaviour subsequent
to this single recharge event.

The hydrograph resulting from a single precipitation event consists of a rising limb, a flood peak
and a falling limb (Figure 2). In some cases, several peaks were seen to appear due to highly contrasted
flows in the medium. Numerous parameters allow the description (e.g., peak flow value and time,
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flow duration, recession coefficient and form factors as N-order moments) or analysis (e.g., memory
effect, cut-off frequency) of the shape of this response. Thus, time-continuous approaches as a derivative
of the discharge help us to deepen this analysis [8]. Figure 2 illustrates some of these parameters on a
theoretical hydrograph.

Figure 2. Theoretical hydrograph resulting from a single precipitation event.

In addition, skewness (third-order standardized moment) and kurtosis (fourth-order standardized
moment) may help us to characterize the shape of the hydrographs. For a discrete discharge time
series, the n-order standardized moment is calculated as follows:

x =
1
m

Σm
t=1

(
Qt − µ

σ

)n

, (5)

where Q is the discharge, m is the number of time steps, µ is the mean and σ is the standard deviation
of the discharge time series.

Here, we evaluated the model’s response regarding the following hydrograph characteristics
(Figure 2):

• Peak flow (maximum discharge value); in some cases, several local extrema are identified;
• Time after the event until peak flow;
• Discharge duration;
• Third order moment (skewness), which describes the shape of distribution;
• Fourth order moment (kurtosis), which is a flattening coefficient.

All moments and statistics are calculated from the beginning of the recharge event to t99, the time
necessary to drain 99% of recharge event water to the spring. Several tests have concluded that water
drained after t99 does not affect the results.

As they have been studied widely and for a long time, some karst systems have become usual
examples to illustrate the diversity of karst systems and their responses. In the literature, Torcal,
Aliou, Baget, Fontestorbes and Fontaine de Vaucluse systems [1] provide hydrograph characteristics
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that are used as references to assess the realism of the numerical experiments presented in this
paper. In addition to other parameters calculated by Marsaud [85], skewness and kurtosis, have been
calculated for selected unit hydrographs to evaluate the parameter ranges for each system (Figure 3).
Unsurprisingly, skewness values are positive because the discharge distribution is shifted towards
the left. Skewness values range between 0.3 and 1.8. Kurtosis data extend from 2 to 5, reflecting
the spread of the hydrograph response. Detailed information about Torcal in Spain [16,86], Aliou,
Baget, and Fontestorbes in the French Pyrenees [15,87–90] and Fontaine de Vaucluse in southeastern
France [36,91–94] is available in the literature.

Figure 3. Moments calculated for several karst systems and the numerical simulations.

3. Results and Discussion

3.1. Overview of Simulation Results and Hydrograph Typology

Our simulations provide hydrographs of various shapes with one or two peaks that are more or
less embedded. Hydrographs with two distinct peaks highlight a bimodal transit time distribution—i.e.,
a clear, early and balanced separation of recharge between quick and diffuse flows—likely between the
conduits and matrix. In the other cases, either one kind of flow is preponderant or the heterogeneity
drives the flows through various pathways, spreading the distribution of transit times. Building on
simulation results and those from the literature, we define a classification with five different hydrograph
shapes (Figure 4) to facilitate the analysis of results. Type 1 (Figure 4a) corresponds to preponderant
diffuse circulation in the continuum, whereas Type 5 (Figure 4e) corresponds to water circulating
predominantly in the karst network. Both have only one discharge peak. When the matrix flow
competes with conduit flow, three intermediate types can be distinguished: type 2, with one peak
preceded by an inflection (Figure 4b); the bimodal type 3, with two discharge peaks (Figure 4c);
and type 4, with one peak followed by an inflection (Figure 4d). Distinguishing the hydrograph types
requires the identification of possibly small inflections. This might be difficult without the support of
information provided by the first and second derivatives of discharge as a function of time [8].
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Figure 4. Hydrograph typology established on the basis of the simulation results and the literature.

Regarding representative karst systems from the literature [1,16,85,89], aquifers with a low degree
of karstification, such as the Torcal system (Spain), can be likened to the type 1 systems presented here.
Aquifers with a high degree of karstification, such as the Aliou system (France), correspond to type 5.
Between these two extreme end-members, the response of the Baget system corresponds to type 4,
and that of Fontestorbes is type 2 or type 3. For more detail, see the work presented by Marsaud [85]
which characterized the hydrographs of these systems.

Figures 5–8 show the simulation results for different varying parameters. Figure 5 focuses on
conduit flow capacity, while Figures 6–8 are dedicated to matrix parameters. Figures 5a and 6 highlight
the hydrograph diversity that a single model can produce by varying only one parameter at a time.
The scatter plots of Figures 5–8 present the selected hydrograph characteristics as functions of the
different varying parameters. All plots (hydrographs and related characteristics) are coloured according
to the hydrograph typology: red for type 1, orange for type 2, green for type 3 and purple for type 5.
There is no occurrence of a type 4 hydrograph in the paper.

Note that the reference simulation is visible on all the plots and results in a Type 2 hydrograph
(Figure 6). For comparison with other simulation results, 99% of the single recharge event drains
within 2160 days, with a peak discharge equal to 745 L·s−1 at the 68th day. The values of the quantities
obtained in the reference model should not be considered in absolute terms but only by comparison
with the simulations carried out for other parameter sets. Effectively, these values depend both on
the structure of the hypothetical aquifer constructed for the simulation and on the values retained to
quantify all the parameters of the model. The long duration of draining observed in the simulation can
be also related to the flow processes in the unsaturated matrix under variably saturated conditions.
Indeed, matrix flows last longer in variably saturated conditions. As drainage occurs, saturation
and hydraulic conductivity decrease, slowing the flow accordingly. Moreover, conduits draining the
surrounding medium may dry it locally and create less conductive zones around them. This thereby
limits the area of influence of conduits in the unsaturated zone. In the hypothetical aquifer matrix,
the distance to the nearest conduit is highly variable, with some areas being very distant from the
karst network, notably in each corner of the model (Figure 1c), which reinforces such behaviours.
Recharge that is not drained towards the karst network flows vertically through the transmission zone,
which acts as a buffer zone spreading the temporal distribution of the recharge event. For instance, in a
model representing only the vicinity of a vertical conduit, with the same vertical organization of the
medium and comparable properties, the two-day recharge event at the top of the model spans several
dozens of days at the bottom of the transmission zone [25]. This result highlights the importance of the
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karst network structure and the distribution of distances from matrix to the nearest conduits in the
model response.

Figure 5. Hydrograph characteristics for various conduit properties. Plots are coloured according to
the hydrograph typology: orange for type 2 and green for type 3.

As in the reference simulation, most hydrographs are type 2: discharge increases rapidly to an
inflection point, after which the increase is smaller than in the first phase and spreads out over time.
The first inflection reflects a relatively small fast-flow component that adds to a broad distribution of
transit times and pathways of diffuse flows, which is to a certain extent related to the structure of the
hypothetical aquifer.

Type 3 hydrographs have two distinguishable peaks: the first early peak is representative of
more significant fast flows than for type 2 hydrographs, while the secondary peak indicates a narrow
distribution of transit times corresponding to diffuse flows. Type 3 occurs for instances of a high flow
capacity in the conduits (Figure 5), low porosity in the epikarst (Figures 6a and 7) or high porosity in the
transmission zone (Figure 8). The first two configurations concentrate flow towards nearby conduits
and thus limit pathway spreading and transit times [25]. A high porosity in the transmission zone
limits its saturation by recharge events. Therefore, the transmission zone is relatively less conductive,
which also promotes flow concentration towards conduits in the upper zone.

Type 1 hydrographs occur when a highly effective conductivity of the transmission zone is
favoured; i.e., for instances with high conductivity (Figure 6c) but also low porosity (Figure 8) or low
thickness in this zone (Figure 6b). Conversely, type 5 hydrographs occur only for very low values of
hydraulic conductivity in transmission and saturated zones (Figure 6c).

Compared to the simulation results, actual systems produce more complex hydrographs that
reflect the complexity of the flow network architecture of the different media and the variability of the
recharge conditions. Moreover, varying only one parameter at a time limits the range of responses
simulated, as exemplified by the majority of hydrographs being of the same type to that of the reference
simulation. However, these results highlight the importance of slope variations in hydrographs,
linked with the recharge occurrence and repartition between matrix or conduit-dominated flows [8].
The set of simulations screening different parameters contributes to the identification of the flow
processes and subsystem characteristics that cause either behaviour.
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Figure 6. Hydrograph results for various parameter sets. (a) Hydrographs for varied porosities in the
epikarst φEK; (b) hydrographs for varied thicknesses of the transmission zone ThkTZ; (c) hydrographs
for varied hydraulic conductivities of the transmission and saturated zones KTZ-SZ. Plots are coloured
according to the hydrograph typology: red for type 1, orange for type 2, green for type 3 and purple for
type 5.

3.1.1. The Role of Epikarst Parameters

The Figure 7 shows the hydrograph characteristics obtained after having tested different values
for several parameters of the epikarst subsystem. This confirms previous results: decreasing storage
capacity by decreasing porosity or thickness or, to a lesser extent, by increasing hydraulic conductivity
heightens the flow concentration towards conduits and the fast flow component [25]. Above all, it shows
the consequences of local processes on hydrographs. Without an epikarst—i.e., for an epikarst thickness
of 0—the early peak is the lowest. When the epikarst is explicitly present, low porosity or low thickness
promotes drainage towards conduits, low storage and a short transit time with narrow distribution.
These behaviours produce more asymmetric hydrographs (i.e., with higher skewness). The hydraulic
conductivity of the epikarst primarily affects the overall discharge duration with a threshold for higher
values. The higher the conductivity, the larger the quantity of water drained towards conduits and
the higher the discharge rate of the early peak. Increasing the hydraulic conductivity also tends to
reduce the contrast between the matrix and conduit properties, which produces more spread and
less asymmetric hydrographs. Thus, kurtosis and skewness decrease as a function of the epikarst’s
hydraulic conductivity.
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The parameter variation ranges cover the usual values from the literature, but they are also
relatively small and of the same order of magnitude as the typical measurement uncertainties. However,
hydrograph characteristics do not vary linearly with the epikarst parameters (Figure 7). For a thickness
equal to 15 m, the peak flow time reaches a maximum while skewness and kurtosis reach minima.
Several thresholds can be observed; for instance, skewness and kurtosis reach a threshold value for
the highest values of the three parameters. The lowest values, equal to 1 and 2.8 for skewness and
kurtosis, respectively, are reached for porosity above 0.10, hydraulic conductivity above 10−2 m·s−1 and
thickness equal to 10 m. Finally, in this configuration, the epikarst parameters that have the greatest
individual effect on the hydrograph are porosity and thickness for values ranging between [0.01; 0.10]
and [0; 10 m], respectively. However, varying several parameters at a time should produce combined
effects that could eventually be more important.

Figure 7. Hydrograph characteristics for various values of several properties in epikarst. Plots are
coloured according to the hydrograph typology: orange for type 2 and green for type 3.

3.1.2. The Role of Transmission and Saturated Zones Parameters

Figure 8 plots the characteristics of hydrographs after having evaluated different values for several
parameters of the transmission zone and the saturated zone. As with the epikarst, the ranges of the
variation of parameters cover the usual values from the literature. Despite these relatively small ranges,
the responses are very different for the resulting hydrographs from type 1 to type 5 (e.g., Figure 6c).
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As water flows preferentially through the most permeable zones, the elevated hydraulic
conductivity in the transmission zone promotes vertical drainage through the continuum and limits
drainage towards conduits in the epikarst [25]. This twofold effect induces a major variation of
hydrograph features as a function of the hydraulic conductivity of transmission and saturated zones.
Varying the conductivity over three orders of magnitude is enough to obtain the extreme types of
hydrographs. Indeed, among the tested sets of parameters, type 5 occurs only with a very low
conductivity (below 10−6 m·s−1) of the transmission and saturated zones.

Figure 8. Hydrograph characteristics for various values of several properties in the transmission zone
and the saturated zone. Plots are coloured according to the hydrograph typology: red for type 1,
orange for type 2, green for type 3 and purple for type 5.

Porosity and thickness are key factors in storage capacity. Increasing the capacity should result in
higher inertia, lower peaks and a longer discharge duration. These relationships are verified and almost
linear for porosity. The thickness also affects transit times and therefore flow repartition. The plots of
hydrographs characteristics as a function of the thickness of the transmission zone show local extrema
and thresholds with changes of hydrograph type. Indeed, for small thicknesses of the transmission
zone (here, below 50 m), the hydrograph characteristics are almost constant. The hydrographs are
type 1 with only one visible peak and a long tail highlighting a broad distribution of transit times
and pathways of diffuse flows. Increasing the thickness of the transmission zone makes the conduit
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competitive as the highway for long journeys. The thickness affects the water distribution between
conduits, and the matrix as identified with conduit scale models. Consequently, for higher thicknesses
(here above 50 m), hydrographs are type 2 with an early flow distinct from the variably delayed
distribution of the diffuse flows. The time of the diffuse flow peak increases while the discharge
duration decreases towards a threshold value with an increased thickness of the transmission zone
(Figures 6b and 8). Early flow is distinguishable from a porosity or thickness greater than 0.01 or 65 m,
respectively. However, these parameters have little effect on the early flow characteristics.

Finally, the resulting hydrographs reflect the two functions of the transmission zone; i.e., a possible
horizontal barrier at the interface with the epikarst and a vertical pathway competing with the vertical
conduit [25].

4. Evaluation of Models

The numerical experiments presented in this paper aim to assess the interest and quantify the
impact of explicit representations of both karst conduits and unsaturated zones in karst reservoir
modelling. We built a single hypothetical model whose geometry and parameters were chosen
with the condition of being consistent with the literature. The simulations performed cover a wide
range of behaviours, which allows us to highlight the major contributions and limitations of this
modelling approach.

4.1. Model Assumptions

Hybrid models are able to reproduce many characteristics of the karst aquifer structure. However,
as with any modelling approaches, hybrid flow modelling relies on assumptions and simplifications,
which provide a compromise between realism, the ability to provide input data and computational
tractability. For example, the conductive discrete features represented in hybrid models are only a
small fraction of the actual karst network. Indeed, only the most important drains or an upscaled
representation of the preferential flow network can be considered in models because of limitations in
both knowledge of the system and numerical capabilities.

In this study, we considered homogeneous recharge and homogeneous hydrodynamic properties
for both media, which both minimize preferential pathways and flow hierarchy. Most authors choose
an a priori repartition of recharge between the matrix and conduit network to favour concentrated
flow [9,14]. Here, the flow concentration towards the conduits is enabled by the epikarst subsystem [25].
Contrasting behaviours are obtained by varying the epikarst flow properties. The effects of the
topography and dip are not considered here, although they may play a major role at the reservoir scale
in recharge distribution and the concentration of flow towards conduits.

Turbulent flow is characteristic of karst conduits and can be accounted for by using the
Manning–Stickler equation [95,96]. However, the importance of taking turbulence into account
varies with the size and roughness of the simulated conduits; thereby, applying laminar flow
equations is sufficient for saturated, mature karst systems with well-developed conduit networks [65].
In unsaturated flow conditions, recent work successfully coupled variably saturated flow modelling in
a matrix with turbulent flow modelling in the conduit [61]; the scale investigated was nevertheless
smaller than in the present case. Here, preliminary tests revealed the difficulty of coupling the Richards
equation in the equivalent porous medium and the Manning–Strickler equation in the discrete features.
We therefore used Darcy law to simulate conduit flow. Conduits are assumed to be fully conductive
whatever their saturation state, which seems to be consistent with the expected properties of the mainly
vertical karst conduits in the vadose zone, which never reach saturation.

Only one formula with only one set of parameters was tested regarding the constitutive relationship
between the saturation and the relative permeability of the matrix. The thorough assessment of this
latter relation would deserve dedicated studies, including datasets of measurements on rock samples,
relationship fitting with data and upscaling rules considering small-scale heterogeneity as fractures
or vugs. Likewise, assessing the value of the conduit flow capacity is difficult. It is bounded by the
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concerns of (i) establishing a conductivity contrast between the matrix and conduits, (ii) ensuring
sufficient drainage of the recharge for the lower bound, and (iii) avoiding the creation of an overly
conductive conduit that would be efficiently replaced by fixed-head boundary conditions for the higher
bound. Above all, this parameter must be consistent with the object or the processes it represents.

4.2. Scaling Issues

Providing realistic values for model parameters is a concern when dealing with scaling issues.
Upscaling, which should be a key issue in such systems, is surprisingly often neglected when property
values are proposed. Laboratory measurements are generally performed for rock samples whose
volume is smaller than the representative elementary volume (REV), if it exists, and whose selection
criterion is mainly based on the homogeneity of the sample, leading to the avoidance of specific
carbonate features such as fractures, vugs or fossils [97]. At the larger scale, the equivalent permeability
value for a given larger volume strongly depends on the geometric organization of the permeability
field within this volume, which often lacks characterization [98]. Moreover, considering hybrid models
requires thresholds in hybrid implicit–explicit representations of fractures and karst features to be
partitioned [62]: smaller drains should be lumped with the rock matrix in the upscaling process to
limit the number of discrete features explicitly represented in the model. Finally, dealing with variably
saturated flow modelling may raise the most topical scaling issues, with both theoretical [99] and
methodological [100] unanswered questions.

In this work, parameter values were chosen in a usually admitted range based on the literature
review, assuming that the values in the literature—which are generally independent of the support
and not actually measured—are effectively representative of the volumes to be quantified for the
model grids.

4.3. Evaluation of Models Outputs

4.3.1. The Need of Hydrographs Descriptors

The effect of varying parameters has been quantified on the simulated hydrographs. In order to
assess the differences between the hydrographs resulting from the various simulations, we defined
some characteristics of interest: the peak flow, time after the event until peak flow, discharge duration,
skewness and kurtosis. Moreover, we proposed a hydrograph classification based on inflections points
and—more generally—slope changes.

Only four of the five proposed types of hydrographs were obtained with the model. As type 3
and type 5 occur, the absence of the intermediate type 4, which includes an early peak followed by an
inflection point and corresponds to a common observed shape of hydrographs, is probably related to
the need for a delicate parametrization to produce it, but may also highlight some flaws in the model
setup. For instance, a matrix area distant from the karst network would have poor drainage due to
the use of uniform parameters, with the consequence of giving an important weight to the diffuse
flow component and the possible over-sensitivity of the related parameters, which should therefore be
finely controlled to produce a type 4 inflection point. This simplification also contributes to explaining
the high number of type 2 hydrographs including a wide distribution of the diffuse flow component.
These considerations highlight the impact on the hydrograph shapes of large-scale heterogeneity in the
karst conduit distribution.

4.3.2. Matching Model Outputs with Field Measurements

Even if the modelled aquifer is hypothetical, the resulting hydrograph characteristics seem to
be realistic in terms of some aspects for an aquifer with a catchment area of 100 km2 and a uniform
thickness of 250 m: the peak flow value varies between 597 and 1063 L·s−1, the peak flow time varies
between 4 and 204 days and the discharge duration varies between 912 and 3464 days. We use skewness
and kurtosis descriptors for the shape of the hydrographs. Figure 3 shows kurtosis as a function of
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skewness for all the simulations and for hydrographs from the well-known karst systems described in
Section 4.3.2. The values from simulations are consistent with the values from field sites. They cover
the same ranges, and the reference simulation is almost centred. The long discharge durations could
possibly be questioned, but these can probably be related to the huge uncertainty related to the
upscaling issue. This is likely accentuated here by the model structure, with a poorly karstified area far
from the represented karst network. These results nevertheless highlight the important delaying effect
of the unsaturated zone.

5. Conclusions

This work focuses on the consideration of several karst zones and explicit conduits in the reservoir
modelling of a karst aquifer at a large scale. Together with the saturated zone, the models include
the unsaturated zone, in which a distinction is made between the epikarst and the transmission zone.
More generally, the paper addresses the issue of performing realistic simulations of flows in complex
media such as a karst. Based on numerous flow simulations on a hypothetical karst aquifer model,
we investigated the ability of hybrid models to simulate spring hydrographs that are usual observations
in karst studies. Moreover, we explored the relationships between model parameters and the relevant
hydrograph characteristics.

In addition to classical characteristics such as the maximum discharge value and corresponding
time, we have considered other key features, such as inflections, but also the overall hydrograph shapes
through parameters such as skewness and kurtosis or the proposed classification. All these features
are definitively useful for both the study of hydrographs and the analysis of flow simulation results.

At the reservoir scale, the hydrograph incorporates the hydrodynamics of the entire system
and therefore constitutes a primary output to assess or calibrate a model. Varying parameters affect
pathways distribution and transit times to various extents, which results in a large variety of hydrograph
shapes. The relationships between model parameters and hydrograph characteristics are not all linear:
some of them have local extrema (e.g., peak flow time vs thickness of epikarst) or threshold limits
(e.g., all characteristics vs thickness of the transmission zone). The numerous simulations help to assess
the sensitivity of hydrograph characteristics to the different parameters. For instance, the discharge
duration is more sensitive to the storage capacity (porosity and thickness) of the epikarst than to its
conductivity. More generally, the storage capacity appears to be at least as important a feature as
hydraulic conductivity in flow distribution. Therefore, this study should help researchers involved in
modelling to identify the key parameters to modify to reproduce observations from actual sites.

Finally, the hybrid models are able not only to reproduce flow processes at the interface between
the matrix and conduit [25] but also to simulate the overall response of complex karst aquifers. Several
avenues for improvement nevertheless arise, in particular with regard to the problems of flow physics
up-scaling in both unsaturated porous media and conduits.
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