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Abstract: The world has experienced large-scale urbanization in the past century, and this trend is
ongoing. Urbanization not only causes land use/cover (LUC) changes but also changes the flood
responses of watersheds. Lumped conceptual hydrological models cannot be effectively used for
flood forecasting in watersheds that lack long time series of hydrological data to calibrate model
parameters. Thus, physically based distributed hydrological models are used instead in these areas,
but considerable uncertainty is associated with model parameter derivation. To reduce model
parameter uncertainty in physically based distributed hydrological models for flood forecasting in
highly urbanized watersheds, a procedure is proposed to control parameter uncertainty. The core
concept of this procedure is to identify the key hydrological and flood processes in the highly urbanized
watersheds and the sensitive model parameters related to these processes. Then, the sensitive model
parameters are adjusted based on local runoff coefficients to reduce the parameter uncertainty.
This procedure includes these steps: collecting the latest LUC information or estimating this
information using satellite remote sensing images, analyzing LUC spatial patterns and identifying
dominant LUC types and their spatial structures, choosing and establishing a distributed hydrological
model as the forecasting tool, and determining the initial model parameters and identifying the key
hydrological processes and sensitive model parameters based on a parameter sensitivity analysis.
A highly urbanized watershed called Shahe Creek in the Pearl River Delta area was selected as a case
study. This study finds that the runoff production processes associated with both the ferric luvisol and
acric ferralsol soil types and the runoff routing process on urban land are key hydrological processes.
Additionally, the soil water content under saturated conditions, the soil water content under field
conditions and the roughness of urban land are sensitive parameters.

Keywords: flood forecasting; urbanization; distributed hydrological model; land use/cover; satellite
remote sensing

1. Introduction

In the past century, the world has observed large-scale urbanization, and the urban population
reached 50% of the total population in 2007 [1]. In recent decades, urbanization in developed countries
remains ongoing [2], but it is more rapid in developing countries. For example, China’s urban
population increased from 19.39% in 1980 to 50% in 2011 [3], and is projected to reach 65% in 2050 [4].
Urbanization in China’s south and east coast region is very rapid, and the Pearl River Delta area
on the south coast has experienced the most rapid urbanization [5]. This rapid urbanization has
resulted in the formation of several international metropolitan areas in this region in just three decades.
These metropolises include Guangzhou, Shenzhen, Dongguan, Foshan, Zhongshan and Zhuhai.

Water 2019, 11, 1641; doi:10.3390/w11081641 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://dx.doi.org/10.3390/w11081641
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/11/8/1641?type=check_update&version=2


Water 2019, 11, 1641 2 of 22

The Pearl River Delta area is a waterway-rich area with numerous small watersheds that drain
to city centers. This area is located in a monsoon zone with frequent severe storms, thus, flooding
is very common and is a threat to urban communities. Notably, floods have caused serious damage
and resulted in numerous losses in previous decades. During the urbanization process, the land
use/cover (LUC) in these watersheds has changed tremendously. The most common LUC change is the
conversion of vegetated areas, such as grassland, farmland and forestry land, into urban land uses,
such as roads, factories, residential areas and commercial complexes. Therefore, most of the vegetation
has disappeared. Currently, the areal percentage of urban land in a watershed is over 50% in most
watersheds [6,7]. Urbanized land comprises impervious surfaces with low infiltration rates and high
runoff routing velocities. Studies have shown that urbanization increases surface runoff and peak
flow [8–12] and increases flooding and flood damage. In the Pearl River Delta area, this urbanization
effect is obvious, and more flood damage and losses have been observed in recent decades [13,14]
(e.g., increased economic damages, transportation jams).

Flood forecasting is a cost-effective flood mitigation measure. However, forecasting floods in the
highly urbanized watersheds in the Pearl River Delta area is difficult and has not been attempted.
Generally, watershed flood forecasts are created using watershed hydrological models. The most
widely used watershed hydrological models are lumped models [15,16], which analyze the watershed
as a whole. Such models include the Stanford model [17], the Xinanjiang model [18] and the ARNO
model [19], among others. Lumped models require long series of hydrological observation data to
calibrate the model parameters. No discharge observations are available in most of the watersheds in
the Pearl River Delta area; however, rain gauges have been installed in most of these watersheds in
recent years. Thus, precipitation data are available. Due to rapid urbanization and vegetation change,
flood responses have changed considerably, and the associated model parameters have also changed.
Therefore, even though discharge data may be available in some watersheds, the calibrated model
parameters only represent past scenarios, and a new model parameter is needed to reflect the LUC
changes—this is usually not easy. Thus, lumped hydrological models cannot be effectively used for
flood forecasting in watersheds in the Pearl River Delta area.

Physically based distributed hydrological models (PBDHMs) are relatively new watershed
hydrological models. PBDHMs divide a watershed into grid cells [20–22], and hydrological processes
are calculated at the cell scale. Thus, they have the potential to better simulate and predict
watershed hydrological processes [23]. Dozens of PBDHMs have been proposed, such as the System
Hydrologue Européen model (SHE) proposed by Abbott et al. [21,22], the flood forecasting system
model (WATERFLOOD) proposed by Kouwen [24], the terrain-based model (THALES) proposed
by Grayson et al. [25], the variable infiltration capacity model (VIC) proposed by Liang et al. [26],
the distributed hydrology-vegetation model (DHSVM) proposed by Wigmosta et al. [27], the raster-based
hydrologic model (CASC2D) proposed by Julien et al. [28], the water and energy transfer between
soil, plants and atmosphere model (WetSpa) proposed by Wang et al. [29], the geomorphology-based
hydrologic model (GBHM) proposed by Yang et al. [30], the water and energy transfer process (WEP)
model proposed by Jia et al. [31], the gridded, physics-based hydrologic model (Vflo) proposed by Vieux
and Vieux [32], the watershed environmental hydrology (WEHY) model proposed by Kavvas et al. [33,34]
and the Liuxihe model (LXH) proposed by Chen et al. [16], among others.

PBDHMs derive model parameters physically from watershed terrain properties, including
elevation, soil type and LUC. Therefore, model parameters do not need to be calibrated using observed
hydrological data, thus requiring less calibration efforts. Based on these advantages, PBDHMs can be
used to model watersheds in the Pearl River Delta area. The largest challenge associated with physically
deriving the model parameters of a PBDHM is the inherent uncertainty. Since PBDHMs derive model
parameters physically, model parameter uncertainty exists, and various measures are needed to
control this parameter uncertainty [35–38]. Some general methodologies and frameworks for assessing
uncertainties of hydrological modeling have been proposed already. For example, Apel et al. [39]
developed a stochastic flood risk model which can consider risk and uncertainty associated with the very
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components of the hydrological process and Moradkhani et al. [40] proposed a sequential hydrologic
data assimilation approach using particle filters for estimating model parameters, state variables and
assessing related uncertainty. Liu et al. [41] presented an integrated hierarchical framework for reducing
uncertainty in hydrologic predictions. Hall et al. [42] proposed a dynamic-probabilistic method for
cumulated flood risk assessment of a complete river reach, and Beven [43] discussed the uncertainty
sources and suggested the use of a condition tree to assess it. While these studies are more general on
methodologies, several methods have been proposed for controlling model parameter uncertainty by
optimizing them, such as the scalar method [44,45] in the Vflo model, the Shuffle Complex Evolution
(SCE) algorithm in MIKE SHE (European hydrological system) [35], the multi-objective genetic
algorithm in the WetSpa model [46], the Shuffle Complex Evolution–University of California (SCE-UA)
algorithm [47] and the Particle Swarm Optimization (PSO) algorithm [38] in the Liuxihe model.
Previous studies have shown that parameter optimization is recommended if reliable observation data
are available, even if the data are limited [38]. However, this process is difficult in the Pearl River Delta
area because no river discharge observations are available. Therefore, although a PBDHM could be
used for flood forecasting in the highly urbanized watersheds of the Pearl River Delta area, there is
currently no way to effectively control parameter uncertainty.

Based on the above analysis, further studies are needed for exploring effective ways to control
parameter uncertainty of a PBDHM for flood forecasting in the highly urbanized watersheds of the
Pearl River Delta area. In this study, the explored science question is which hydrological processes
are key in modeling highly urbanized watershed floods in the Pearl River Delta area. If the key flood
hydrological processes are known, then efforts could be put on the uncertainty controlling of the
parameters related to these key flood hydrological processes. We proposed a procedure to identify
the key flood hydrological processes in the highly urbanized watersheds by parameter sensitivity
analysis, and determined the most sensitive model parameters related to these key processes. Next, we
proposed some measures for controlling the parameter uncertainty. A highly urbanized watershed
called Shahe Creek in Guangzhou city, the capital city of the Pearl River Delta area, was selected as
a case study. The results indicate that the proposed method is useful in controlling the parameter
uncertainty of the Liuxihe model in flood forecasting for highly urbanized watersheds in the Pearl
River Delta area.

2. Methodology

2.1. General Methodology

In this paper, a highly urbanized watershed is a watershed in which urbanized land is the
dominant type of land cover (i.e., the areal percentage of urbanized land cover in the watershed
drainage area is larger than the percentages of all other land cover types and generally higher than
30%). In the Pearl River Delta area, most of the watersheds that drain to the city are highly urbanized
watersheds with areal percentages of urban land greater than 30% [48–50].

In this study, we propose that only a few hydrological processes are important in these highly
urbanized watersheds, and the key ones are related to the dominant LUCs. Additionally, the key
hydrological processes are different from the dominant ones in this study. Dominant hydrological
processes are those that control the flood formation in the entire basin, such as rainfall-runoff production
and runoff routing. To accurately simulate the floods in each watershed, these hydrological processes
should be calculated properly. Key hydrological processes in this paper are also dominant hydrological
processes, but they are difficult to accurately calculate, particularly when determining the model
parameters related to them. If a dominant hydrological process could be accurately calculated using
current methods or data, then it is not a key hydrological process. Numerous model parameters
are needed to simulate flood at the watershed scale using a distributed hydrological model, and the
uncertainty associated with these model parameters can be high if the parameters are not optimized.
Therefore, by focusing on only a few key hydrological processes in these highly urbanized watersheds,
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more attention can be given to accurately determining the model parameters related to these key
hydrological processes in a manner that reduces the associated uncertainty.

The core concept of the approach proposed in this article is to identify the key hydrological
processes and the sensitive model parameters related to these key hydrological processes. One key
hydrological process should be related to urbanized land, as it is the dominant LUC. In the Pearl
River Delta area, LUC is generally categorized into six types: urbanized land, farmland, forestry land,
grassland, bare land and water bodies. In most cases, bare land and water bodies are not dominant
LUCs; thus, no more than four dominant LUCs exist. After identifying the key hydrological processes,
the key model parameters (i.e., the sensitive model parameters), should be identified and carefully
determined to reduce the associated uncertainty. In this paper, a parameter sensitivity analysis is used
to identify the sensitive parameters. The following procedure was used:

1. Collect LUC information in watershed by satellite or ground-based method. It is highly
recommended that the latest LUC be estimated using the latest satellite remote sensing imagery,
and numerous automated algorithms have been developed for LUC data extraction. The support
vector machine (SVM) algorithm is used in this study; details of the algorithm are provided in
Section 2.3.

2. Analyze the LUC spatial pattern in the watershed and calculate the areal percentage of each
LUC type.

3. Identify the dominant LUC types and their spatial structures, and propose the key hydrological
processes based on the dominant LUC types.

4. Choose one distributed hydrological model as the forecasting tool. Any physically based
distributed hydrological model can be used. In this study, the Liuxihe model is employed
and will be discussed in Section 2.2. The initial model parameters are then derived physically
from the terrain properties.

5. A parameter sensitivity analysis is performed for each key hydrological process. Then, the key
model parameters of each key hydrological process are identified. The parameter sensitivity
analysis used in this study is the one-factor-at-a-time (OAT) method, which will be introduced in
detail in Section 2.4.

6. After identifying the key model parameters, methods to control model parameter uncertainty
may be used to optimize the initial model parameters. Only key model parameter values will be
adjusted, and other parameters will maintain their initial values.

2.2. Liuxihe Model and Hydrological Processes

The distributed hydrological model recommended in this paper is the Liuxihe model. The Liuxihe
model is a physically based, distributed watershed hydrological model that was initially proposed for
watershed flood forecasting [16,38,51]. In the Liuxihe model, the evaporation process is not a key flood
generation process, and the parameters related to this process are less sensitive parameters, including
the potential evaporation capacity and evaporation coefficient [16]. In this study, this conclusion is
adopted, and the sensitivities of these parameters are not studied.

Runoff production is regarded as a key hydrological process in modeling flood processes, and the
parameters related to this process are soil-based parameters, such as soil hydraulic conductivity, soil
water content under saturated conditions, soil water content under field conditions, soil water content
under wilting conditions, soil layer thickness and soil property coefficients. The soil water content
under wilting conditions and soil property coefficients are less sensitive parameters in flood process
modeling [16].

Runoff production is mainly related to soil type, and there are generally multiple soil types in a
watershed. Therefore, the runoff production process is further divided into soil type-related runoff

production processes in this study. The runoff production processes related to the dominant soil types
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may be dominant hydrological processes, as the soil type parameters should not be determined easily.
Thus, the dominant runoff production processes may be key hydrological processes.

Runoff routing is regarded as another key hydrological process in flood process modeling.
Parameters related to this process are vegetation-based parameters, including the LUC roughness and
river channel roughness. Since river channels do not change much and can be evaluated relatively
easily, river channel runoff routing is not considered a key hydrological process, although it is a
dominant hydrological process in runoff routing. Thus, in this article, only hill slope runoff routing
is regarded as a key hydrological process. As there are generally several vegetation types on the
slopes within a watershed, hill slope runoff routing processes related to the dominant LUCs are key
hydrological processes.

2.3. SVM Algorithm for LUC Estimation

The traditional method of mapping LUC is based on field investigation, but mapping at the
watershed scale is time consuming, costly and not feasible for flood forecasting. However, estimating
LUC with satellite remote sensing imagery provides a cost-effective method of mapping LUC.
LUC estimation with satellite remote sensing images can be performed with automatic classification
algorithms, which can be categorized as supervised classification algorithms, unsupervised classification
algorithms and semi-supervised classification algorithms. Supervised classification algorithms can
be further divided into statistical algorithms [52], decision tree algorithms [53], artificial neural
networks [54] and support vector machine (SVM) algorithms [55–57]. Unsupervised classification
algorithms can be further divided into K-means algorithms [58], fuzzy c-means algorithms [59] and
Affinity Propagation (AP) clustering algorithms [60]. Semi-supervised classification methods can
improve an algorithm’s performance by utilizing non-tagged samples [61–64]. SVM is a machine
learning method proposed by Vapnik [65]. In this method, training data are mapped to a higher
dimension to find an optimal hyperplane that separates the tuples tagged in the same class from others.
SVMs are highly robust, not affected by the addition or removal of samples from the support vector,
highly accurate for modeling complex nonlinear decision boundaries and able to avoid overfitting.
Additionally, SVMs have been widely used for LUC classification [57]. Past studies have shown that
SVMs provide better classification accuracy [66,67]. In this study, an SVM algorithm is employed to
estimate the LUC in the studied watershed.

2.4. OAT Method for Parameter Sensitivity Analysis

In this study, the one-factor-at-a-time (OAT) approach is used in the parameter sensitivity analysis.
Based on the OAT method, parameter sensitivity analysis is performed for one parameter at a time.
If the analysis is performed to assess the relative importance of each input factor, then this method
is suitable [68]. If there are m parameters, where i = 1, 2, . . . , m; and for every parameter, it takes n
values, where j = 1, 2, . . . , n; then the sensitivity factor of the ith parameter is defined as follows:

SFi =
Sim j+1,i − Sim j,i

p j+1,i − p j,i
(1)

where SFi is the sensitivity factor of the ith parameter with no units, pj,i is the perturbation value of
the ith parameter with the same units as the parameter, and Simj,i is the simulation index of the ith
parameter with parameter value pj,i, and the units are dependent on the simulation index. Generally,
p includes multiple values within its feasible range. The parameters with high SF values are defined as
highly sensitive parameters (i.e., slight changes in these parameters will produce significant changes in
model simulation results). Thus, these parameter values must be carefully determined.
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In this study, two simulation indices are recommended for the sensitivity analysis. One is the
peak discharge (i.e., the maximum river channel flow at the watershed outlet). The other is the runoff

coefficient of a flood event, which can be defined as follows:

Ek = 3.6
∑T

t=1
Simt,k

/
A
∑T

t=1
Pt,k (2)

where Ek is the runoff coefficient of the kth flood event simulated based on the parameters in the
sensitivity analysis (no units), Pt,k is the watershed-averaged precipitation at stage t of flood event k
(the units of k and t are mm and hours, respectively) and there are T stages in flood event k. Simt,k is
the simulated river channel flow at the watershed outlet during stage t of flood event k (units of m3/s).
A is the drainage area of the entire watershed (units of km2), and 3.6 is a unit conversion coefficient.

3. Study Watershed and Data

3.1. Study Watershed

Shahe Creek in Guangzhou city was selected as the study watershed. Shahe Creek originates in
the northern part of Guangzhou city and drains into the city center where it merges with the Pearl
River. Shahe Creek has a drainage area of 32.9 km2 and a length of 15 km. It is the largest watershed
that drains to the city center directly and is the most direct flood threat to Guangzhou city. Figure 1
shows a map of Shahe Creek.
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Figure 1. Map of the Shahe Creek watershed.

Shahe Creek is located in a tropical area with an average annual precipitation of 1725 mm.
Flooding is mainly induced by storms in the monsoon season, and floods are very frequent. In past
decades, Shahe Creek has experienced rapid urbanization, which has created a high percentage of
urbanized land. It is a typical watershed in the Pearl River Delta area that experiences considerable
flooding (e.g., the flood events in June 2017, May 2016 and June 2015).

3.2. Hydrological Data

Three rain gauges have been installed in the watershed in recent years, and their locations are
shown in Figure 1. In this study, precipitation data were collected at hourly intervals during three
storm events that occurred in 2015 and 2016, and the Thiessen polygons method was employed for
interpolation. Table 1 shows the basic storm information; no river discharge data are available for
these events.
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Table 1. Storm event information.

Storm Event
No.

Start Time
(yyyymmddhh)

End Time
(yyyymmddhh)

Duration
(h)

Total Rainfall
(mm) Storm Scale

20150111 2015011118 2015011317 47 42.6 Light
20150516 2015051607 2015051703 20 47.23 Medium
20160128 2016012813 2016012914 25 83.96 Heavy

3.3. Estimating LUC with Satellite Remote Sensing Imagery

In this study, the Landsat 8 satellite [69,70] remote sensing imagery taken on 3 January, 2015
was downloaded from the U.S. Geological Survey (USGS) website to estimate the LUC in the Shahe
Creek watershed. The high-quality imagery covers all of Shahe Creek. The downloaded imagery was
preprocessed, including noise filtering, radiation correction, atmospheric correction, georeferencing
and enhancement. Six LUC types, including urban land (impervious surfaces), water bodies, forestry
land, farmland, grassland and bare land were used in the classification. The LUC of Shahe Creek
in 2015 was first estimated by employing an SVM algorithm and then post-processed via manual
interpretation to increase the classification accuracy. Figure 2a shows the original imagery of Shahe
Creek in 2015, while Figure 2b shows the estimated LUC after post-processing, which is used in the
following analyses.
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Figure 2. Landsat imagery and estimated land use/cover (LUC) of the Shahe Creek watershed in 2015.
(a) Preprocessed Landsat 8 imagery (taken on 3 January 2015); (b) estimated LUC result (estimated
with a support vector machine (SVM) and post-processed).

3.4. Dominant LUC Types

Based on the results in Figure 2, urban land dominates the LUC at 59.73%, (i.e., more than half of
the watershed has been converted to impervious surfaces). Thus, the watershed is highly urbanized.
The urban land in Shahe Creek is mainly located in the middle and downstream reaches, which are
completely urbanized. The second largest LUC is forestry land at 28.67%. The majority of forestry
land is located in the upper reach, which is a mountainous area. Farmland comprises 5.48% of the
watershed and is mainly used to grow vegetables for the inhabitants of Guangzhou city, as much of
this land is close to the city center. Additionally, grassland comprises 4.76% of the watershed, while
bare land and water bodies comprise 0.78% and 0.58%, respectively.
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4. Liuxihe Model and Initial Parameters

4.1. Watershed Terrain Property Data

Watershed terrain property data are required to establish a PBDHM and derive its parameters,
which include Digital Elevation Models (DEMs), soil maps, LUC maps, river channel shapes, cross
sections and sizes. In this study, a DEM was derived from a recent contour map at a spatial resolution
of 30 m, as shown in Figure 3a. The Shahe Creek watershed has an average elevation of 54.24 m, with a
maximum elevation of 370 m and minimum elevation of 3.90 m.
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The soil types in Shahe Creek were extracted from the Food and Agriculture Organizatio (FAO)
world soil map dataset, as shown in Figure 3b. There are six soil types in the watershed, including
water bodies, urban land, ferric luvisols, acric ferralsols, eutric arenosols and eutric cambisols, with
areal percentages of 0.158%, 12.592%, 60.918%, 17.443%, 0.060% and 8.829%, respectively. Note that the
urban land soil type is a virtual soil type proposed by the author, for which the LUC is urban land, but
the actual soil type could be any one. The FAO data are not the most recent data, and some urban land
has changed since the data were prepared. Therefore, in this study, the soil type map is updated using
the LUC estimation in this study (Figure 2), as shown in Figure 3c. After this update, only three soil
types were observed, including urban land, ferric luvisols and acric ferralsols, with areal percentages
of 59.73%, 31.21% and 9.06%, respectively.

4.2. Liuxihe Model Set-Up

The DEM produced in this study with a spatial resolution of 30 m was used to divide the studied
watershed into 34,919 grid cells, which were further divided into 700 river cells and 34,219 hill slope
cells. A three-order river network was derived using the D8 method [71,72] and Strahler river ordering
method [73] based on the DEM. The river network was further divided into 16 virtual sections based
on 8 virtual nodes. In the Liuxihe model, the virtual river cross section shape was assumed trapezoidal,
and the river size was estimated based on satellite remote sensing images. The structure of the Liuxihe
model for Shahe Creek is shown in Figure 4, and the estimated cross section size is given in Table 2.
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Table 2. Estimated cross section size and parameters.

ID Bottom
Width (m)

Side Slope
(degree)

Bottom Slope
(no unit)

Roughness
(s/mˆ(1/3))

11 5.0 30 0.00687 0.025
12 2.0 30 0.00024 0.025
13 2.0 30 0.00262 0.025
14 2.2 30 0.01112 0.025
15 2.5 30 0.00496 0.025
16 3.0 30 0.01213 0.025
17 3.0 30 0.00883 0.025
18 3.0 30 0.00333 0.025
21 9.0 30 0.00821 0.025
22 9.0 30 0.0010 0.025
23 9.35 30 0.0010 0.025
24 11.9 30 0.00187 0.025
25 15.9 30 0.001 0.025
26 16.7 30 0.00489 0.025
27 24.7 30 0.00205 0.025
28 16.0 30 0.00071 0.025

4.3. Determination of the Initial Model Parameters

In the Liuxihe model, flow direction and slope are two topography-based model parameters,
derived using the D8 method [71,72] based on the DEM. The results are shown in Figure 5.

The only climate-based parameter is the evaporation capacity, which is estimated as 5 mm/day
in each grid cell according to daily evaporation observations in this region. The vegetation-based
parameters include the evaporation coefficient and roughness. According to previous studies of
Liuxihe model parameterization and references [74–78], ranges of vegetation-based parameters are
proposed, and the recommended values of the parameters are listed in Table 3. The parameters’ values
are in physically reasonable ranges, so they could be used in this study.

There are six soil-based parameters, including the soil water content under saturated conditions,
the soil water content under field conditions, the soil water content under wilting conditions, the soil
layer thickness, the soil hydraulic conductivity at saturation and the soil characteristic coefficient.
Based on past modeling studies [7,79–82], the soil water content under wilting conditions is 30% of the
soil water content under saturated conditions, and the soil characteristic coefficient is 2.5. Based on
local observations, the estimated soil layer thickness is listed in Table 4.
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Table 3. Vegetation-based parameter range and recommended values.

Vegetation
Range of Evaporation

Coefficient
(no unit)

Recommended
Evaporation Coefficient

(no unit)

Range of
Roughness
(s/mˆ(1/3))

Recommended
Roughness
(s/mˆ(1/3))

Forestry land 0.5–0.8 0.7 0.1–0.8 0.55
Grassland 0.5–0.7 0.6 0.01–0.4 0.18

Urban land 0.7–1.3 1.0 0.001–0.2 0.01
Bare land 0.2–0.6 0.4 0.005–0.3 0.12
Farmland 0.4–0.7 0.55 0.02–0.5 0.36

Table 4. Soil-based parameters.

Soil Type

Soil Water Content
under Saturated

Conditions
(%)

Soil Water Content
under Field
Conditions

(%)

Soil Hydraulic
Conductivity under

Saturated Conditions
(mm·h−1)

Soil Layer
Thickness

(mm)

Urban land 0.070 0.010 0.010 1
Ferric luvisols 0.461 0.265 20.828 1500
Acric ferralsols 0.458 0.353 2.794 850

In the Liuxihe model, the Soil Water Characteristics Hydraulic Properties Calculator proposed by
Arya et al. [83] was employed to derive the soil water content under saturation conditions, the soil
water content under field conditions and the hydraulic conductivity under saturation conditions based
on the soil texture, organic matter content, gravel content, salinity and compaction. The estimated
parameters are listed in Table 4.

In grid cells with urban land, the surface is impervious (i.e., no infiltration can occur via this
surface, and all precipitation is converted to surface runoff). To reflect this hydrological response of
urban land, the soil-based parameters of urban land must correspond to this characteristic. In this
paper, the soil water content under saturated conditions is assigned a small value, as listed in Table 4.
This small value suggests that most of the precipitation that falls onto urban land will be converted
into surface runoff, but a small fraction of precipitation will infiltrate or be stored on the surface of
urban land cells.

Finally, the roughness of the river channel is estimated based on reference values [7,83], as listed
in Table 2.
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5. Identify Key Hydrological Processes

5.1. General Analysis of Key Hydrological Processes

In the discussion of Section 2.2, it is concluded that runoff production processes related to the
dominant soil types and hill slope routing processes related to the dominant LUCs are potential key
hydrological processes. For runoff production, it is divided into runoff production process on both
urban land and vegetated lands. As discussed in Section 4.3, the runoff production on urban land is
such that all net precipitation fallen on urban land will be converted into surface runoff, and routing
as hill slope runoff routing to the river channels. So, the runoff production process on urban land
is not a key process in flood forecasting, though it is one of the dominant hydrological processes.
Sensitivity analysis of parameters related to this process will not be done as these parameters could be
determined reasonably and the uncertainty is low. For runoff production processes on the vegetated
lands, those which occurred on the dominant soil types are potential key hydrological processes.
Except for urban land soil type, there are only two other soil types, including ferric luvisol and acric
ferralsols, so parameter sensitivity related to these soil types will be done to determine the key runoff

production hydrological processes.
Urban land is the dominant LUC, forestry land accounts for a big percentage, farmland and

grassland account for a small portion, and bare land and water body only account for a very small
portion. Therefore, hill slope runoff routing related to urban land and forestry land is the potential
key hydrological process, but in this paper, the hill slope runoff routing related to urban land, forestry
land, farmland, grassland and bare land will also be studied with parameter sensitivity analysis to
determine the key runoff routing hydrological processes.

5.2. Identifying Key Runoff Production Processes

As discussed above, to identify the key runoff production processes, sensitivity analyses are
performed for soil-based parameters to identify the sensitive parameters. The analyzed parameters
include the soil water content under saturation conditions, the soil water content under field conditions,
the soil layer thickness and the soil hydraulic conductivity under saturation conditions. Parameters are
analyzed individually and by soil type. Only the parameters of the following two soil types are studied
in detail: ferric luvisols and acric ferralsols.

5.2.1. Parameter Sensitivity of Ferric Luvisols

Sensitivity analyses were performed for four parameters individually. The parameters related to
ferric luvisol soils were analyzed first. All parameters were assigned 10 values, which is a percentage
of the recommended value as listed in Table 4. For different parameters, these percentages are different,
and are shown in Figure 6. In this practice, all the perturbated model parameters should still have a
physical meaning. The flood discharge values of the three observed flood events were then simulated
using observed precipitation and the model parameters. Simulated hydrographs with different ferric
luvisol soil-based parameters are shown in Figure 6. Due to manuscript length limitations, only the
simulation results for flood event 20160128 are listed. Additionally, only the results of flood event
20160128 are analyzed further.

Figure 6 shows that only the changes in the soil water content under saturation conditions and
the soil water content under field conditions have obvious effects on the simulated hydrological
processes. Thus, among the soil-based parameters of ferric luvisols, these are the sensitive parameters,
and their values must be selected carefully. Based on the above results, the sensitivity factors of the soil
water contents under saturation conditions and field conditions are calculated and listed in Table 5.
These sensitivity factors are only calculated for peak flow and the runoff coefficient.
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Table 5. Sensitivity analysis results of ferric luvisols soil-based parameter.

ID Value
(%)

Peak Flow
(m3
·s−1)

Sensitivity Factor of
Peak Flow

(m3
·s−1%−1)

Runoff
Coefficient
(no unit)

Sensitivity Factor of
the Runoff

Coefficient (%)

Soil water content under saturation conditions

1 0.39185 68.82 0.947
2 0.4149 67.10 −74.55 0.918 −1.25
3 0.43795 65.32 −76.97 0.891 −1.16
4 0.461 63.17 −93.37 0.866 −1.08
5 0.4841 61.68 −64.79 0.844 −0.99
6 0.5071 61.23 −19.43 0.823 −0.90
7 0.5532 60.89 −7.35 0.787 −0.78
8 0.5993 60.69 −4.26 0.763 −0.52
9 0.6454 60.56 −2.83 0.749 −0.29

10 0.6915 60.48 −1.84 0.743 −0.13
Average −38.376 −0.789

Soil water content under field conditions

1 0.128 60.34 0.737
2 0.1536 60.44 3.99 0.745 0.30
3 0.1792 60.60 6.08 0.761 0.63
4 0.2048 60.85 9.79 0.789 1.08
5 0.2304 61.26 15.93 0.825 1.42
6 0.2432 61.40 10.94 0.832 0.55
7 0.256 62.11 55.63 0.852 1.53
8 0.2688 63.68 122.94 0.873 1.63
9 0.2816 66.44 215.08 0.912 3.09

10 0.3072 69.19 107.45 0.962 1.98
Average 60.87 1.35
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Table 5 shows that for the entire range of soil water contents under saturation conditions,
the decreases in the simulated peak flow and runoff coefficient are 8.34 m3/s and 0.204, respectively,
which are 12.12% and 21.54% decreases compared to their baseline values (ID = 1). The average
sensitivity factor of peak flow is –38.376, and the average sensitivity factor of the runoff coefficient is
−0.789. Thus, as the soil water content under saturation conditions increases, the peak flow and runoff

coefficient decrease, and the soil water content under saturation conditions is more sensitive to the
runoff coefficient.

For the entire range of values of the soil water content under field conditions, the increases in the
simulated peak flow and runoff coefficient are 8.85 m3/s and 0.225, respectively, which are 14.67% and
30.53% increases compared to their baseline values (ID = 1). The average sensitivity factor of simulated
peak flow is 60.87, and the sensitivity factor of the runoff coefficient is 1.35. Thus, as the soil water
content under field conditions increases, the peak flow and runoff coefficient increase, and the soil
water content under field conditions is more sensitive to the runoff coefficient.

The simulation results of the other two flood events yielded similar conclusions (i.e., soil water
content under saturation conditions and soil water content under field conditions are sensitive
parameters among the soil-based parameters of ferric luvisols). Due to manuscript length limitations,
these results are not presented.

Based on the above results and discussion, the runoff production process associated with ferric
luvisol soils is a key hydrological process, and the soil water content under saturation conditions and
soil water content under field conditions are sensitive parameters.

5.2.2. Parameter Sensitivity of Acric Ferralsols

Using the same method as described above, the three flood events were simulated with different
acric ferralsol-related parameters. Since the results are similar to those of ferric luvisol-related
parameters, only the simulated soil water content under saturation conditions and soil water content
under field conditions of flood event 20160128 are shown in Figure 7a,b and the other results are
not presented.
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Figure 7 illustrates that the soil water content under saturation conditions and soil water content
under field conditions are sensitive parameters. The sensitivity factors of the soil water content under
saturation conditions and soil water content under field conditions were calculated, and they are listed
in Table 6.
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Table 6. Sensitivity analysis results of acric ferralsols soil-based parameter.

ID Value
(%)

Peak Flow
(m3
·s−1)

Sensitivity Factor of
Peak Flow

(m3
·s−1%−1)

Runoff
Coefficient
(no unit)

Sensitivity Factor of the
Runoff Coefficient

(%·%−1)

Soil water content under saturation conditions

1 0.3893 65.85 0.892
2 0.4122 64.92 −40.67 0.883 −0.41
3 0.4351 62.85 −90.20 0.860 −1.00
4 0.458 62.11 −32.54 0.852 −0.34
5 0.4809 61.67 −19.17 0.850 −0.08
6 0.5038 62.40 32.02 0.848 −0.09
7 0.5496 62.19 −4.57 0.846 −0.04
8 0.5954 62.14 −1.10 0.840 −0.12
9 0.6412 62.12 −0.60 0.837 −0.07
10 0.687 62.10 −0.38 0.835 −0.04

Average −17.469 −0.245

Soil water content under field conditions

1 0.1765 62.08 0.835
2 0.2118 62.10 0.60 0.837 0.07
3 0.2471 62.14 0.98 0.841 0.12
4 0.2824 62.20 1.83 0.848 0.18
5 0.3177 62.46 7.28 0.856 0.23
6 0.33535 62.65 10.65 0.862 0.35
7 0.353 62.90 14.39 0.868 0.34
8 0.37065 63.18 15.75 0.875 0.40
9 0.3883 64.45 71.98 0.885 0.57

10 0.4236 65.88 40.63 0.895 0.28
Average 18.231 0.282

Table 6 shows that for acric ferralsol soils and the entire range of values of the soil water content
under saturation conditions, the simulated peak flow and runoff coefficient decrease by 3.75 m3/s
and 0.057, respectively, which are 5.69% and 6.39% decreases compared to their baseline values
(ID = 1). The average sensitivity of peak flow is −17.469, and the average sensitivity of the runoff

coefficient is −0.245. For the soil water content under field conditions, the average increase in the
simulated peak flow and runoff coefficient are 3.80 m3/s and 0.0.06, respectively, which are 6.12% and
7.19% increases compared to their baseline values (ID = 1). The average sensitivity of peak flow is
18.231, and the average sensitivity of the runoff coefficient is 0.282. These sensitivity factors suggest
that the sensitivities of the soil water contents under saturation and field conditions are similar for
acric ferralsols.

Based on the above results and discussion, the runoff production process associated with acric
ferralsol soils is a key hydrological process, and the soil water content under saturation conditions
and soil water content under field conditions are sensitive parameters to this hydrological process.
Therefore, the runoff production processes associated with both ferric luvisols and acric ferralsols
are key hydrological processes, and their sensitive parameters include the soil water contents under
saturation and field conditions. Thus, these parameters must be adjusted carefully.

5.3. Identify Key Runoff Routing Processes

Vegetation-based parameters include the evaporation coefficient and roughness. Since the
evaporation coefficient is a less sensitive parameter compared to roughness, only sensitivity analysis to
roughness was performed. The sensitivities of five LUC roughness, excluding that of water bodies,
were analyzed individually, and 11 values were selected within acceptable ranges of values for each
LUC. The simulated hydrographs based on these parameter values are shown in Figure 8a–e.
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Figure 8 shows that only the change in urban land roughness considerably influences the simulated
hydrological process. Thus, only urban land roughness is a sensitive parameter in the Liuxihe model
of Shahe Creek, and its value must be selected carefully. Based on the above results, the sensitivity
factors of urban land roughness were calculated, and they are listed in Table 7. These sensitivity factors
are only calculated for peak flow and the runoff coefficient.

Table 7 shows that for the entire range of values, the simulated peak flow decreases by 25.32 m3/s,
which is a decrease of 38.15% compared to its baseline value (ID = 1). Additionally, the runoff coefficient
decreases by 0.097 over the entire range of values, which is a decrease of 11.11% compared to its
baseline value (ID = 1). The average sensitivity factor of peak flow to urban land roughness is −141.40,
and the average sensitivity factor of the runoff coefficient to urban land roughness is −0.540. Therefore,
as roughness increases, the simulated peak flow and runoff coefficient decrease. The simulated peak
flow changes significantly as the roughness changes, but the change in the runoff coefficient is not
significant. Thus, roughness is more sensitive to peak flow.

Based on the above analysis, we conclude that only the runoff routing process associated with
urban land is a key hydrological process, and only the roughness of urban land is a sensitive parameter
that must be adjusted further.
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Table 7. Sensitivity analysis results of urban land roughness.

ID Roughness
(%)

Peak Flow
(m3
·s−1)

Sensitivity Factor of
Peak Flow

(m3
·s−1%−1)

Runoff
Coefficient
(no unit)

Sensitivity Factor of the
Runoff Coefficient

(%·%−1)

1 0.01 66.37 0.873
2 0.029 61.10 −265.04 0.860 −0.624
3 0.048 56.81 −215.74 0.850 −0.536
4 0.067 53.70 −155.90 0.839 −0.534
5 0.086 51.31 −120.11 0.829 −0.490
6 0.105 49.07 −112.76 0.820 −0.495
7 0.124 46.66 −121.18 0.810 −0.487
8 0.143 44.64 −101.28 0.801 −0.454
9 0.162 43.09 −78.24 0.792 −0.439

10 0.181 42.01 −53.97 0.784 −0.416
11 0.2 41.05 −48.38 0.776 −0.387

Total −141.40 −0.540

6. Parameter Adjust and Flood Simulation

6.1. Adjusting the Model Parameters of Key Hydrological Processes

Based on the above results and discussion, the key hydrological processes in highly urbanized
watersheds are runoff production processes associated with both ferric luvisol and acric ferralsol soil
types and the runoff routing process on urban land. The sensitive parameters include the soil water
contents of the two soils under saturation and field conditions, as well as the roughness of urban land.
The values of these sensitive parameters must be adjusted further using various methods.

In this study, the runoff coefficient is employed to adjust the sensitive parameters. Based on
various references [81,84,85], the runoff coefficient in an urbanized watershed falls within the range
of 0.5 to 0.7. This runoff coefficient range was proposed a few years ago and is out of date. Thus,
a range of 0.6–0.85 is more reasonable considering recent urbanization. This range provides new
information that can be used to adjust the sensitive parameters. If the simulated runoff coefficient falls
within this range, then the model parameters are acceptable and can be used. Based on the results
shown in Table 7, if the value of urban land roughness is within 0.048 to 0.2, then the simulated runoff

coefficient is between 0.6 and 0.85. Thus, the value of urban land roughness should be limited to the
range of 0.048 to 0.2. Similarly, the values of the soil water content under saturation conditions and
soil water content under field conditions of ferric luvisols should be limited to 0.48 to 0.69 and 0.13
to 0.25, respectively. Additionally, the values of the soil water content under saturation conditions
and soil water content under field conditions of acric ferralsols should be limited to 0.46 to 0.69
and 0.18 to 0.28, respectively. Based on this new information, which was compared to the initially
proposed model parameters (Table 4), most of the soil-based parameters are outside the ranges of the
above parameter values. Therefore, the final parameters were adjusted. The soil water content under
saturation conditions and soil water content under field conditions of ferric luvisols were revised
to 0.48 and 0.25, respectively. Additionally, the soil water content under saturation conditions and
soil water content under field conditions of acric ferralsols were revised to 0.46 and 0.28, respectively.
Finally, the urban land roughness was adjusted to 0.048.

6.2. Flood Simulations

Using the final Liuxihe model parameters for flood forecasting in the Shahe Creek watershed,
three storms were simulated, and the simulated flood hydrographs are shown in Figure 9.
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The runoff coefficients of the simulated flood processes for the three flood events are 0.686, 0.738
and 0.784. These values fall between 0.6 and 0.85; thus, the hydrographs accurately responded to
precipitation, and the simulated hydrological processes can be regarded as reasonable. Additionally,
the model parameters are acceptable and can be used for flood forecasting in the Shahe Creek watershed.

7. Conclusions

In this study, a procedure was proposed to identify key hydrological processes in highly urbanized
watersheds for flood forecasting in the Pearl River Delta area, and a distributed hydrological model was
used as the forecast tool. The procedure includes these steps: collecting the latest LUC information or
estimating this information using satellite remote sensing images; analyzing LUC spatial patterns and
identifying dominant LUC types and their spatial structures; choosing and establishing a distributed
hydrological model as the forecasting tool and determining the initial model parameters; and identifying
the key hydrological processes and sensitive model parameters based on a parameter sensitivity analysis.
Finally, the sensitive model parameters are adjusted based on their initial values. A highly urbanized
watershed flood hydrological process is studied with this procedure. Based on this study, the following
conclusions have been proposed.

1. The Landsat 8 satellite remote sensing imagery taken on 3 January 2015 was used to estimate
the LUC types in the Shahe Creek watershed. The urban land in Shahe Creek in 2015 comprises an
areal percentage of 59.73% of the entire watershed; thus, it is the dominant LUC. Additionally, this
value suggests that Shahe Creek is a highly urbanized watershed.

2. Runoff production processes associated with both ferric luvisol and acric ferralsol soil types
are key hydrological processes, and the soil water content under saturation conditions and soil water
content under field conditions are sensitive parameters. The runoff routing process on urban land is a
key hydrological process, and the roughness of urban land is a sensitive parameter.
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3. Local knowledge regarding runoff coefficients was used to adjust the sensitive model parameters
related to key hydrological processes. In this study, the final values of the soil water content under
saturation conditions and soil water content under field conditions of ferric luvisols were adjusted
to 0.48 and 0.25, respectively. Additionally, the values of the soil water content under saturation
conditions and soil water content under field conditions of acric ferralsols were adjusted to 0.46 and
0.28, respectively. Finally, urban land roughness was adjusted to 0.048.

Based on the above procedure, the key hydrological processes in a highly urbanized watershed
and the associated sensitive parameters can be identified. Additionally, the sensitive parameters can be
adjusted based on local knowledge, which can reduce the parameter uncertainty and make the model
more appropriate for flood forecasting.

For an ungauged watershed, there is no hydrological data for calibrating or optimizing model
parameters. Methodologies proposed for this kind of watershed flood forecasting employs some
indirectly derived information to improve the model’s performance. The method proposed in this
paper uses the precipitation observation from rain gauges to make a parameter sensitivity analysis,
then based on the local rainfall-runoff coefficient experiences, adjust the model parameters accordingly.
It is expected that the model performance could be improved, but if the watershed has nothing
in hydrological observations, this method cannot be used. Fortunately, in most of the urbanized
watersheds in the world, this is true as installing rain gauges is affordable and not very expensive.

The above conclusion is mainly based on the application for flood forecasting, but the authors
believe the method can also be used for other applications.

Author Contributions: Y.C. was responsible for proposing the original ideal and writing the paper; H.W. was
responsible for the data compilation, processing, computation and drawing.

Funding: This study was supported by the National Key Research and Development Program of China
(no. 2017YFC1502702), the National Science and Technology Pillar Program during the Twentieth Five-year
Plan Period (no. 2015BAK11B02) and the Science and Technology Program of Guangdong Province
(no. 2014A050503031).

Acknowledgments: We gratefully acknowledge the kind anonymous referees for their helpful comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects:
The 2010 Revision; United Nations: New York, NY, USA, 2010.

2. Rounsevell, M.D.; Reginster, I.; Araújo, M.B.; Carter, T.R.; Dendoncker, N.; Ewert, F.; House, J.I.;
Kankaanpää, S.; Leemans, R.; Metzger, M.J.; et al. A coherent set of future land use change scenarios for
Europe. Agric. Ecosyst. Environ. 2006, 114, 57–68. [CrossRef]

3. Fang, C.; Wang, D. Comprehensive development measuring and improving roadmap of China’s urbanization
quality. Geogr. Res. 2011, 30, 1931–1945.

4. Development Research Foundation of China. Development Report of China; People’s Publishing: Beijing,
China, 2011.

5. Li, W.; Chen, S.; Chen, G. Urbanization signatures in strong versus weak precipitation over the Pearl River
Delta metropolitan regions of China. Environ. Res. Lett. 2011, 6034020. [CrossRef]

6. Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban flood risk warning under rapid urbanization.
Environ. Res. 2015, 139, 3–10. [CrossRef] [PubMed]

7. Zhang, M.; Liu, Y.; Wang, L. Inversion on Channel Roughness for Hydrodynamic Model by Using
Quantum-Behaved Particle Swarm Optimization. Yellow River 2015, 37, 26–29.

8. Hollis, G.E. The Effect of urbanization on floods of different recurrence interval. Water Resour Res. 1975, 11,
431–435. [CrossRef]

9. DeWalle, D.R.; Swistock, B.R.; Johnson, T.E.; McGuire, K.J. Potential effects of climate change and urbanization
on mean annual streamflow in the United States. Water Resour. Res. 2000, 36, 2655–2664. [CrossRef]

10. Claessens, L.; Hopkinson, C.; Rastetter, E.; Vallino, J. Effect of historical changes in land use and climate on
the water budget of an urbanizing watershed. Water Resour. Res. 2006, 42, W03426. [CrossRef]

http://dx.doi.org/10.1016/j.agee.2005.11.027
http://dx.doi.org/10.1088/1748-9326/6/3/034020
http://dx.doi.org/10.1016/j.envres.2015.02.028
http://www.ncbi.nlm.nih.gov/pubmed/25769509
http://dx.doi.org/10.1029/WR011i003p00431
http://dx.doi.org/10.1029/2000WR900134
http://dx.doi.org/10.1029/2005WR004131


Water 2019, 11, 1641 19 of 22

11. Hurkmans, R.T.; Terink, W.; Uijlenhoet, R.; Moors, E.J.; Troch, P.A.; Verburg, P.H. Effects of land use changes
on streamflow generation in the Rhine basin. Water Resour. Res. 2009, 45, W06405. [CrossRef]

12. Tu, J. Combined impact of climate and land use changes on streamflow and water quality in eastern
Massachusetts, USA. J. Hydrol. 2009, 379, 268–283. [CrossRef]

13. Xie, Y.; Li, D.; Li, P.; Shen, S.; Yin, J.; Han, S.; Zeng, M.; Gu, X. Research and application of the mathematical
model for urban rainstorm water logging. Adv. Water Sci. 2005, 16, 384–390.

14. Zhou, H.; Wang, C. Guangdong Dongguan city urban flooding causes analysis and prevention measures.
China Flood Drought Manag. 2013, 23, 70–71.

15. Refsgaard, J.C.; Storm, B. Construction, calibration and validation of hydrological models. In Distributed
Hydrological Modelling; Abbott, M.B., Refsgaard, J.C., Eds.; Kluwer Academic: Dordrecht, Holland, 1996;
pp. 41–54.

16. Chen, Y.; Ren, Q.W.; Huang, F.H.; Xu, H.J.; Cluckie, I. Liuxihe Model and its modeling to river basin flood.
J. Hydrol. Eng. 2011, 16, 33–50. [CrossRef]

17. Crawford, N.H.; Linsley, R.K. Digital Simulation in Hydrology, Stanford Watershed Model IV; Technical Report
No. 39; Department of Civil Engineering, Stanford University: Stanford, CA, USA, 1966.

18. Zhao, R.J. Flood Forecasting Method for Humid Regions of China; East China College of Hydraulic Engineering:
Nanjing, China, 1977.

19. Todini, E. The ARNO rainfall-runoff model. J. Hydrol. 1996, 175, 339–382. [CrossRef]
20. Freeze, R.A.; Harlan, R.L. Blueprint for a physically-based, digitally simulated, hydrologic response model.

J. Hydrol. 1969, 9, 237–258. [CrossRef]
21. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An Introduction to the European

Hydrologic System-System Hydrologue Europeen, ‘SHE’, a: History and Philosophy of a Physically-based,
Distributed Modelling System. J. Hydrol. 1986, 87, 45–59. [CrossRef]

22. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An Introduction to the European
Hydrologic System-System Hydrologue Europeen, ‘SHE’, b: Structure of a Physically based, Distributed
Modeling System. J. Hydrol. 1986, 87, 61–77. [CrossRef]

23. Ambroise, B.; Beven, K.; Freer, J. Toward a generalization of the TOPMODEL concepts: Topographic indices
of hydrologic similarity. Water Resour. Res. 1996, 32, 2135–2145. [CrossRef]

24. Kouwen, N. WATFLOOD: A Micro-Computer based Flood Forecasting System based on Real-Time Weather
Radar. Can. Water Resour. J. 1988, 13, 62–77. [CrossRef]

25. Grayson, R.B.; Moore, I.D.; McMahon, T.A. Physically based hydrologic modeling: 1.A Terrain-based model
for investigative purposes. Water Resour. Res. 1992, 28, 2639–2658. [CrossRef]

26. Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface
water and energy fluxes for general circulation models. J. Geophys. Res 1994, 99, 14415–14428. [CrossRef]

27. Wigmosta, M.S.; Vai, L.W.; Lettenmaier, D.P. A Distributed Hydrology-Vegetation Model for Complex Terrain.
Water Resour. Res. 1994, 30, 1665–1669. [CrossRef]

28. Julien, P.Y.; Saghafian, B.; Ogden, F.L. Raster-Based Hydrologic Modeling of spatially-Varied Surface Runoff.
Water Resour. Bull. 1995, 31, 523–536. [CrossRef]

29. Wang, Z.; Batelaan, O.; De Smedt, F. A distributed model for water and energy transfer between soil, plants
and atmosphere (WetSpa). J. Phys. Chem. Earth 1997, 21, 189–193. [CrossRef]

30. Yang, D.; Herath, S.; Musiake, K. Development of a geomorphologic properties extracted from DEMs for
hydrologic modeling. Ann. J. Hydrol. Eng. JSCE 1997, 47, 49–65.

31. Jia, Y.; Ni, G.; Kawahara, Y. Development of WEP model and its application to an urban watershed.
Hydrol. Process. 2001, 15, 2175–2194. [CrossRef]

32. Vieux, B.E.; Vieux, J.E. VfloTM: A Real-time Distributed Hydrologic Model. In Proceedings of the 2nd
Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 28 July–1 August 2002.

33. Kavvas, M.; Yoon, J.; Chen, Z.; Liang, L.; Dogrul, E.; Ohara, N.; Aksoy, H.; Anderson, M.; Reuter, J.; Hackley, S.
Watershed Environmental Hydrology Model: Environmental Module and Its Application to a California
Watershed. J. Hydrol. Eng. 2004, 11, 261–272. [CrossRef]

34. Kavvas, M.; Chen, Z.; Dogrul, C.; Yoon, J.; Ohara, N.; Liang, L.; Aksoy, H.; Anderson, M.; Yoshitani, J.;
Fukami, K.; et al. Watershed Environmental Hydrology (WEHY) Model Based on Upscaled Conservation
Equations: Hydrologic Module. J. Hydrol. Eng. 2002, 9, 450–464. [CrossRef]

http://dx.doi.org/10.1029/2008WR007574
http://dx.doi.org/10.1016/j.jhydrol.2009.10.009
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000286
http://dx.doi.org/10.1016/S0022-1694(96)80016-3
http://dx.doi.org/10.1016/0022-1694(69)90020-1
http://dx.doi.org/10.1016/0022-1694(86)90114-9
http://dx.doi.org/10.1016/0022-1694(86)90115-0
http://dx.doi.org/10.1029/95WR03716
http://dx.doi.org/10.4296/cwrj1301062
http://dx.doi.org/10.1029/92WR01258
http://dx.doi.org/10.1029/94JD00483
http://dx.doi.org/10.1029/94WR00436
http://dx.doi.org/10.1111/j.1752-1688.1995.tb04039.x
http://dx.doi.org/10.1016/S0079-1946(97)85583-8
http://dx.doi.org/10.1002/hyp.275
http://dx.doi.org/10.1061/(ASCE)1084-0699(2006)11:3(261)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2004)9:6(450)


Water 2019, 11, 1641 20 of 22

35. Madsen, H. Parameter estimation in distributed hydrological catchment modelling using automatic calibration
with multiple objectives. Adv. Water Resour. 2003, 26, 205–216. [CrossRef]

36. Smith, M.B.; Seo, D.-J.; Koren, V.I.; Reed, S.; Zhang, Z.; Duan, Q.Y.; Cong, S.; Moreda, F.; Anderson, R.
The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol. 2004,
298, 4–26. [CrossRef]

37. Pokhrel, P.; Yilmaz, K.K.; Gupta, H.V. Multiple-criteria calibration of a distributed watershed model using
spatial regularization and response signatures. J. Hydrol. 2012, 418–419, 49–60. [CrossRef]

38. Chen, Y.; Li, J.; Xu, H. Improving flood forecasting capability of physically based distributed hydrological
model by parameter optimization. Hydrol. Earth Syst. Sci. 2016, 20, 375–392. [CrossRef]

39. Apel, H.; Thieken, A.H.; Merz, B.; Blöschl, G. Flood risk assessment and associated uncertainty. Nat. Hazards
Earth Syst. Sci. 2004, 4, 295–308. [CrossRef]

40. Moradkhani, H.; Hsu, K.-L.; Gupta, H.; Sorooshian, S. Uncertainty assessment of hydrologic model states
and parameters: Sequential data assimilation using the particle filter. Water Resour. Res. 2005, 41. [CrossRef]

41. Liu, Y.; Gupta, H.V. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework.
Water Resour. Res. 2007, 43. [CrossRef]

42. Apel, H.; Merz, B.; Thieken, A.H. Quantification of uncertainties in flood risk assessments. Int. J. River
Basin Manag. 2008, 6, 149–162. [CrossRef]

43. Beven, K. Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing,
and communication. Hydrol. Sci. J. 2016, 61, 1652–1665. [CrossRef]

44. Vieux, B.E.; Moreda, F.G. Ordered physics-based parameter adjustment of a distributed model. In Advances
in Calibration of Watershed Models; Water Science and Application Series; Duan, Q., Sorooshian, S., Gupta, H.V.,
Rousseau, A.N., Turcotte, R., Eds.; American Geophysical Union: Washington, DC, USA, 2003; Volume 6,
pp. 267–281.

45. Vieux, B.E.; Cui, Z.; Gaur, A. Evaluation of a physics-based distributed hydrologic model for flood forecasting.
J. Hydrol. 2004, 298, 155–177. [CrossRef]

46. Shafii, M.; Smedt, F.D. Multi-objective calibration of a distributed hydrological model (WetSpa) using a
genetic algorithm. Hydrol. Earth Syst. Sci. 2009, 13, 2137–2149. [CrossRef]

47. Xu, H.; Chen, Y.; Zeng, B.; He, J.; Liao, Z. Application of SCE-UA Algorithm to Parameter Optimization of
Liuxihe Model. Trop. Geogr. 2012, 32, 32–37.

48. Dou, P.; Chen, Y. Dynamic monitoring of land-use/land-cover change and urban expansion in Shenzhen
using Landsat imagery from 1988 to 2015. Int. J. Remote Sens. 2017, 38, 5388–5407. [CrossRef]

49. Chen, Y.; Dou, P.; Yang, X. Improving Land Use/Cover Classification with a Multiple Classifier System Using
AdaBoost Integration Technique. Remote Sens. 2017, 9, 1055. [CrossRef]

50. Chen, Y.; An, X.; Dou, P.; Zhang, T. Estimating Land Use/Cover of Foshan City in Southern China with
Landsat Remote Sensing Imagery for Flood Modeling. In Proceedings of the International Multidisciplinary
Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria,
27 June–6 July 2017; Volume 17, pp. 79–86.

51. Chen, Y. Liuxihe Model; Science Press: Beijing, China, 2009; 198p.
52. Langley, P.; Sage, S. Induction of selective Bayesian classifiers. In Proceedings of the Tenth Conference on

Uncertainty in Artificial Intelligence, Seattle, WA, USA, 29–31 June 1994; Morgan Kaufmann: San Francisco,
CA, USA, 1994.

53. Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification.
Remote Sens. Environ. 2003, 86, 554–565. [CrossRef]

54. Kavzoglu, T.; Mather, P.M. The use of back propagating artificial neural networks in land cover classification.
Int. J. Remote Sens. 2003, 24, 4907–4938. [CrossRef]

55. Zhu, G.B.; Blumberg, D.G. Classification using ASTER data and SVM algorithms: The case study of Beer
Sheva, Israel. Remote Sens. Environ. 2002, 80, 233–240. [CrossRef]

56. Mazzoni, D.; Garay, M.J.; Davies, R.; Nelson, D. An operational MISR pixel classifier using support vector
machines. Remote Sens. Environ. 2007, 107, 149–158. [CrossRef]

57. Gomez-Chova, L.; Camps-Valls, G.; Munoz-Mari, J.; Calpe, J. Semisupervised image classification with
Laplacian support vector machines. IEEE Geosci. Remote Sens. Lett. 2008, 5, 336–340. [CrossRef]

58. Ding, Z.J.; Yu, J.; Zhang, Y. A New Improved K-Means Algorithm with Penalized Term. In Proceedings of the
IEEE International Conference Granular Computing, Fremont, CA, USA, 2–4 November 2007; pp. 313–317.

http://dx.doi.org/10.1016/S0309-1708(02)00092-1
http://dx.doi.org/10.1016/j.jhydrol.2004.03.040
http://dx.doi.org/10.1016/j.jhydrol.2008.12.004
http://dx.doi.org/10.5194/hess-20-375-2016
http://dx.doi.org/10.5194/nhess-4-295-2004
http://dx.doi.org/10.1029/2004WR003604
http://dx.doi.org/10.1029/2006WR005756
http://dx.doi.org/10.1080/15715124.2008.9635344
http://dx.doi.org/10.1080/02626667.2015.1031761
http://dx.doi.org/10.1016/j.jhydrol.2004.03.035
http://dx.doi.org/10.5194/hess-13-2137-2009
http://dx.doi.org/10.1080/01431161.2017.1339926
http://dx.doi.org/10.3390/rs9101055
http://dx.doi.org/10.1016/S0034-4257(03)00132-9
http://dx.doi.org/10.1080/0143116031000114851
http://dx.doi.org/10.1016/S0034-4257(01)00305-4
http://dx.doi.org/10.1016/j.rse.2006.06.021
http://dx.doi.org/10.1109/LGRS.2008.916070


Water 2019, 11, 1641 21 of 22

59. Thitimajshima, P. A New Modified Fuzzy C-Means Algorithm for MULTISPECTRAL satellite Images
Segmentation. In Proceeding of the IGARSS, Honolulu, HI, USA, 24–28 July 2000; Volume 4, pp. 1684–1686.

60. Yang, C.; Bruzzone, L.; Sun, F.Y.; Lu, L.J.; Guan, R.C.; Liang, Y.C. A Fuzzy-Statistics-Based Affinity Propagation
Technique for Clustering in Multispectral Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2647–2659.
[CrossRef]

61. Shahshahani, B.; Landgrebe, D. The effect of unlabeled samples in reducing the small sample size problem
and mitigating the huge sphenomenon. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1087–1095. [CrossRef]

62. Nigam, K.; McCallum, A.; Thrun, S. Text classification from labeled and unlabeled documents using EM.
Mach. Learn. 1999, 39, 103–134. [CrossRef]

63. Blum, A.; Mitchell, T. Combining Labeled and Unlabeled Data with Co-Training. In Proceedings of the
Computer Learning Theory, Madison, WI, USA, 24–26 July 1998; pp. 92–100.

64. Tuia, D.; Camps-valls, G. Semi-supervised remote sensing image classification with cluster kernels.
IEEE Geosci. Remote Sens. Lett. 2009, 6, 224–228. [CrossRef]

65. Vapnik, V.N. Statistical Learning Theory. Encycl. Sci. Learn. 2010, 41, 3185.
66. Nemmour, H.; Chibani, Y. Multiple support vector machines for land cover change detection: An application

for mapping urban extensions. Isprs J. Photogramm. Remote Sens. 2006, 61, 125–133. [CrossRef]
67. Demarchi, L.; Canters, F.; Cariou, C.; Licciardi, G.; Chan, J.C. Assessing the performance of two unsupervised

dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover
mapping. Isprs J. Photogramm. Remote Sens. 2014, 87, 166–179. [CrossRef]

68. Saltelli, A.; Ratto, M.; Tarantola, S.; Campolongo, F. Sensitivity analysis practices: Strategies for model-based
inference. Reliab. Eng. Syst. Saf. 2006, 91, 1109–1125. [CrossRef]

69. Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. J. Remote
Sens. Environ. 2012, 122, 11–21. [CrossRef]

70. Tang, H.Q.; Xu, F. Analysis of new characteristics of the first Landsat 8 image and their Ecoenvironmental
significance. Acta Ecol. Sin. 2013, 33, 3249–3257.

71. O’Callaghan, J.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis.
Graph. Image Process 1984, 28, 323–344. [CrossRef]

72. Jensen, S.K.; Dominggue, J.O. Extracting Topographic Structure from Digital Elevation Data for Geographic
Information System Analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600.

73. Strahler, A.N. Quantitative Analysis of watershed Geomorphology. Trans. Am. Geophys. Union 1957, 38,
913–920. [CrossRef]

74. Chen, H.; Mao, S. Calculation and Verification of an Universal Water Surface Evaporation Coefficient Formula.
Adv. Water Sci. 1995, 6, 116–120.

75. Zhang, S.; Xu, D.; Li, Y.; Cai, L. An optimized inverse model used to estimate Kostiakov infiltration parameters
and Manning’s roughness coefficient based on SGA and SRFR model: I Establishment. J. Hydraul. Eng. 2006,
11, 1297–1302.

76. Zhang, S.; Xu, D.; Li, Y.; Cai, L. Optimized inverse model used to estimate Kostiakov infiltration parameters
and Manning’s roughness coefficient based on SGA and SRFR model: II Application. J. Hydraul. Eng. 2007,
4, 402–408.

77. Guo, H.; Hua, Y.; Bai, X. Hydrological Effects of Litter on Different Forest Stands and Study about Surface
Roughness Coefficient. J. Soil Water Conserv. 2010, 24, 179–183.

78. Li, Y.; Zhang, J.; Ru, H.; Li, M.; Wang, D.; Ding, Y. Effect of Different Land Use Types on Soil Anti-scourability
and Roughness in Loess Area of Western Shanxi Province. J. Soil Water Conserv. 2013, 27, 1–6.

79. Zaradny, H. Groundwater Flow in Saturated and Unsaturated Soil; A A Balkema: Now York, NY, USA, 1993.
80. Anderson, A.N.; McBratney, A.B.; FitzPatric, K.E. A soil mass, surface and spectral fractal dimensions

estimated from thin section photographs. Soil Sci. Soc. Am. J. 1996, 60, 962–969. [CrossRef]
81. Shen, S.; Guze, S. Conversion Coefficient between Small Evaporation Pan and Theoretically Calculated Water

Surface Evaporation in China. J. Nanjing Inst. Meteorol. 2007, 30, 561–565.
82. Arya, L.M.; Paris, J.F. A physioempirical model to predict the soil moisture characteristic from particle-size

distribution and bulk density data. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [CrossRef]
83. Liu, H. Fluid Mechanics; China Architecture and Building Press: Beijing, China, 2001.

http://dx.doi.org/10.1109/TGRS.2010.2040035
http://dx.doi.org/10.1109/36.312897
http://dx.doi.org/10.1023/A:1007692713085
http://dx.doi.org/10.1109/LGRS.2008.2010275
http://dx.doi.org/10.1016/j.isprsjprs.2006.09.004
http://dx.doi.org/10.1016/j.isprsjprs.2013.10.012
http://dx.doi.org/10.1016/j.ress.2005.11.014
http://dx.doi.org/10.1016/j.rse.2011.08.026
http://dx.doi.org/10.1016/S0734-189X(84)80011-0
http://dx.doi.org/10.1029/TR038i006p00913
http://dx.doi.org/10.2136/sssaj1996.03615995006000040002x
http://dx.doi.org/10.2136/sssaj1981.03615995004500060004x


Water 2019, 11, 1641 22 of 22

84. Liu, X. Parameter calibration method for urban rainfall-runoff model based on runoff coefficient.
Water Wastewater Eng. 2009, 11, 213–217.

85. He, B.; Chen, C.; Zhou, N. Urbanized Area Runoff Coefficient and its Application. Shanghai Environ. Sci.
2003, 7, 472–516.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	General Methodology 
	Liuxihe Model and Hydrological Processes 
	SVM Algorithm for LUC Estimation 
	OAT Method for Parameter Sensitivity Analysis 

	Study Watershed and Data 
	Study Watershed 
	Hydrological Data 
	Estimating LUC with Satellite Remote Sensing Imagery 
	Dominant LUC Types 

	Liuxihe Model and Initial Parameters 
	Watershed Terrain Property Data 
	Liuxihe Model Set-Up 
	Determination of the Initial Model Parameters 

	Identify Key Hydrological Processes 
	General Analysis of Key Hydrological Processes 
	Identifying Key Runoff Production Processes 
	Parameter Sensitivity of Ferric Luvisols 
	Parameter Sensitivity of Acric Ferralsols 

	Identify Key Runoff Routing Processes 

	Parameter Adjust and Flood Simulation 
	Adjusting the Model Parameters of Key Hydrological Processes 
	Flood Simulations 

	Conclusions 
	References

