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Abstract: Eutrophication of lakes often results in dominance of cyanobacteria, which may potentially
lead to serious blooms and toxic water. However, cyanobacterial detritus may act as an important
carbon source for aquatic organisms. Using stable isotope carbon (}3C) as a tracer, we assessed the
carbon transfer from cyanobacteria to pelagic and benthic consumers in a 28-day outdoor mesocosm
(~130 L) labelling experiment established in Lake Taihu, China, during a Microcystis aeruginosa bloom.
The different organisms were labelled differently after addition of the labelled Microcystis detritus to
the water. 5'3C of particulate organic matter and of cladoceran zooplankton peaked earlier than for
larger invertebrate consumers. Among the pelagic species, Daphnia similis had the highest A§'3C,
while the two snail species Radix swinhoei and Bellamya aeruginosa had lower but similar A§'3C.
The bivalves showed relatively modest changes in 5§!*C. The §!3C of Anodonta woodiana and Unio
douglasiae showed a marginal though not significant increase, while a marked increase occurred
for Arconaia lanceolate peaking on day 20, and Corbicula fluminea a slight increase peaking on day
9. Our results suggest that carbon from cyanobacteria can be incorporated by pelagic and some
benthic consumers and eventually be transferred to higher trophic levels. Cyanobacterial carbon may,
therefore, be considered an important carbon source supporting the entire food web during blooms,
even if the cyanobacteria are not consumed directly.
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1. Introduction

In many lakes, phytoplankton dominates primary production [1,2] and previous food web studies
have, therefore, traditionally focused on phytoplankton-based food sources [3-5]. However, benthic
production can be an important contributor to the whole-lake primary and secondary production [6,7],
not least in shallow lakes [8,9], so in recent years, more attention has been paid to the role of benthic
processes in the energy flow and to the coupling between the pelagic and benthic systems [8-11].

Phytoplankton is utilised directly by zooplankton [12-14], mussels [15-17] and some fish [18-20].
Eutrophication often leads to an increased biomass proportion of cyanobacteria of the phytoplankton
community [21-24], which may negatively affect the lake food web by hampering zooplankton
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grazing [25,26]. Moreover, some cyanobacterial species produce toxins that have adverse effects
on animal health [27-29] and, accordingly, cyanobacteria have commonly been considered to be of
low nutritional value for zooplankton [28-31]. Yet, some studies suggest that certain zooplankton
species can feed on cyanobacteria [32-34], and numerous biomanipulation experiments have shown
a drastic reduction in cyanobacteria abundance following a return of large Daphnia after removal of
plankti-benthivorous fish, indicating enhanced grazer control of the cyanobacteria [35,36].

While the use of cyanobacteria may, to some extent, be hampered by their morphology and
toxicity, cyanobacterial detritus could potentially be a useful food source for zooplankton [37] and
snails [38]. Hanazato and Yasuno [37] reported that Moina micrura was not capable of directly utilising
Microcystis as a food source even when colonies were broken up into edible sizes, but decomposed
Microcystis turned out to be an exploitable carbon source for this species and also for Daphnia [39,40].
In this way, cyanobacteria may contribute as an energy source to the higher trophic level in the food
web even if they are not grazed upon directly. Cyanobacterial detritus may also be assimilated by
benthic macroinvertebrates, such as Limnodrilus spp. and Chironomus spp. [38] and act as important
food sources for benthivorous fish [41], with subsequent channelisation to the higher tropic levels.

Lake Taihu is an important source of water supply to the city of Wuxi (Jiangsu Province, China),
which is situated on the north-eastern bank of the lake. In late May 2007, a drinking water crisis
occurred in Wuxi due to a massive outbreak of Microcystis sp. in the lake [42]. Historical data on Lake
Taihu show that cyanobacterial blooms usually occur from late spring (March) through summer and
autumn [43], and in recent years blooms have become more frequent in winter as well [44]. Microcystis
blooms in Lake Taihu are often associated with relatively high abundances of small zooplankton such
as Bosmina [45]. Both the abundance and biomass of macroinvertebrates were much higher in the
northern part of Lake Taihu, with recurrent cyanobacteria blooms, than in the southern part [46],
which indicates that Microcystis is used as a food source, either directly or indirectly as detritus.
We conducted a 13C tracer mesocosm experiment to assess to what extent the cyanobacteria-derived
carbon acted as a carbon source for the pelagic and benthic consumers during a Microcystis bloom.
We hypothesised that cyanobacterial detritus constitutes a significant proportion of the carbon source
for both pelagic and benthic consumers.

2. Materials and Methods

2.1. Study Area

Lake Taihu is a large shallow lake, located in a subtropical region of China (30°55'40”-31°32’58"
N and 119°52’32”~120°36’10” E). The lake is ~2338 km? in area and its average depth is about 1.9 m.
The lake is currently eutrophic, with recurrent cyanobacterial blooms that are dominated by Microcystis
aeruginosa [41]. We conducted the experiment at the shore of Meiliang Bay, situated in the northern
and most eutrophic part of the lake, which is characterised by almost complete Microcystis aeruginosa
dominance of the phytoplankton biomass in summer [23].

2.2. Detritus Preparation and Labelling

Samples of cyanobacteria during a bloom dominated by Microcystis, mostly Microcystis aeruginosa
(>99%), were collected from Meiliang Bay using a plankton net (mesh size 64 pm) in August 2010.
The live Microcystis was incubated in three air-tight and magnetically stirred bottles (10 L) with
pre-filtered (0.45 um) lake water for two days under natural regimes of light and temperature. During
the incubation, 6717 g living Microcystis, concentrated on a plankton net (64 um), was labelled with
15 g NaH!3COj3 (98% '3C). The tracers were added to the bottles in 10 equal portions at identical time
intervals from 7:00 to 16:00. After the incubation, the Microcystis cells were collected with a 30 pm net
and washed repeatedly with deionised water to remove unassimilated 3C. The labelled Microcystis
was then dried to constant weight in an oven at 60 °C for 72 h, and the detritus mass was ground into
fine powder using a mortar and pestle.
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2.3. Labelling Experiment

The outdoor experiments were conducted during September and October 2010 at the Lake Taihu
Experimental Station, situated on the shore of Lake Taihu. Twenty-four high density polyethylene
(HDPE) mesocosms (height 66 cm; ~130 L) were constructed and subsequently filled with 15 cm
lake sediment, which was well-mixed and filtered on a 0.5 cm meshed sieve, and 90 L lake water
pre-filtered through a plankton net (mesh size 64 pm). All mesocosms were floated in an artificial pond
(6 X 5 x 2m) located on the shore of Meiliang Bay. Similar-sized individuals of Bellamya aeruginosa
(n=7,104 £ 0.5 g total wet weight (TWW)), Radix swinhoei (n = 4, 1.1 £ 0.2 g TWW), Corbicula
fluminea (n =4, 12.0 = 0.6 g TWW), Anodonta woodiana (n =1, 26.9 + 10.2 g TWW), Unio douglasiae
(n=1,26.8 + 8.3 g TWW) and Arconaia lanceolata (n = 1, 18.6 + 12.7 g TWW), collected from Lake Taihu,
were added after four days relative to the natural abundance in Lake Taihu [47]. Zooplankton were
naturally hatched from the added sediment.

The mesocosm ecosystems were allowed to develop and stabilise for one month. The experiment
was initiated by adding 7 g Microcystis detritus (labelled and powdered) to the 21 mesocosms on day
0, which is equivalent to 350 pg L~! chlorophyll-a in the natural water column (unpublished data),
while the other mesocosms (3 replicates) acted as controls. The simulated concentration of chlorophyll-a
was similar to that in the study of Chen et al. [48] but much lower than the concentration reported by
Qin et al. [42] during the cyanobacteria blooming phase in Lake Taihu. The average concentration of
Chl-a on day 0 was 25.4 + 4.2 ug L™!. The experiment lasted for 28 days.

2.4. Sample Collection

Particulate organic matter (POM), zooplankton, two species of snails, four species of bivalves
and periphyton were sampled for analyses of carbon stable isotopes on day 0, 1, 3, 5, 9, 14, 20 and
28. The control mesocosms (no addition of labelled detritus) were sampled on day 0 and the isotope
values in these mesocosms were used as controls. At each sampling date, 3 random mesocosms out of
the 21 originally labelled mesocosms were sampled and not used any more during the study.

During each sampling event, POM samples were prepared by filtering 1-2 L of water from the
mesocosms onto pre-weighed and pre-combusted GF/C filters followed by oven drying at 60 °C.
Zooplankton were collected and concentrated by filtering about 30 L of water through a bolting
silk plankton net with a mesh size of 64 um. At least 40 individuals of each zooplankton species
(Daphnia similis, Diaphanosoma sp., Scapholeberis kingi, Sinocalanus dorrii and Cyclops sp.) were collected
for analysis, and the animals were kept in filtered lake water, allowed to empty their guts and then
removed and dried at 60 °C. Snails (B. aeruginosa and R. swinhoei) and bivalves (C. fluminea, A. woodiana,
U. douglasiae and A. lanceolata) were picked directly after the mesocosms were emptied. About5 g
fresh abdominal muscle tissue of each species was dried at 60 °C in the oven. After emptying and
removing the sediments left in the mesocosms, followed by careful cleaning, periphyton was sampled
by brushing the walls and transferring the samples to deionised water, which was then filtered over
pre-combusted and pre-weighed GF/C filters. The filters with periphyton were dried at 60 °C.

2.5. Stable Isotope Analysis

All samples were analysed to determine '3C/!?C ratios using a SerCon 20-20 isotope ratio
mass spectrometer at the Department of Ecology and Institute of Hydrobiology, Jinan University,
Guangzhou, China. Isotope abundance was expressed using the conventional delta notation against
the Vienna-PeeDee Belemnite standard:

5"°C = (Reample/Rstandard — 1) X 1000

where R is the 3C/12C ratio. The precision of repeated measurements was ca. +0.3%o.
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2.6. Data and Statistical Analyses

The maximum 13C uptake by consumers was calculated as ASBC =513 Cpeak sample — 613Cbackground,
representing the enriched carbon uptake by consumers.

Due to the sampling design with day 0 as being our control, we first conducted an unpaired
t-test, with Welch'’s correction, where we analysed which of the days a given taxa differed in 5!°C
from its starting level (control, day 0). We then conducted a one-way Analysis of Variance (one-way
ANOVA) to compare the differences in '>C values between peak values (i.e., A5'3C) of, respectively,
five zooplankton species (each species as one level) and four bivalves (each specie as one level).
If significant, a post hoc multiple comparisons were carried out by Tukey’s least significant difference
(Tukey LSD) procedure. Unpaired t-test, with Welch’s correction, was also used to examine the
differences in A3'3C between the two snail species and the differences of their peaking means on day
14 and A$'3C differences between the cladoceran (three species) and copepod (two species) group.
All these comparisons were performed with the statistical package SPSS version 22.0.

3. Results

After addition of the labelled Microcystis detritus (§'3C = 6.42%o) to the mesocosms, 13C in the
POM increased significantly (unpaired t-test, t = 13.31, df = 2.15, p < 0.01) and reached its maximum
on day 1 (—0.81%), followed by a weak decline until the end of the experiment (Figure 1A). §!3C of
periphyton also showed a significant increase peaking on day 9 (=9.15%o0) and then decreased gradually
until the end of the experiment (Figure 1A). The 8'3C signatures of POM and periphyton were similar
at the end of the experiment, being —18.73%o0 and —18.79%o, respectively, and were not by then
significantly different from the starting levels (day 0) (Figure 1A).

As for the zooplankton, §'3C of cladocerans increased rapidly and significantly during the first
three days, after which it slowly declined until the end of the experiment, by then not being significantly
different from the starting levels (Figure 1B). For Daphnia similis, Scapholeberis kingi and Diaphanosoma
spp., the observed 13C enrichment peaked on day 3, with mean values of, respectively, —6.59%o,
—7.52%0 and —9.44%o; D. similis showed significantly higher maximum values than Diaphanosoma sp.
(one-way ANOVA, F, 4 = 8.15, n = 3, p < 0.05), while no marked differences were detected between
D. similis and S. kingi (p > 0.05) (Figure 1B). Moreover, for copepods, a fast and significant increase
of §!13C was found for both Sinocalanus dorrii and cyclopoid copepods during the first three days,
S. dorrii reaching its maximum value on day 3 (—14.68%o), while cyclopoid copepods peaked on day 14
(—=12.34%o0) (Figure 1C).

The 5'3C in R. swinhoei increased rapidly from day 0 to day 14 (from —17.29 to —10.86%o), peaking
on day 14 (unpaired t-test, t = 8.58, df = 3.20, p < 0.01), and then showed a sharp decrease until the end
of the experiment (Figure 1D). For B. aeruginosa, no significant enrichment in 13C was found during the
first nine days, after which it increased until day 14, followed by a slight decline towards the end of the
experiment (Figure 1D). The 513C values of both R. swinhoei (—10.86%o) and B. aeruginosa (—17.36%o)
peaked on day 14, the peak of R. swinhoei being much higher than that of B. aeruginosa (unpaired t-test,
t=11.26, df = 3.90, p < 0.001). At the end of the experiment, however, the two species of snails had
similar 5'°C signature, which did not differ significantly from the starting levels on day 0 (Figure 1D).

The §'3C patterns of bivalves showed relatively modest changes compared with the other
organisms. A strong and significant '3C enrichment was traced for A. lanceolate, with a gradual increase
in 513C after the addition of labelled detritus peaking on day 20 (—22.05%o) (unpaired t-test, t = 7.81,
df = 3.15, p < 0.01), after which it declined slightly until the end of the experiment (Figure 1E). Corbicula
fluminea had a significantly (unpaired t-test, t = 4.99, df = 2.44, p < 0.05) higher §!3C on day 9 than
on day 0 (changing from —25.5 to —24.1%o), but neither A. woodiana nor U. douglasiae showed values
differing significantly from those on day 0, though tended to show the highest values also on day 9
(Figure 1E).
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Figure 1. Variations in 5'3C signatures of pelagic and benthic organisms following addition of labelled
Microcystis detritus to the water column of the mesocosms during the 28-day experiment. Error bars
represent the standard deviation (SD) for three replicate mesocosms. (A) Periphyton (sampled from
the inside wall of the mesocosm), POM (particulate organic matter); (B) cladocerans (Daphnia similis,
Diaphanosoma spp. and Scapholeberis kingi); (C) copepods (Sinocalanus dorrii and cyclopoid copepods);
(D) snails (Radix swinhoei and Bellamya aeruginosa) and (E) bivalves (Anodonta woodiana, Unio douglasiae,
Arconaia lanceolata and Corbicula fluminea). Note the different scales on the y-axes. The filled symbols
represent the §'3C of a given species on days where it was significantly different from the control’s

values (on day 0).

Among the pelagic species, D. similis had the highest A5!3C (12.34 + 1.33) (one-way ANOVA,
Fy10=13.07,n =5, p <0.001) (Figure 2A), while the average AS13C was similar for Diaphanosoma sp.
(8.89 + 0.19) and S. kingi (8.81 + 1.84). Cladocerans tended to have higher A§'3C values than copepods,
the difference being insignificant, though (unpaired t-test, t = 2.17, df = 2.99, p > 0.05) (Figure 2A),
whereas the mean values for S. dorrii and cyclopoid copepods were 6.00 and 7.74, respectively.

For the snail species, A5'3C of R. swinhoei (5.93 + 1.46) tended to be higher than for B. aeruginosa
(3.46 +1.73), but the difference was not significant (unpaired t-test, t = 1.90, df = 3.89, p > 0.05) (Figure 2B).
The bivalve A. lanceolata (3.28 + 0.64) showed a higher potential of utilising Microcystis-derived carbon
(A8'13C) than A. woodiana (1.33 + 0.71), U. douglasiae (0.84 + 0.68) and C. fluminea (1.50 + 0.65) (one-way
ANOVA, F3 g =7.64, n =4, p < 0.01) (Figure 2C), but no clear differences were found among the three
species (one-way ANOVA, F; ¢ = 0.76, n = 3, p > 0.05) (Figure 2C).
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Figure 2. Comparison of >C enrichment (A5'3C) of the different species of cladocerans, copepods,
snails and bivalves on §!3C peak days during the experiment. Data are presented as averages with
SD error bars (n = 3). Note: * indicate significant differences than other species in each group.
(A) cladocerans (Daphnia similis, Diaphanosoma spp. and Scapholeberis kingi) and copepods (Sinocalanus
dorrii and cyclopoid copepods); (B) snails (Radix swinhoei and Bellamya aeruginosa) and (C) bivalves
(Anodonta woodiana, Unio douglasiae, Arconaia lanceolata and Corbicula fluminea).

4. Discussions

We found that addition of 13C-labelled Microcystis detritus to the water column led to increasing
§13C in both pelagic and benthic consumers. This indicates that detritus from cyanobacteria may be
used as a carbon source in both the pelagic and the benthic food web in eutrophic lakes with extensive
growth and blooming of cyanobacteria, such as Lake Taihu.

In our study, §'3C of POM was highest on day 1 (just after addition of the labelled detritus)
and periphyton peaked on day 9. The enrichment of §!3C in periphyton may reflect both uptake of
detritus-derived-!3C from the water column and of labelled detritus settled on the walls. Among the
pelagic filter feeders, both cladocerans and calanoid copepods had elevated §!3C, and especially
Daphnia showed higher §'3C values than calanoid copepods (Figure 2A). This difference may
reflect their different feeding modes, although variations in growth rate may also have contributed.
Calanoid copepods are selective feeders and discriminate between high- and low-quality foods
under optimal food conditions [49], while daphnids are non-selective mechanical sievers [50,51].
However, the typically higher growth rate and tissue turnover rate of cladocerans will also lead to
higher maximum §'3C labelling values than for copepods, because 5'3C in the food resources (POM)
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declined after day 1, which may partially be due to the sinking of undecomposed detritus to the
bottom. Other experimental studies also indicate that cyanobacteria detritus is a useful food source for
crustacean zooplankton [39,52-54].

The snails in our experiment, R. swinhoei and B. aeruginosa, were also affected by the labelled
detritus early in the experiment but to a rather different degree, likely reflecting their different feeding
habits and growth rates. B. aeruginosa generally feeds on the organic-rich surface sediment, whereas R.
swinhoei mainly exploits periphyton [55,56]. The sediment was expected to be less enriched in §'3C,
not least in the beginning of the experiment, due to the presence of an unlabelled pool of organic
matter, which dilutes the §!3C signal (unfortunately, we did not measure it), while periphyton was
quickly enriched to a high value that persisted for 20 days. Moreover, small-sized snails show a much
higher consumption rate per unit of biomass than large-sized snails [57,58] as well as higher tissue
turnover rates. We therefore expected that the smaller R. swinhoei (0.3 + 0.1 g-ind~!) would be more
strongly affected by the labelled detritus than B. aeruginosa (1.6 + 0.1 g-ind~!) early in the experiment,
and this was confirmed by the observations.

Suspended particulate organisms (POM, including algae and detritus) have been reported to be
the main food source for filter-feeding benthic bivalves, and some species have even proved to control
cyanobacteria in laboratory studies [16,59], mesocosm experiments [60] and field investigations [61].
In our study, the 5'3C of all the bivalve species increased gradually after addition of the labelled
Microcystis detritus (though not significantly for all species), indicating that the *C-detritus was
assimilated. The effect of the labelled detritus on the bivalves was modest compared with that on the
other taxa studied and not significantly different from the control (day 0) for two species (A. woodiana
and U. douglasiae), likely reflecting their higher initial biomass and lower growth rate than the other taxa
studied, leading to a slower turnover of unlabelled tissue. The §'3C increase differed among the taxa,
the highest values being recorded for A. lanceolate, which in our study was smaller (18.6 + 12.5 g-ind~!)
than A. woodiana (26.9 +10.2 g-ind ') and U. douglasiae (26.8 + 8.3 g-ind 1), though larger than C. fluminea
(12.0 £ 0.7 g-ind '), which had the second highest 5!3C values. Former studies have demonstrated that
the filtration rate per unit of biomass is generally higher for small-sized A. woodiana than for larger-sized
individuals of this species [62,63], whereas there were no significant differences in the filtration rate
between the similar-sized A. woodiana and U. douglasiae [62]. Consequently, our results indicate that
some (perhaps all) of the common filter-feeding bivalves in Lake Taihu can utilise cyanobacterial
detritus-derived carbon, and this is to some extent supported by field studies showing that the highest
biomass of bivalves occurs in the more eutrophic parts of the lake exhibiting frequent cyanobacteria
blooms [46].

In conclusion, our results suggest that carbon from cyanobacteria detritus can be incorporated
by both pelagic and some benthic consumers and eventually be transferred to higher trophic levels.
Cyanobacterial carbon may thus be considered an important carbon source that supports not only the
pelagic but also the benthic food web during periods with cyanobacteria blooms in eutrophic lakes,
even if the cyanobacteria are not consumed directly. Our study is, however, of too short duration to
elucidate potential toxic effects of feeding on cyanobacteria detritus.
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