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Abstract: We propose a flood risk management model for the Taihu Basin, China, that considers the
spatial and temporal differences of flood risk caused by the different climatic phenomena. In terms of
time, the probability distribution of climatic phenomenon occurrence time was used to divide the
flood season into plum rain and the typhoon periods. In terms of space, the Taihu Basin was divided
into different sub-regions by the Copula functions. Finally, we constructed a flood risk management
model using the Copula-based Bayesian network to analyze the flood risk. The results showed the
plum rain period occurs from June 24 to July 21 and the typhoon period from July 22 to September
22. Considering the joint distribution of sub-region precipitation and the water level of Taihu Lake,
we divided the Taihu Basin into three sub-regions (P-I, P-II, and P-III) for risk analysis in the plum rain
period. However, the Taihu Basin was used as a whole for flood risk analysis in the typhoon period.
Risk analysis indicated a probability of 2.4%, and 0.8%, respectively, for future adverse drainage
during the plum rain period and the typhoon period, the flood risk increases rapidly with the rising
water level in the Taihu Lake.

Keywords: flood risk analysis; plum rain period; typhoon period; copula; bayesian network;
Taihu Basin

1. Introduction

Flood risk management includes flood risk analysis [1–3], vulnerability analysis [4–6], flood disaster
assessment [7–10], and response [11–13]. Several factors can influence the risk of flood disasters,
such as astronomy, meteorology, hydrology, topography, landforms, and human activities. Obviously,
the interaction between such heterogeneous factors cannot be described clearly by using only one
variable and, therefore, the study of multivariable joint distribution models is a significant facet of
research on flood risk analysis [14,15].

Multivariable joint distribution models can be divided into two types [16] based on the
characteristics of marginal distribution functions. There are models with the same marginal
distributions (such as the multivariate normal model) [17–19] and models with different marginal
distributions (such as the meta-Gaussian model) [20–22]. Considering the actual situation of a flood
disaster, the second type of model is more appropriate, as choosing marginal distributions is more
flexible. However, the requirement of correlation between variables in some models (such as the
Farlie-Gumbel-Morgenstern model [20]) limit the application range of such models. Consequently,
the copula function, that has a more flexible structure, has been introduced in flood risk analysis. Then,
researchers study the various aspects of the copula function, such as function type selection, parameter
estimation, and the goodness-of-fit [23–26]. In hydrology, the application of copula function, generally,
includes several parts, which are as follows: (1) frequency analysis of hydro-meteorological variables
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that have multi-feature attributes, such as flood duration, flood volume, and flood peaks [27,28];
(2) the encountering combination problem of different hydrological extreme events, such as an interval
rainstorm combined with river flooding [23,24,29]; and (3) bias correction techniques, that are used
generally in climate and hydrological modeling [30–32]. The study of flood risk analysis involves all
these aspects.

Under the influence of different climatic phenomena, the types of precipitation in the Taihu Basin
are divided into plum rain and typhoon rain. Statistical data indicate that the duration of the plum
rain differs each year, with the average being approximately 20 days. Generally, the plum rain period
starts in the middle of June, and ends in early July. Mid-May is the earliest month when the typhoon
rains starts to affect the Taihu Basin, with the latest being middle November. However, most typhoons
occur between July and September and, particularly, between late August and early September.

The different types of precipitation bring about spatial and temporal differences in flood risk,
which leads to significant challenges in flood management in the basin. Hu et al. [33] constructed the
joint distribution functions of typhoon and plum rain with the Gumbel copula function and pointed
out that the encounter probability of typhoon and plum rain is 9.23% in the Taihu Basin. Taking into
account a particular typhoon’s birthplace, movement path, and rainfall characteristics, Cui et al. [34]
put forward a concept of typhoon impacting the Taihu Basin. This concept points out that there are three
kinds of typhoon which could affect the Taihu basin. It is useful information for typhoon emergency
management. Liu et al. [28] used the Frank copula function to study the correlation between the start
time of the plum rain period and the rainfall amounts of this period in the Taihu Basin. The results
showed that when the plum rain period started early, more attention would need to be paid to flooding.

The above-mentioned studies mainly estimate the hydrological variables encountering
combination problems, and they focus on the entire flood season [25,35,36]. However, compared with
other situations, the encountering probability of hydrologically extreme events is small, as shown in
previous study results. For example, in the Taihu Basin, the probability of only plum rain arising or
only a typhoon occurring is 90.77%, compared with the occurance of plum rain and typhoons [33].
Accordingly, the primary objectives of this research are; (1) to analyze the temporal characteristics of
plum rain and typhoons in the research areas and to divide the flood season into the plum rain period
and the typhoon period; (2) to study the precipitation heterogeneous in different climatic phenomena
and identify the flood risk during the different periods; and (3) to build a proper copula-based Bayesian
network model for flood control in the Taihu Basin.

2. Study Area and Data

2.1. Study Area

As shown in Figure 1, the Taihu Basin is located in the delta region of the Yangtze River of China.
The total area of the Taihu Basin is approximately 36,895 km2. The Taihu Lake, with a water surface area
of 2336.8 km2, is located in the center of the basin. The basin lies in a subtropical zone, with the climate
being controlled by the summer monsoon. The average annual precipitation is 1177 mm, concentrated
mainly in the flood season. The upper reaches of the Taihu Basin are mountainous areas, whereas the
lower reaches are mostly plains. In the flood season, this unusual terrain (high on all sides and low in
the middle) leads to upstream floods and basin precipitation confluence in the plains (urbanized areas).
Consequently, flood disasters can occur easily. According to geographic and hydrological conditions,
the Taihu Basin is usually divided into eight hydrological regions [36]. Detailed information on the
eight hydrological sub-regions is listed in Table 1.
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Table 1. Information on eight hydrological sub-regions.

ID Name Areas Annual Precipitation

I Hu Xi 7897 km2 1169.1 mm
II Wu Cheng Xi Yu 3615 km2 1118.5 mm
III Yang Cheng Dian Mao 4314 km2 1142.0 mm
IV Pu Xi 2165 km2 1159.9 mm
V Pu Dong 2301 km2 1153.2 mm
VI Hang Jia Hu 7480 km2 1247.0 mm
VII Zhe Xi 5931 km2 1430.4 mm
VIII Taihu Lake 3192 km2 1183.4 mm

2.2. Data

Plum rain data and daily Taihu Lake water level data, from 1962 to 2011, were obtained from
the Taihu Basin Authority of Ministry of Water Resources (TBA). The daily precipitation data of 67
hydrological stations, from 1962 to 2011, were also provided by the TBA. Typhoon data from 1962 to
2011 were derived from the basic data sets of Northern Pacific typhoons in Shanghai Typhoon Institute,
China Meteorological Administration.

3. Methodology

3.1. Flood Season Staging Based on the Different Climatic Phenomena

Under the influence of continental polar air masses, maritime tropical air masses, and tropical
cyclones, the precipitation in the Taihu Basin include, plum rain and typhoon rain. The flood season
can be divided into the plum rain period and the typhoon period according to the climatic phenomenon
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occurrence times. The intensity of rainfall is small in the plum rain period but the duration is
long, whereas, during the typhoon period, the rainfall intensity is larger and the duration is short.
Precipitation with such varying characteristics obviously leads to differing flood risks, as well as
significant challenges to flood management in the basin.

3.1.1. Distribution Function of Plum Rain and Typhoon Occurrence Times

The start time of the plum rain period (STP) and end time of the plum rain period (ETP)
and the initial time when typhoon begins to affect the Taihu Basin (ITT) were chosen as indices
to describe the occurrence time rule of plum rain, and typhoon, respectively. Norm distribution,
Log-norm distribution, Gamma distribution, Beta distribution, Logistics distribution, and Weibull
distribution, the six distribution functions commonly used in hydrology and meteorology, were chosen
as candidate functions, and the maximum likelihood method was used for parameter estimation.
The Kolmogorov-Smirnov (K-S) goodness-of-fit hypothesis test was applied to test the six distribution
functions. In addition, the Probability Point Correlation Coefficient (PPCC), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and the Deterministic Coefficient (DC) were used to determine
the most suitable probability density function (PDF) and cumulative distribution function (CDF) for
relevant random variables (STP, ETP, and ITT). The definition of each test method is as follows:

PPCC =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2 n∑

i=1
(yi − y)2

(1)

RMSE =
1
n

√√ n∑
i=1

(xi − yi)
2 (2)

MAE =
1
n

n∑
i=1

∣∣∣xi − yi
∣∣∣ (3)

DC = 1−

n∑
i=1

(xi − yi)
2

n∑
i=1

(xi − x)2
(4)

where xi and yi represent the empirical frequency, and theoretical frequency, respectively; x and y
are the mean of empirical frequency and theoretical frequency, respectively; and n is the number
of samples.

3.1.2. Flood Season Staging and Results Verification

We chose the point-in-time when the STP cumulative is 90% as the starting point of the plum
rain period, and the point-in-time when the ITT cumulative distribution is 90%, as the end time of
the typhoon period (the 90% percentile is the closest to the actual situation). The coefficient ω was
proposed to calculate the time when the plum rain period ended and the typhoon period started.
We determined the time node of the demarcation point between the plum rain period and the typhoon
period using this coefficient. The time node with the maximum ω value was chosen. The coefficient ω
can be calculated as follows:

ω = Fplum

(x)
× (1− Ftyphoon

(x)
) (5)

whereω represents the contribution rate of plum rain and typhoon to precipitation, Fplum
(x)

is the CDF

of the ETP, and Ftyphoon
(x)

is the CDF of the ITT.
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The flood season staging results were tested against the Taihu Lake water level, which is the
response factor of precipitation. Considering the actual situation, we chose the mixture normal
distribution to fit the time when the water level of the Taihu Lake exceeds the warning water level
(TWL). The warning water level of Taihu Lake is 3.8 m (according to the flood control project of the
Taihu Basin [37]). The mixture normal distribution definition is as follows:

X ∼ α1N(µ1, σ1
2) + α2N(µ2, σ2

2) (6)

where α1 and α2 are the weight coefficients (α1 + α2 = 1), µ1 and µ2 are the means of the samples,
and σ1 and σ2 are the mean square deviations of the samples.

3.2. Division of Precipitation Sub-Region Based on Hydrological Regionalization

Optimal division of the precipitation sub-regions was carried out in two steps, namely; (1) clustering
of the hydrological sub-region, and (2) selection of the optimal precipitation sub-region division.
The first step is based on the division of eight sub-regions (I, II, III, IV, V, VI, VII, VIII), which is the result
of hydrological regionalization. In any hydrological sub-region, the geographical and hydrological
conditions are the same, and the construction and planning of the water conservancy projects are
mutually compatible. However, the different hydrological sub-regions can have similar precipitation
characteristics. To respectively divide the precipitation sub-regions in the plum rain period and the
typhoon period, correlation analysis methods were used. The second step is based on the relationship
of regional precipitation and the Taihu Lake water level, which plays a significant role in flood control.
The Copula functions were applied in the selection of optimal precipitation sub-regions division.
This method not only maintains the hydraulic connection between the sub-regions, but also considers
the spatial distribution of precipitation.

3.2.1. Clustering of Hydrological Sub-Regions Based on the Correlation Analysis of Precipitation

First, the Thiessen polygon method was used to calculate precipitations of the eight sub-regions
during the plum rain and typhoon periods. Next, Person correlation, Spearman correlation, Kendall
correlation, which are the three correlation analysis methods generally used in hydrology and
meteorology assessments, were chosen to analyze the precipitation correlation between each sub-region.
Finally, the sub-regions with strong precipitation correlations were merged successively.

3.2.2. Select Optimal Precipitation Sub-Regions Division by Copula Functions

The optimal precipitation sub-region division, which best reflects the relationship between
precipitation and water level, was selected using Copulas. Copulas are defined as multivariate
distribution functions with uniform margins on the interval 0 to 1. Based on Sklar’s theorem [38],
copulas are capable of linking the joint CDF to its marginal distribution functions [39].

The joint distribution of sub-region precipitations and the Taihu Lake water level can be expressed
by a copula as follows:

H(x1, x2, · · · , xn, y) = Cθ(F1(x1), F2(x2), · · · , Fn(xn), F(y)) (7)

where H is a joint distribution, n is the number of precipitation sub-region, Fi(xi) represents the marginal
distribution of the i-th sub-region precipitation, F(y) represents the marginal distribution of the Taihu
Lake water level, and Cθ is the copula CDF with parameter θ.

We selected four widely used Archimedean copulas (Clayton, Gumbel, Frank, and Joe copulas) as
the candidate functions to model the joint distribution of regional precipitation and the Taihu Lake
water level. The four Archimedean copula functions are defined in Table 2 [39].
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Table 2. Function expressions of Archimedean copulas.

Family Parameter Space θ Generatorϕ(t) Expression C(u1,u2,· · · ,ud)

Clayton [0,∞) 1
θ (t
−θ
− 1)

( d∑
j=1

u−θj ) + 1− d

−
1
θ

Gumbel [1,∞) (− ln t)θ exp

−
 d∑

j=1
(− ln u j)

θ


1
θ


Frank [0,∞) − ln e−θt

−1
e−θ−1

−
1
θ ln

1 + (
d∏

j=1
e−θu j − 1)/(e−θ − 1)d−1


Joe [1,∞) − ln(1− (1− t)θ) 1−

1−
d∏

j=1

[
1− (1− u j)

θ
]

1
θ

NOTES: u1, u2, · · · , ud are independent uniform distributions.

Estimating parameter θ of the Archimedean copulas can be done by using different parametric
and semi-parametric methods, such as Kendall’s τ method, Spearman’s ρ method and maximum
likelihood-based methods (MLs). MLs include the full maximum likelihood method (FML), the inference
for margins method (IFM), and the canonical maximum likelihood method (CML). We used the IFM
for parameter estimation [40,41].

Several commonly evaluation criteria were used to select the optimal copula functions [42], such as
the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The definition of
the evaluation criteria are as follows:

AIC = −2 ln(L) + 2k (8)

BIC = −2 ln(L) + k ln(n) (9)

where L is the likelihood function, k is the number of joint distribution function parameters, and n is
the number of samples.

The optimal precipitation sub-region division of the plum rain period and the typhoon period
were determined by comparative analysis of the relationship between sub-region precipitations and
the Taihu Lake water level under different hydrological sub-region clustering situations.

3.3. Flood Risk Management Based on Copula-Based Bayesian Network

Based on a posterior knowledge input, the backward reasoning function of the Bayesian network
was utilized to conduct simulation calculations of the water level states in some certain precipitation
situations that could occur in future during the plum rain and the typhoon periods [43,44].

3.3.1. Setting of Flood Disaster Situations

The flood control planning of the Taihu Basin indicates that, the flood control standards of the
basin and sub-regions are 100, and 50 years, respectively after 2025. The warning water level of Taihu
Lake is 3.8 m and the water level with safety guarantee of the Taihu Lake is 4.65 meters [37]. The results
of the precipitation sub-region division indicated two categories, namely: (1) the spatial distribution of
precipitation of the entire basin is assumed homogeneous; therefore, we chose the basin flood control
standard, the warning water level, and the water level with safety guarantee of Taihu Lake to design
the flood disaster situation; (2) dividing the precipitation of the basin into different regions indicates
that the spatial distribution of precipitation is heterogeneous; therefore, the flood control standards
of those sub-regions and the warning water level of Taihu Lake should be used to design the flood
disaster situation.
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3.3.2. Establishment of Bayesian Network

Bayesian networks are probabilistic models that describe the conditional dependencies of a set
of random variables by means of directed acyclic graphs (DAG) [45]. The joint density for Bayesian
networks can be expressed as follows: [46–48]

fX1,··· ,Xn(x1, · · · , xn) =
n∏

i=1

fXiPa(Xi)
(xiXPa(Xi)

= x) (10)

where XPa(Xi) = x is a shorthand notation for XPa1(Xi) = xPa1(Xi), . . . , XPam(Xi) = xPam(Xi) and Pa(Xi)
indicate the set containing m parents of node Xi. For nodes without parents, Pa(Xi) is an empty set so
that f XiPa(Xi) = f Xi.

Identifying network nodes, developing the Bayesian network, and assigning occurrence
probabilities to network nodes are three crucial steps to build a Bayesian network model. They can all
be determined from expertise or calculated by machine learning methods. We conducted the three
steps as follows:

Step 1: Identifying network nodes. The flood disasters in the Taihu Basin are caused mainly by
heavy precipitation and high water levels. Therefore, we selected the water level of Taihu Lake and the
precipitation of the Taihu Basin as the network nodes.

Step 2: Developing a network structure. As the terrain of Taihu Basin is unusual (high sides and
low middle area) and a number of the flood disasters have occurred (1954, 1983, 1991, 1999), expertise,
and not machine learning, was considered more suitable to construct the network.

Step 3: Assigning occurrence probabilities to network nodes. The future flood control standard
of the basin is more than 100 years, implying limited observed data. Therefore, instead of expert
experience, the copula functions (machine learning method) were used to calculate the occurrence
probabilities of network nodes [46].

This modeling work not only takes advantage of expertise but also avoids the limited knowledge
of experts. It improves the efficiency of Bayesian network establishment and can reflect the actual
situation with a limited amount of data.

The framework of this study is shown in Figure 2. The programs of this paper such as copula
functions were implemented in R programming language.
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4. Results

4.1. Results of Flood Season Staging

Table 3 lists the parameters of six reference distributions. The results of the K-S test and other
goodness-of-fit tests are shown in Table 4, and Table 5, respectively. Figure 3 shows the probability
density functions of STP, ETP, ITT, and TWL.

Table 3. Parameters of six reference distributions.

Param Normal Lognormal Gamma Weibull Logistic Beta

STP
Param#1 189.10 5.24 414.96 21.10 189.02 200.10
Param#2 9.27 0.05 2.19 193.52 5.27 186.15

ETP
Param#1 165.50 5.11 407.16 22.62 166.03 227.00
Param#2 8.09 0.05 2.46 169.15 4.39 273.66

ITT
Param#1 220.86 5.38 39.76 6.83 220.92 15.05
Param#2 34.49 0.16 0.18 235.55 19.65 9.80

NOTES: Param#1 and Param#2 are the location and scale parameters of each distribution.

Table 4. K-S test results of random variables with six reference distribution.

Statistic Normal Lognormal Gamma Weibull Logistic Beta

STP
acceptance accept refuse accept accept accept refuse

D 0.116 0.122 0.120 0.083 0.095 0.126

ETP
acceptance accept accept accept refuse accept accept

D 0.079 0.070 0.071 0.120 0.074 0.080

ITT
acceptance accept accept accept refuse accept refuse

D 0.050 0.056 0.051 0.075 0.053 0.064

Table 5. Goodness-of-fit tests for start time of the plum rain period (STP), plum rain period (ETP),
and initial time when typhoon begins to affect the Taihu Basin (ITT).

Distribution PPCC MAE RMSE DC

STP

Normal 0.93806 0.07608 0.00664 0.99884
Lognormal 0.86239 0.08376 0.00793 0.99834

Gamma 0.87721 0.08127 0.0075 0.99852
Weibull 0.98716 0.05248 0.00314 0.99974
Logistic 0.92573 0.0717 0.00616 0.999

Beta 0.89938 0.07707 0.0068 0.99878

ETP

Normal 0.97582 0.04382 0.00245 0.9998
Lognormal 0.98705 0.0401 0.00201 0.99987

Gamma 0.98544 0.04088 0.00212 0.99985
Weibull 0.81086 0.08068 0.00728 0.99825
Logistic 0.98186 0.05228 0.00358 0.99958

Beta 0.97941 0.04404 0.00248 0.9998

ITT

Normal 0.97432 0.02271 0.00069 0.99995
Lognormal 0.94455 0.0288 0.00105 0.99987

Gamma 0.96392 0.02624 0.00064 0.99991
Weibull 0.93664 0.03021 0.00109 0.99985
Logistic 0.9652 0.02909 0.00112 0.99985

Beta 0.97077 0.02275 0.00085 0.99994
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Tables 4 and 5 show that the Weibull distribution, Log-normal distribution, and Normal distribution
are the most suitable distribution functions for STP, ETP, and ITT, respectively (these results are similar
to the previous study [33]). From Figure 2a–c, shows that the plum rain period is from June 24 (175th
day, when the STP cumulative is 90%) to July 21 (202nd day, with the maximum ω value) and the
typhoon period is from July 22 (203rd day) to September 22 (265th day, when the ITT cumulative
is 90%).

Three conclusions can be drawn from Figure 3d, as follows: (1) during 170th to 180th days,
the probability of the water level of Taihu Lake exceeding the warning water level increases rapidly,
indicating that precipitation increases during this period. The June 24 (175th day) serving as the start
time of the plum rain period is therefore rational; (2) on July 10 (191st day), the probability of the water
level of the Taihu Lake exceeding the warning water level (3.8 m) is highest during the plum rain
period. On August 4 (216th day), the probability of the actual water level of Taihu Lake exceeding the
warning water level is lowest. This means that the demarcation point of the plum rain period and
the typhoon period is after July 10 and before August 4. Therefore, July 21 (202nd day) is considered
reasonably as the end of the plum rain period and start of typhoon period; (3) The shape of the PDF of
TWL during the plum rain period (175th to 202nd day) is high and thin, whereas during the typhoon
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period (203rd to 265th day) it is low and fat. This phenomenon is consistent with the precipitation
characteristics of the plum rain period and the typhoon period.

4.2. Results of Hydrological Sub-Region Clustering

As shown in Figure 4a–c, as regards the geographic topological relation, for the plum rain period,
the eight hydrological sub-regions were merged into four precipitation sub-regions (I and II, III and
VIII, IV and V, VI and VII). As shown in Figure 4d–e, during the typhoon period, the eight hydrological
sub-regions were merged into four precipitation sub-regions (I and II, III and VIII, IV and V, VI and VII).
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Subsequently, the second division was implemented. As shown in Figure 5a–c, the figures show
that the precipitation correlation between the III and VIII sub-region and IV and V sub-region is still
high. Therefore, the III and VIII sub-region and IV and V sub-region were merged in the plum rain
period. Figure 5d–f shows that the precipitation correlation between every pair of the four sub-regions
is strong, indicating that the spatial heterogeneity of precipitation is not apparent in the typhoon period.
However, to compare with the plum rain period, the second division of the typhoon period was kept
consistent with that of the plum rain period.

After two precipitation sub-region divisions, the four schemes were calculated for the plum rain
period, and typhoon periods, respectively. The joint distribution of regional precipitation and the Taihu
Lake water level were calculated by Archimedean copulas in each scheme. The results are shown in
Figure 6.
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As shown in Table 6, in the plum rain period, the Clayton copula was selected to be the best-fitting
copulas for Scheme 1, Scheme 2, and Scheme 3, whereas the Joe copula best fits the data in Scheme 4.
In the typhoon period, the Gumbel copula was selected for Scheme 1, the Clayton copula for Scheme 2
and Scheme 3, And the Joe copula for Scheme 1.

Table 6. Goodness-of-fit tests for the copula functions in the plum rain and typhoon periods.

Time Copulas
AIC BIC

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 1 Scheme 2 Scheme 3 Scheme 4

Plum rain
period

Clayton −181 −188 −189 −176 −175 −182 −183 −171
Gumbel −174 −180 −175 −178 −168 −174 −169 −173
Frank −164 −172 −173 −176 −158 −166 −167 −170

Joe −158 −167 −164 −181 −152 −161 −158 −175

Typhoo-n
period

Clayton −1124 −1197 −1193 −1775 −1113 −1185 −1181 −1763
Gumbel −1131 −1176 −1179 −1792 −1120 −1164 −1168 −1780
Frank −1045 −1123 −1133 −1753 −1033 −1112 −1121 −1741

Joe −989 −1062 −1080 −1803 −977 −1051 −1069 −1792

Subsequently, the optimal divisions for plum rain period and typhoon period were selected
according to the optimal copula of each scheme. Based on the minimum value criterion of AIC and
BIC, it is clear that the Scheme 3 and Scheme 4 best describe the relation of the precipitation and the
Taihu Lake water level during the plum rain period, and the typhoon period, respectively. Accordingly,
the final results of precipitation sub-region division as follows: (1) in the plum rain period, the Taihu
Basin is divided into P-I sub-region, P-II sub-region, and P-III sub-region; (2) in the typhoon period,
the Taihu Basin as a whole for flood risk analysis (Figure 7).
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Joe copula.

4.3. Risk Management Model for Flood Control and Drainage in the Taihu Basin

4.3.1. The Result of Flood Disaster Situation Setting

The conducive and adverse drainage situations were designed according to the flood control
planning of the Taihu Basin drawn up by the TBA.

In the plum rain period, when the water level of Taihu Lake exceeds the warning water level, it is
unfavorable for flood drainage as long as a rainstorm with a return period over 50 years occurs in one
of the four sub-regions. The 16 situations are shown in Table 7.

In the typhoon period, it is unfavorable for flood drainage if a rainstorm occurs in the Taihu Basin
with a return period of more than 100 years, and the water level of Taihu Lake exceeds the warning
water level. Alternatively, it is unfavorable if a rainstorm occurs in the Taihu Basin with a return period
between 50 and 100 years and simultaneously, the Taihu Lake water level exceeds the safety guarantee
level. The nine situations are shown in Table 8.
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Table 7. Calculation of encounter probability during the plum rain period.

Conducive Drainage Situation

P-I precipitation Low Low Low Low High Low High High High
P-II precipitation Low Low Low High Low High Low High High
P-III precipitation Low Low High Low Low High High Low High

Taihu Lake water level ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Encounter probability 12.183 81.978 0.956 1.019 1.142 0.143 0.17 0.052 0.001

Adverse Drainage Situation

P-I precipitation High Low Low High High High Low
P-II precipitation High Low High Low High Low High
P-III precipitation High High Low Low Low High High

Taihu Lake water level ↑ ↑ ↑ ↑ ↑ ↑ ↑

Encounter probability 0.021 0.878 0.411 0.171 0.58 0.157 0.137

NOTES: Low means precipitation with a return period of less than 50 years; High means precipitation with a return
period of more than 50 years. The upwards, arrow and down arrow symbols mean the Taihu Lake water level is
lower, or higher than the warning water level, respectively. The encounter probability is expressed as percentage.

Table 8. Calculation of encounter probability during the typhoon period.

Conducive Drainage Situation Adverse Drainage Situation

Taihu Basin
Precipitation Low Middle Middle Low Low High High Middle High

Taihu Lake
water level ↓ ↔ ↓ ↔ ↑ ↓ ↔ ↑ ↑

Encounter
probability 86.52 0.74 8.44 2.25 1.21 0.04 0.01 0.75 0.05

NOTES: Low means precipitation with a return period of less than 50 years; middle means precipitation with a
return period between 50 and 100 years. High means precipitation with a return period of more than 100 years.
The downwards arrow symbol means the Taihu Lake water level is lower than the warning water level. The
upwards arrow symbol means the Taihu Lake water level is higher than the water level with safety guarantee. The
double arrow symbol means the Taihu Lake water level is between the warning water level and the water level with
safety guarantee.
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4.3.2. The Result of Copula-Based Bayesian Network Model

As shown in the Tables 7 and 8, future total probabilities for adverse drainage situations in the
Taihu Basin during the plum rain period and the typhoon period are 2.4%, and 0.8%, respectively.
The Bayesian network structures of the flood risk management model during the plum rain period
and the typhoon period are shown in Figures 8 and 9. In the plum rain period, the Bayesian network
structures of the flood risk management model has five network nodes (the circles in Figure 8). The P-I
sub-region precipitation is a parent node and the Taihu Basin drainage situation is a child node, whereas
the others are norm nodes. The directed edges between the network nodes represent correlations
between variables, and the tables beside the network nodes are occurrence probabilities in different
situations. In the typhoon period, the Bayesian network structures of the flood risk management model
has three network nodes (the circles in Figure 9). The precipitation of the Taihu Basin is a parent node,
the Taihu Basin drainage situation is a child node, and the Taihu Lake water level is a norm node.
The means of the symbols in Figure 9 are the same as those of Figure 8.Water 2019, 11, x FOR PEER REVIEW 14 of 20 
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5. Discussion

5.1. Rationality Analysis of the Precipitation Sub-Region Division Results

To determine whether the precipitation sub-region division results are reasonable, we analyzed
the amount and structure of precipitation in the Taihu Basin during the different periods.

The precipitation concentration degree (PCD) and the precipitation concentration period (PCP)
are new parameters characterizing the precipitation structure [49], calculated as follows:

PCDi =
√

R2
xi + R2

yi/RiPCPi = arctan(Rxi/Ryi)Rxi =
N∑

j=1

ri j sinθ j; Ryi =
N∑

j=1

ri j cosθ j (11)

where PCDi, and PCPi, respectively, are the precipitation concentration degree and concentration
period in the research time; Ri is the total precipitation in the research time, and rij is the precipitation
in five days. θj is the corresponding azimuth angle in the research time (the entire research time is
360◦); i is the year (i = 1954, . . . ,2011); j is a five day series in the research time.

We drafted isograms (precipitation amount, PCD, PCP), which are useful in demonstrating the
spatial and temporal heterogeneity of precipitation.

According to Figure 10a, in the flood season, more precipitation occurs over the west and the south
of the basin, and the rainfall over the south is higher than over the north. There are three precipitation
grades from the southwest to the northeast. However, it is vastly different in the plum rain period.
As shown in Figure 10b, there are two maximum precipitation regions in the northwest and southwest
of the Taihu Basin. Figure 10c shows that the spatial distribution of precipitation is homogeneous,
except for the VII sub-region in the typhoon period. Figure 10d–f shows that the PCD values and
spatial distribution differ during the different periods. In the flood season, the PCD value shows a
decreasing trend from northwest to southeast. However, the distribution of the PCD maximum regions
is dispersive in the plum rain period and typhoon period. Figure 10h–j shows that the average PCP of
the plum rain period, the typhoon period, and the flood season appear in the 3rd pentad (early July),
the 6th pentad (late August) and the 15th pentad (middle July), respectively. In conclusion, if the whole
flood season was selected to study the heterogeneity of precipitation, the precipitation characteristics
of the different climatic phenomena would not be revealed.
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Figure 10. Isogram of precipitation amount (a–c), precipitation concentration degree (PCD) (d–f),
and precipitation concentration period (PCP) (g–i) in the Taihu Basin.

The water level of the Taihu Lake plays a significant role in flood control. The amount of
precipitation is the reason for the Taihu Lake water level. According to the Figures 7a and 10b, the result
of precipitation sub-region division in the plum rain period corresponds to the spatial distribution of
precipitation amount. Similarly, the result of precipitation sub-region division in the typhoon period
corresponds to the spatial distribution of precipitation amount, as shown in Figures 10c and 7b.

5.2. Risk Analysis of Flood Disaster in the Taihu Basin During Different Periods

5.2.1. Flood Analysis in the Plum Rain Period

Based on a posterior knowledge input, the backward reasoning function of the Bayesian network
was used to conduct simulation calculations of the Taihu Lake water level states in some certain
precipitation situations that could occur in the plum rain period [50,51]. These precipitation situations
are shown in Table 9.
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Table 9. Situation-setting of precipitation in the plum rain period.

Situation P-I Precipitation P-II Precipitation P-III Precipitation Taihu Lake Water Level

A Is High High or Low? High or Low? ↑or↓?
B Is High Is High High or Low? ↑or↓?
C Is High Is High Is High ↑or↓?

NOTES: The definitions of “Low”, “High” “↑” and “↓” are the same as for Table 7.

According to Figure 11a,b, the probability of the Taihu Lake water level rising beyond 3.8 m
increases dramatically when the P-I precipitation sub-region encounters a rainstorm with a return
period of more than 50 years, which in turn, increases the risk of flood disaster up to 40.5%. According
to Figure 11b,c, the probability of the Taihu Lake water level exceeding 3.8 m increases again when
the P-I precipitation sub-region and P-II precipitation sub-region encounter a rainstorm with a return
period of more than 50 years at the same time. In such instances, the risk of flood disaster in the Taihu
Basin increases to 91.9%. According to Figure 11c,d, when all precipitation sub-regions encounter the
rainstorm with a return period over 50 years simultaneously, the probability of flood disaster increases
from 91.9% to 95.5%.
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Figure 11. The priori reasoning of Bayesian network (a), and the posterior probability of various
precipitation situations (b–d) in the plum rain period.

In the plum rain period, the P-I precipitation sub-region and P-II precipitation sub-region are
considered maximum precipitation regions. These precipitation sub-regions in the upper reaches of
the Taihu Basin are hilly areas, with fast water flow and a short flow concentration time. Furthermore,
the runoff of P-I precipitation sub-region and P-II precipitation sub-region mostly flows into the
Taihu Lake. However, the P-III precipitation sub-region is located in the lower reaches of the Taihu
Basin, which are plain areas with slow water flow. Accordingly, more attention should be paid to the
precipitation of P-I precipitation sub-region and P-II precipitation sub-region during the plum rain
period. However, the precipitation of P-III precipitation sub-region should be monitored continuously,
as it could cause poor drainage in the lower reaches.
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5.2.2. Flood Analysis in the Typhoon Period

The precipitation situations of the typhoon period are as Table 10 shown. According to Figure 12a,b,
when the Taihu Basin encounters a rainstorm with a return period of less than 50 years, there is little
likelihood of a flood disaster. However, as shown in Figure 12b,c, when the Taihu Basin encounters a
rainstorm with a return period between 50 years and 100 years, the probability of the Taihu Lake water
level being 3.8 m to 4.65 m is up to 85%. This increases the risk of flood disaster slightly. According
to Figure 12c,d, when the Taihu Basin encounters a rainstorm with a return period of more than
100 years, the probability of the Taihu Lake water level rising above 4.65 m increases dramatically and
the probability of flood disaster in the Taihu Basin increases from 7.5% to 60%.

Table 10. Situation-setting of precipitation in the typhoon period.

Situation Taihu Basin Precipitation Taihu Lake Water Level

A Is Low ↑ or↔ or ↓?
B Is Middle ↑ or↔ or ↓?
C Is High ↑ or↔ or ↓?

NOTES: The definitions of “Low”, “Middle”, “High”, “↑”, “↔” and “↓” are the same as Table 8.
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In the typhoon period, the spatial heterogeneity of precipitation is not obvious. Therefore,
we focused on precipitation over the entire basin. In particular, rainstorms with a return period of
more than 100 years should generally be monitored.

6. Conclusions

To analyze the flood disaster risk in the Taihu Basin, we divided the flood season into the plum
rain period and the typhoon period, due to different precipitation heterogeneous in different climatic
phenomena. Subsequently, we divided the Taihu Basin into precipitation sub-regions by using Copula
functions. Finally, based on Bayesian network theory, we proposed a risk management model for
flood control in the Taihu Basin to analyze the flood disaster during the different periods. The main
conclusions of this study are as follows:
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1. Due to meteorological reasons, the occurrence time of plum rain and typhoon present regularity,
resulting in uneven distribution of precipitation during the flood season. Our flood season staging
indicated that the plum rain period is from June 24 to July 21 and the typhoon period is from July
22 to September 22.

2. The spatial heterogeneity of precipitation is different under the influence of the different climatic
phenomena. In the plum rain period, the Taihu Basin is divided into three precipitation sub-regions
(P-I, P-II, and P-III). In the typhoon period, the Taihu Basin serves as a whole for flood risk analysis.

3. In future, the occurrence probability of adverse drainage situations in the Taihu Basin during the
plum rain period and the typhoon period is 2.4%, and 0.8%, respectively. Furthermore, the risk
increases rapidly as the Taihu Lake water level rises.

4. Although the annual precipitation of the Taihu Basin is concentrated in the flood season,
the precipitation heterogeneous varies with the differing climatic phenomena. This implies that
the risks of flood disaster also differs. Consequently, appropriate emergency plans should be
developed to prevent and manage flood disasters occurring in the different periods during the
flood season.

In this study, the Taihu Basin was used as a case study to analyze the flood risk of different climatic
phenomena. Further research, employing the proposed methodology of our study, could be conducted
in the coastal areas of East Asia, such as Taiwan, the Liaodong Peninsula, and Japan that are also
affected by typhoons and plum rains. Given the considerable risk of flooding in the coastal areas of
East Asia, it is crucial that flood season staging scheduling for flood control be implemented.
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