* water m\py

Article

Assessing Hydrological and Sedimentation Effects
from Bottom Topography Change in a Complex
River-Lake System of Poyang Lake, China

Xuchun Ye 1*{J, Qiang Guo !, Zengxin Zhang 2 and Chongyu Xu 3

1
2

School of Geographical Sciences, Southwest University, Chongqing 400715, China

State Key Laboratory of Hydrology—Water Resources and Hydraulic Engineering, Hohai University,
Nanjing 210098, China

Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway
Correspondence: yxch2500@163.com

check for

Received: 2 June 2019; Accepted: 16 July 2019; Published: 18 July 2019 updates

Abstract: In recent years, a dramatic decline in Poyang Lake water levels and a shrinking water
surface have raised concerns about water security and the wetland ecosystem. Changes in bottom
topography due to sand mining activities in the lake was supposed to be one of the influencing factors
of these changes. In response to this issue, the current study analyzed the change of lake bottom
topography from observed digital elevation model (DEM) data, and quantitatively assessed the
spatial and temporal responses of lake hydrology based on the framework of the neural network and
the sediment effect was examined afterward. Results showed a total volume of 11.54 x 108 m3/year
(about 0.96 x 108 m3/year or 1.58 x 108 t/year sediment) in net change of lake bottom topography in
recent years, among which 97% was directly exported by commercial sand mining. During the study
period, 2000-2011, intensive sand mining extended the central part of Poyang Lake and widened and
deepened the outflow channel of the northern lake. This great change of lake bottom topography
caused an average annual increase of 182.74 m3/s of lake outflow and a decline of 0.23 m-0.61 m in
water levels across the lake. However, lake water levels are not consistent and show remarkable spatial
and seasonal differences. The effects of changes in lake bottom topography on lake hydrological
processes continue to grow as sand mining activities in the lake continue. More research on the
environmental impacts is required for sustainable management of the lake ecosystem.

Keywords: lake bottom topography; sand mining; hydrological effect; sedimentation; neural network
model; Poyang Lake

1. Introduction

The properties of hydrology and water quality are of great importance for maintaining the stability
of a river or lake ecosystem. For natural lakes, the bottom topography of the lake basin is the result of
long-term natural evolution and human activities. Changes in lake bottom topography not only directly
alter lake hydrological and hydrodynamic conditions such as lake water level, flow rate and lake
volume [1,2], but also affect the lake water environment, wetland ecology, flood and drought events
and even shipping security [3,4]. In response to the exacerbated global climate change and human
activities, many lakes throughout the world have undergone great changes in their size, morphology
and eco-environment during the past decades, and as a result processes of hydrology and sediment in
the lakes have dramatically changed [5-8].

The Poyang Lake is the largest freshwater lake in China. It is one of only two lakes that still
naturally connect to the Yangtze River. The lake wetlands are registered as internationally important
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habitats for a large number of rare and endangered wintering migrant birds, such as the white crane
and Oriental white stork. Unfortunately, Poyang Lake has experienced seasonal, extreme low water
levels that have persisted since 2000 and the lake surface has remarkably shrunk, which seriously
threats the local water supply and aquatic habitats [9-12]. Many studies are concerned with the
causes of this phenomenon, including seasonal hydrological droughts exacerbated by the Three Gorges
Dam (TGD) operation (e.g., [13-16]) and the declining regional precipitation in the Yangtze River
basin [17,18]. Recently, one of the most important influencing factors considered was the change of
bottom topography due to sand mining activities in the lake [2]. It was reported that since the set-up of
a regulation forbidding sand mining in the mainstream of the Yangtze River in 2000, numerous dredges
have rushed into the Poyang Lake. Based on the statistical number of sand mining vessels from limited
remote sensing images and the Ship Affairs Department of Jiujiang City, Jiang et al. [19] pointed out
that the magnitude of sand mining in Poyang Lake was about 2154.3 Mt with a total mining area of
260.4 km? during the period 2000-2010. However, it should be noted that this calculation may have
large errors since these vessels are changing at any time of the year and many of them are trying to
escape from management of local government. Generally, accurate estimation of the magnitude of
sand mining in Poyang Lake is quite a challenge. In addition, subsequent hydrological effects from
sand mining may be inconsistent and show great spatial and temporal differences in this large lake.

Changes in lake morphology is widely prevalent all over the world, which will cause remarkable
impacts on lake hydrological, sedimentation and eco-environmental processes. Also, sand mining
activities in rivers, lakes and coastal areas are quite common. However, few studies have considered
the combined effects of sand mining on local hydrology and sediment changes under different time
scales [20]. Up to now, detailed changes of lake bottom topography and its response to sand mining
activities was not revealed for Poyang Lake. How alterations in lake bottom topography effect
hydrological and sedimentation processes and their spatiotemporal differences is still an open question.
Furthermore, a potential developing trend of these effects, which are particularly important for the
future scientific management of lake water resources and ecological protection, remains unknown
in this lake region. In response to these scientific issues, the current study evaluates the effects of
changes in bottom topography in Poyang Lake on hydrological and sediment processes from 2000-2011.
Specifically, we aim to investigate: (1) the change of lake bottom topography and its response under
extensive sand mining activities in recent years; (2) the effect of lake bottom topography changes on
spatial and temporal variations of lake water levels and outflow; and (3) the effect of lake bottom
topography changes on lake sedimentation processes and budget.

2. Material and Methods

2.1. Study Area

Poyang Lake (28°40'-29°46" N, 115°49'-116°46" E) is located on the south bank of the
middle-to-lower reaches of Yangtze River (Figure 1a). The lake catchment covers an area of 162,225 km?.
Climatically, the lake catchment belongs to a subtropical monsoon climate zone with an average
annual air temperature and precipitation of 17.5 °C and 1680 mm, respectively [21]. The lake receives
water mainly from five tributaries in the catchment: Xiushui, Ganjiang, Fuhe, Xinjiang and Raohe,
and discharges into the Yangtze River from a narrow outlet in the north (Figure 1b).

The Poyang Lake is a typical shallow water-carrying lake. The average depth of the lake is about
8 m and maximum depth can reach 29 m during flood seasons. As an open lake that connects to the
Yangtze River, hydrological characteristics of Poyang Lake are affected by both the catchment inflows
and the Yangtze water level or discharge [22]. Due to the blocking effect of the Yangtze River, the peak
water level of the lake normally lags behind the maximum catchment inflow (Figure 1c,d). According
to large seasonal water level fluctuations, the lake surface can expand to 3000 km? in the summer flood
season but shrink to less than 1000 km? in the winter dry season, exposing extensive floodplains and
wetland areas [17].
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Figure 1. (a) Location of Poyang Lake; (b) Poyang Lake and its main inflow rivers with hydrological
gauging marked; (c) intra-annual variation of catchment inflow, Yangtze flow (Hankou) and
corresponding lake water level; (d) cross-correlation coefficients between lake water level (Hd—lake
water level at Duchang station) and catchment inflow (Qc) as well as Yangtze flow (Qh—river discharge
at Hankou station), respectively.

2.2. Awvailable Data

Observed daily water level data at the four gauging stations of Hukou, Xingzi, Duchang and
Kangshan were collected to represent spatial differences of Poyang Lake’s water level (Figure 1b).
Observed daily water level at Hankou station, which is situated 284 km upstream of Poyang Lake was
used to reflect the Yangtze River effect (Figure 1a). In this study, lake inflow data are collected from
the six gauging stations that are located at the lower reaches of the major tributaries (Ganjiang, Fuhe,
Xinjiang, Raohe and Xiushui) (Figure 1b). Discharge at Hukou measures the outflow series of the lake.
The total drainage area of these six gauging stations is 127,229 km?, which is about 78.4% of the whole
catchment area of the Poyang Lake basin. All the above daily hydrological data were obtained from
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the Changjiang Water Resources Commission, and the data quality was well controlled before delivery.
Time series of these data are available for the period 1980-2011.

Mean yearly-suspended sediment content (SSC) data of the lake inflow and outflow between 2000
and 2011 were collected from the Chinese river sediment bulletin. Other data for the period 1980-1999
were obtained from published literature [19,23].

Two scenarios of the digital elevation model (DEM) of the lake bed during 1998 and 2010, with a
resolution of 1:10,000, were collected from Jiangxi Hydrological Bureau.

2.3. Model Simulation and Strategy

Accurate simulation of lake water level is paramount for quantifying the effect of morphology
changes on lake hydrology. Previously, in order to analyze the effects of catchment inflow and
Yangtze River discharge on lake water level variations, Li et al. [24,25] constructed two models:
a physically-based mathematical model using the MIKE 21 and a back-propagation neural network
(BPNN) model. By comparing the model performance, they concluded that both modeling approaches
obtain very high accuracies for lake water level simulation. Although the 2D hydrodynamic model
is physically based, it is very cumbersome due to extensive data and computational requirements.
By contrast, the BPNN model has the advantages of a simple structure, high computing efficiency and
great accuracy, making it suitable for long-term hydrological simulations.

In consideration of the successful application of the BPNN approach on lake and river stage
investigations, and its potential ability and advantage for long-term prediction, we also applied the
BPNN approach in this study. As shown in Figure 2, a standard three-layer feed-forward BPNN with
a hyperbolic tangent sigmoid transfer function in the hidden layer, and a linear transfer function in
the output layer was employed. For this arrangement, the input layer receives incoming information,
which is processed by hidden layers. The target or output layer contains the simulation results. For the
input variables, we not only considered the time lags of daily discharge rates for inflow rivers and
Yangtze River to the lake as pointed out by Li et al. [25], but also incorporated the hydrological
conditions of 20 days earlier that would have an impact on lake water level and outflow variations.
On this basis, we constructed only one BPNN model for water level simulation of the four hydrological
stations, not four models separately. Since our study focused on the effects from the lake bottom
topography change, the influence of other factors needed to be excluded or minimized. In order to
exclude the impacts of Yangtze riverbed downcutting due to Three Gorges Dam regulation, we used
the observed water level at Hankou station but not river discharge as the input variable. Finally, we got
147 input variables (21 daily water level series at Hankou and 126 daily discharge series from the
six gauging stations of inflow rivers) and four output variables (daily water level series of the four
gauging stations in the lake) to construct the architecture of the three-layer BPNN model for lake water
level simulation. Meanwhile, due to different mechanisms of lake-river interactions from the lake
water level, we constructed another BPNN model for lake outflow, but used the same input variables
as the lake water level BPNN model.

(a) Lake water level BPNN model (b) Lake outflow BPNN model
Input layer Hidden layer Qutput layer Input layer Hidden layer Output layer
O—v  o—O ®
@ —v. 0@ ®§
®—v o—0O ® ®
@ ' :
W Hix —— l I
Tangent sigmoid Linear Tangent sigmoid Linear

Figure 2. Structure of the two back-propagation neural network (BPNN) models. In the figure, Q
means the daily discharge series from the six gauging stations of inflow rivers; H means the daily water
level at Hankou station and Y means simulated lake water level at the four hydro-stations.
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During the past decades, the artificial neural network technique has been widely used for
forecasting river flow and stage with great accuracy (e.g., [25-29]). Details about model principles,
structures and characteristics can be found in the aforementioned published papers. Due to the difficulty
of hydrological data acquisition and the inconsistency of time series of different data, the study period
was limited to 2000-2011. In the constructed two models, the gradient descent method was used as the
training algorithm, and the early stopping method was applied to avoid over-fitting problems. By
using the trial and error method, 20 hidden layers, a learning rate of 0.05 and a momentum coefficient
of 0.98 were finally optimized. However, most of the parameters in the BPNN models are not sensitive
to the modeling results of lake water level and outflow, except for the number of hidden layers.

In order to maximize the effect of bottom topography changes on lake water level and outflow,
we selected the data series during 1987-1999 as the model training period according to relatively
small changes of lake volume and land reclamation of Poyang Lake [5], and 1980-1986 as the model
validation period. Table 1 summarizes the performance of the two BPNN models during the training
and validation periods, from which the determination coefficient (R?) and mean relative error (MRE)
were used as the evaluation criteria. Results from Table 1 suggest a satisfactory accuracy of model
performance for both lake water level and outflow simulations.

Table 1. Performance of BPNN models during the training and validation periods.

Model Training (1987-1999) Model Validation (1980-1986)
Item Station
R? MRE (%) R? MRE (%)
Hukou 0.998 -0.02 0.983 0.10
Water level Xingzi 0.997 0.10 0.982 0.21
aterievel  Duchang 0.997 0.11 0.977 031
Kangshan 0.964 0.08 0.956 0.60
Outflow Hukou 0.965 0.89 0.890 1.31

Since the established BPNN models were based on the average lake bottom topography during
1980-1999, by application of these models, we can reconstruct the lake water level and outflow series
during 2000-2011 according to observed catchment inflow and the Yangtze water level under the same
lake basin condition. With this result, the hydrological effect of lake bottom topography changes can
be further explored according to the differences between the predicted and observed lake water level
and outflow series during 2000-2011.

2.4. Sediment Balance of Poyang Lake

Sediment balance of Poyang Lake was calculated according to the following equation:
Sf—in - Sf—out - Sexport =AS (1)

where S¢ ., is the total sediment inflow from the catchment and can be calculated by catchment inflow
(Qf-in) multiplying the average inflow suspended sediment load (SSCr.i;); Sf.out s the total sediment
outflow and can be calculated by lake outflow (Qf.y,:) multiplying the average suspended sediment
load at Hukou (SSC_s):

Sf—in = Qf—in X SSCf—in (2)

Sf-out = Qf—out X SSCf—out 3)

In addition, Seypot in Equation (1) is the sand mining export from the lake and AS is the total
change of sediment in the lake.

In the above sediment balance equation, bedload was not considered due to the very small
proportion of bedload that was involved in the sedimentation processes of Poyang Lake [30]. As the
only outlet of the lake, the S¢.,,; components in the equation actually reflect the total sand flux that
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include the sand flux from the lake to the Yangtze River and the sand flux from the Yangtze River to
the lake.
In Equation (1), AS can be further calculated as:

AS = AV X psand 4)

AV is the change volume of lake bottom topography according to two scenarios of DEM data in
1998 and 2010; pssng is sand bulk density and was set to 1.65 t/m3 [19].

Based on the above equations, the total amount of sediment export (sand mining) from the lake
can be calculated as:

Sexport = Qf—in X SSCf—in - Qf—out X SSCf—out — AV X psana ®)
3. Results

3.1. Changes of Lake Basin Topography

By overlying the two scenarios of the DEM of Poyang Lake, the change of bottom topography can
be calculated during the period 1998-2010 (Figure 3). Spatial analysis shows that there was a total
volume of 11.54 x 108 m? lake bottom topography change in the past decade. Generally, it can be seen
from Figure 3 that natural sand deposition mainly occurred at the front zone of the Gangjiang delta.
In most parts of the center and northeastern lake, the sediment can reach the balance on scouring and
siltation. Sand mining activities have extended from the northern channel into the central lake near
Duchang station and even into some channels of major tributary rivers (such as the Gangjiang River)
where a remarkable decrease in lake bottom elevation was observed. Especially, in the north part of the
lake, there is a significant scouring zone along the main waterway from Duchang to Hukou (Figure 3c).
An average of >6 m scouring of the lake bottom topography can be observed at those areas.
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Figure 3. Two scenarios of bottom topography digital elevation models (DEMs) of Poyang Lake in (a)
1998 and (b) 2010; and (c) relative changes between 1998 and 2010.

Figure 4 presents the profile changes at five cross-sections from 1998 to 2010 in Poyang Lake. CS-1
and CS-2 are the profiles along the waterway to Hukou in the north part of the lake, which show a
dramatic decline of channel bed elevation and enlargement of the cross-sectional area. The decrease of
channel bed elevation at CS-1 and CS-2 was approximately 10 m and 6 m, and the increase of channel
width was approximately 2.4 km and 1 km, respectively. It is obvious that according to the process of
intensive sand mining activities in the lake, the profiles of some channels were very reshaped with
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most of the places having been eroded and some points deposited. CS-3 also indicates a riverbed
decline of >2 m in the north branch of the Ganjiang River. All these indicate a strong response of lake
bottom topography change to the intensive sand mining activities in the lake. However, the change of
profiles at CS-4 and CS-5 located in the center and south parts of the lake was not obvious, and in even
some places where lake bottom topography increased due to natural deposition.
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Figure 4. Profile changes at the five cross-sections in Poyang Lake.

3.2. Effect on Lake Water Level

Simulated results of lake water level were compared with observations at the four hydro-stations
(Figure 5). In the figure, the simulated water level indicates the reconstructed lake water level during
2000-2011 according to observed catchment inflow and Yangtze water level under the average lake
basin condition during 1980-1999. Results demonstrate a common decrease in water level across the
lake due to the change of lake bottom topography, which was especially significant at Xingzi and
Duchang stations, but slight at Hukou and Kangshan stations. The general decline of lake water level
also shows notable seasonal differences, with a maximum in winter, followed by spring, autumn and
summer. Statistical results show that the average decline of lake water level was about 0.87 m, 0.70 m
and 0.37 m for Duchang, Xingzi and Hukou stations, respectively, in the winter season (Table 2). Yet
for Kangshan station, the decline during the winter season was smaller than during the summer and
autumn seasons. During the summer season when the lake water level was relatively high, spatial
differences of the decline of the four hydro-stations were relatively small, with an average decline
between 0.36 m to 0.42 m. On an annual basis, Duchang showed the biggest average decline of 0.61 m
of lake water level, followed by 0.50 m for Xingzi, 0.34 m for Hukou and 0.23 for Kangshan.

Table 2. Average changes of seasonal and annual lake level and outflow.

Item Spring Summer Autumn Winter Annual
Hukou (m) -0.33 -0.36 -0.30 -0.37 —-0.34
Xingzi (m) —0.55 -0.39 -0.38 -0.70 -0.50
Duchang (m) -0.59 -0.42 -0.55 -0.87 -0.61
Kangshan (m) -0.11 -0.36 -0.29 -0.15 -0.23

Outflow (m3/ ) +134.95 +250.65 +156.34 +190.89 +182.74
utio S (2.4%)* (4.3%) (4.4%) (7.9%) (4.2%)

Note: “~" denotes decline of lake level; “+” denotes increase of lake outflow; “*” denotes the percentage to the

observed outflow during 2000-2011.
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Figure 5. Comparison of observed and simulated lake water level during 2000-2011.

Figure 6 further shows the variation and linear trends of lake water level changes during 2000-2011
according to the changes of lake bottom topography. From the figure, a significant increasing trend
(p < 0.05) of lake water level decline can be observed for Duchang station. The fitted linear regression
function (y = —0.1x + 0.08) indicates a ~1.0 m/10 years decline of lake water level at this place. During
the study period, the maximum decrease of lake water level occurred in 2011, and the value was
about 1.31 m. Although a significant increasing trend (p < 0.05) of lake water level decline can also
be observed at Xingzi station (the fitted linear regression function is y = —0.04x — 0.21), the variation
features show two different stages. Before 2006, the decline of lake water level showed an obvious
increasing trend, while small difference was observed after that. However, the decline of lake water
level at Duchange station was still increasing after 2006. This feature of annual lake water level
variation is highly related to the movement of sand mining area in the lake and will be discussed later
in Section 4 (Discussion). The decline of lake water level shows a slight increasing trend at Kangshan
station. However, almost no trend can be observed for Hukou station.
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Figure 6. Variation and linear trends of annual water level changes during 2000-2011.
3.3. Effect on Lake Outflow

Figure 7 shows the changes of averaged lake outflow due to the change of lake bottom topography
during the period 2000-2011. Same as the example in Figure 5, the simulated outflow indicates the
reconstructed lake outflow during 2000-2011 according to observed catchment inflow and Yangtze
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water level under the average lake basin condition during 1980-1999. The change in the figure means
the difference between the simulated lake outflow and observed lake outflow, which reflects the effect
from lake bottom topography change. From the figure, a most obvious change is the increase of lake
outflow at flood peaks during the summer season, with a maximum value of 1332 m?/s. In addition,
during the dry season (October-March), lake outflow commonly increased. Seasonally, statistical
results indicate that the increase of lake outflow was most prominent in the summer. The increased
lake outflow was about 250.65 m?/s, approximating 4.3% of the total observed lake outflow in the
summer. The average increase of lake outflow in winter was 190.89 m3/s, which was about 7.9% of the
observed lake outflow in winter, followed by 156.34 m?/s (4.4%) in autumn and 134.95 m®/s (2.4%) in
spring. On an annual basis, the average increase of lake outflow was about 182.74 m?/s during the
period 2000-2011, which approximates 4.2% of the observed annual lake outflow.
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Figure 7. Comparison of observed and simulated lake outflow during 2000-2011.
3.4. Effect on Sedimentation

Figure 8 shows the variation of annual average suspended sediment content (55C) of catchment
inflow to Poyang Lake and outflow to the Yangtze River from Hukou station in the past decades. It is
clear from the figure that before the year 2000, the fluctuations of inflow SSC and outflow SSC were
relatively consistent. Both curves show an obvious decreasing trend, and inflow SSC is commonly
bigger than that of outflow. However, variation characteristics of outflow SSC has changed since the
last decade. In contrary to the continued decreasing trend of inflow SSC of the catchment, outflow
SSC of the lake has shown a significant increase process during 2000-2007. The average outflow SSC
(0.089 kg/m?) is much bigger than that of inflow SSC (0.055 kg/m?). Since 2008, outflow SSC from
Hukou station decreased significantly.
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Figure 8. Variation of annual average suspended sediment content (S5C) of lake inflow and outflow
during 1980-2011.
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The lake sediment balance has largely changed in recent years. Before the year 2000, siltation
was prevalent in Poyang Lake and the average annual sand deposition was about 0.1 x 10 t during
1980-1999. During the following years of 2000-2011, it was revealed that there was a total of 18.98 x 10°
t (about 1.58 x 108 t/year) net sediment export according to the change of lake bottom topography
(Figure 9). Also, during this period, the outflow sediment from the lake exceeded the inflow sediment
from the catchment and contributed a 0.49 x 108 t sediment deficit to the total change of lake bottom
topography. On this basis, the net direct sand mining export of 18.49 x 108 t (about 1.54 x 108 t/year)
can be expected from the lake during 2000-2011 (Figure 9). The amount of direct sand mining export
from the lake within only one year exceeded 15 years of natural sand deposition before 2000.

Sand mining export

18.49x10° t
(1.54x10® t/year)

T

é——-—

from b E
Inflow from basi 18.98x10° t

158108 1/ —
0.92x10% t : * vean Outflow
(0.08x108 tiyear) 1.41x108 t
(0.12x10° t/year)

Figure 9. Sediment budget of Poyang Lake during the period 2000-2011.
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4. Discussion

Our observation indicates a total volume of 11.54 x 10% m? net change of lake bottom topography
during the study period, among which, 97% (equal to 18.49 x 108 t or 1.54 x 108 t/year) was directly
exported by commercial sand mining. This result is basically similar to the report in Jiang et al. [19]
which pointed out a total volume of 12.9 x 108 m? sand mining in the lake during 2001-2010. Whereas,
the calculated amount of sand mining in our study was much smaller than the results from some other
studies. For example, Chen [31] revealed that the average amount of sand mining during 2005 to 2007
was about 2.30-2.90 x 108 t/year according to the statistical data from the Ship Affairs Department
of Jiujiang City; de Leeuw et al. [20] reported an average amount of sand mining export of 236 x 10°
m?3/year (equal to 3.89 x 10® t/year) based on the estimation of the number of vessels leaving the lake
from four Aster images during November 2005 to June 2006. In this study, we introduced a new
calculation of using lake DEM data for the estimation of sand mining and its contribution to the change
of lake bottom topography in recent years. Although, uncertainties still exist, the result in our study is
an important extension and improvement from previous studies.

The increased lake outflow ability (about 182.74 m3/s during 2000-2011) originated from the
widened and deepened water channel along the Hukou waterway. Since the lake bottom topography
inclines to the Yangtze River with a certain gradient, the obviously widened and deepened water
channel will accelerate the discharge of lake water to the Yangtze River and decrease the lake water
level. The investigation from Lai et al. [2] also confirmed this point. In addition, the enlarged lake
volume further promotes the decrease in lake water level. Spatially, the effect on the magnitude may
come from the spatial differences of relative changes of lake bottom topography according to south
movement of the dredges. The relative change of lake bottom topography is the most at Duchang
station, and so the decrease of lake water level at Duchang station is the largest. Temporally, the effect
of lake bottom topography change is much more prominent in winter and spring seasons due to
relatively low water levels in a year.

The decline of annual lake water level due to the impact of lake bottom topography change
showed an increasing trend during 2000-2011, which reflected the annual cumulative effects of sand
mining in the lake. However, when sand mining activities continue moving south and beyond specific
hydro-stations, hydrological effects from lake bottom topography change at these stations will be
weakened and very limited. For example, there are no visible change trends of lake water level
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decrease at Hukou during 2000-2011 and Xingzi after 2006. This process of south movement of sand
mining activities in the lake can also be reflected by the annual variation of lake outflow suspended
sediment content (5SC), because sand mining activities will stir up the sediment in the riverbed,
leading to an increase of water SSC and turbidity [32]. Figure 8 shows that before the year 2000,
the fluctuations of inflow SSC and outflow SSC are relatively consistent, and both curves show an
obvious decreasing trend. This characteristic of the decreasing trend of lake inflow SSC and outflow
SSC was mainly affected by continuous afforestation and water conservancy construction in the lake
basin [21]. However, in contrary to the continued decreasing trend of inflow SSC of the catchment,
outflow SSC of the lake has shown a significant increase process during 2000-2007 when sand mining
areas were mainly concentrated in the northern part of the lake. Due to increased suspended sediment
from sand mining, the calculated outflow sediment from the lake exceeded the inflow sediment
during the period 2000-2011 as shown in Figure 9. Since 2008, due to continuous movement of sand
mining areas towards the south and relatively decreased number of dredges in the lake, the sediment
deposition increased with the distance from the outlet, and so outflow SSC from Hukou station
decreased accordingly [19,33]. It is anticipated that sand mining in the lake will continue. So far at
least, the related hydrological and sedimentation effects from bottom topography change are still
growing across the lake.

In this study, we employed a complicated neural network model to quantify the effect of lake
bottom topography change on the hydrology of a complex river-lake system, which may serve as a
reference for other regions with similar situations. The model considered both the effects from catchment
inflow and Yangtze discharge on lake water level variations and showed high computing efficiency
and great accuracy in long-term hydrological simulations. Since the BPNN model is a black box model
with no physical basis, limitations exist in the description of hydrological processes. Although the
simulation results in the current study are satisfactory, the comparison with a physically-based model,
such as MIKE 21, is necessary and left for future research. In addition, uncertainties still came from the
hypothesis of stable lake bottom topography during the baseline period (1980-1999). Human activities
in the lake catchment, such as land use change and land reclamation around the lake, exert influences
on lake morphology and lake bottom topography changes [5,23].

5. Conclusions

This study quantitatively assessed the hydrological and sediment effects from bottom topography
change in China’s largest freshwater lake, Poyang Lake. Results revealed a total change of 1.154 x 10°
m? in the lake bed during the past decade, which was mainly caused by extensive sand mining
activities in the lake. During the period 2000-2011, a remarkable change of sand mining induced lake
bottom topography to extend into the central lake and even into some channels of major tributary
rivers. Due to this great change of lake bottom topography, an average annual increase of 182.74 m3/s
of lake outflow and a decline of 0.23 m-0.61 m of water level across the lake were estimated during
the period 2000-2011. In addition, sand mining activities in the lake also resulted in a big change in
suspended sediment content (S5C) of lake outflow and disturbance of lake sediment balance. A total
of 18.49 x 108 t (about 1.54 x 10® t/year) commercial sand mining export during the study period was
revealed, which accounts for 97% of net sediment change in the lake.

It is worthy of noting that the responses of the lake water level are not consistent across the
lake and show great spatiotemporal differences. Due to the changed lake bottom topography from
sand mining activities, lake water level shows the largest decline at Duchang near the center of the
lake. Temporally, the effect of increasing lake outflow and decreasing lake water level is much more
prominent during the winter and spring seasons due to the large gradient of lake surface when lake
water levels are relatively low. The annual variation and linear trend of lake water level reflects the
cumulative effects of lake bottom topography change, and this effect on the north parts of the lake
will be weakened and limited because of reduced or disappeared bottom gradient to the lake outlet
after sand mining activities move south. As sand mining activities in the lake continue to move south
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in the near future, the effects on lake hydrological and sedimentation processes are still growing. It
is very difficult for the lake to reestablish a normal or pre-mining sediment budget in a short time,
and therefore the changing lake water level and outflow processes will exist for a long time. More
research on the subsequent influences on the water environment and wetland ecosystem is required in
order to provide a scientific basis to support the sustainable management of this lake ecosystem.
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