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Abstract: The prediction of medium- and long-term runoff is of great significance to the comprehensive
utilization of water resources. Building an adaptive data-driven runoff prediction model by automatic
identification of multivariate time series change in runoff forecasting and identifying its influence
degree is an attractive and intricate task. At present, the commonly used screening factor method is
correlational analysis; others offer multi-collinearity. If these factors are directly input into the model,
the parameters of the model tend to increase, and the excessive redundancy and noise adversely
affects the prediction results of the model. On the basis of previous studies on medium- and long-term
runoff prediction methods, this paper proposes an Elman Neural Network (ENN) adaptive runoff

prediction method based on normalized mutual information (NMI) and kernel principal component
analysis (KPCA). In this method, the features of the screening factors are extracted automatically
by using the mutual information automatic screening factor, and then input into the Elman Neural
Network for training. With less features, the parameters of the Elman Neural Network model can be
reduced, and the problem of overfitting of the Elman Neural Network model is effectively alleviated.
The method is evaluated by using the annual average runoff data of Jinping hydropower station in
Chengdu, China, from 2007 to 2011. The maximum relative error of multiple forecasts was found to
be less than 16%, and forecast effect was good. The accuracy of prediction is further improved by
averaging the results of multiple forecasts.
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1. Introduction

Runoff forecasting, especially medium- and long-term runoff forecasting, plays an important
role in the comprehensive development, utilization, scientific management and optimization of water
resources [1–4]. Extreme floods, which seem to occur more frequently in recent years (due to climate
change), cause immense human suffering and result in enormous economic losses every year worldwide.
Therefore, it is necessary to accurately predict the time and size of peak flow before a flood event [5].
Accurate prediction of medium- and long-term runoff is an important prerequisite for guiding the
comprehensive development and utilization of water resources, scientific management, and optimal
dispatch. Over the past decades, massive runoff forecasting methods and application studies have
been carried out at home and abroad. In terms of methods, they can be roughly divided as: data driven
model and process driven model. A data-driven model refers to the optimal mathematical relationship
between a forecast object (such as annual average runoff) and a predictor (such as the circulation
index) based on historical data, regardless of the physical mechanism of the hydrological process.
These mathematical relationships can be used to predict future hydrological variables [6]. Traditional
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methods used to establish mathematical relations include linear regression, stepwise regression [7],
local regression, artificial neural networks [8–10], and support vector machines [11–13]. Meanwhile,
a process-driven model requires a hydrological model that can reflect the characteristics of runoff,
and future medium- and long-term rainfall information is used as model input to obtain changes in the
forecast object [14]. The ensemble streamflow prediction (ESP) method proposed by American scholar
Day [15] is a process-driven model and researchers have used this method to study medium- and
long-term runoff forecasting in many watersheds. As the mechanism of hydrological process has not
been fully elucidated, the applicability of this model is limited [16–20]. Therefore, a data-driven model,
especially the runoff prediction model based on neural networks, has become a focused topic for [21–24]
the application of back propagation (BP) neural networks to medium- and long-term hydrological
forecasting [25]. In [26–28], the application of wavelet neural networks to runoff forecasting was
investigated. In [29], the application of gray self-memory based on a BP network model to runoff

forecasting was examined. However, these neural network models have two drawbacks: easy fall into
local minima and slow convergence [30]. SHAO Yue-hong et al. [31] further evaluate and compare the
performance of ENN and land surface hydrological model (TOPX) in the study region.

At present, the commonly used methods for medium and long-term runoff forecasting are based
on statistical methods, that is, forecasting is realized by looking for the statistical relationship between
the forecasted objects and forecasted factors.

There are three problems in the current statistical methods for medium- and long-term runoff

forecasting: First, the hydrological process is complex, and there is a non-linear relationship between
the forecasting factors and the forecasting objects, in addition to a linear relationship. Second, principal
component analysis (PCA), which is used for noise reduction and redundancy elimination of primary
factors, is essentially a linear mapping method, and the principal components obtained are generated
by linear mapping. This method ignores the correlation between data higher than the second order, so
the extracted principal components are not optimal. Third, the model is used to establish the optimal
mathematical relationship between the forecast object and the forecast factor. The commonly used
multiple regression is actually a linear fitting, which cannot reflect the nonlinear relationship between
the forecast object and the forecast factor. Compared to other models, artificial neural networks for
good robustness, strong nonlinear mapping and self-learning ability in long-term runoff forecast has
been widely used, but neural network model parameter uncertainty may influence the accuracy of the
forecast; there are certain differences in the results with each forecast.

In 1990, Elman proposed the Elman Neural Network and used it to address the voice processing
problem [32]. The Elman network is a recurrent neural network with the ability to adapt to time-varying
characteristics. Unlike a positive feedback neural network, it has feedback connections originating from
the outputs of the hidden layer neurons to its input layer. The state of its neuron depends not only on the
current input signal, but also on the previous states of the neuron [33]. Thus, the Elman Neural Network
can maintain a sort of state, allowing it to perform tasks such as sequence-prediction [34]. However,
relevant research within the domain of medium- and long-term runoff forecasting is very limited.

Compared with previous methods, the main contributions and problems solved in this paper are
presented as:

(1) Due to the non-linear relationship of experimental data, we adopted the primary prediction
factor method based on NMI, which could not only reflect the nonlinear relationship between variables,
but also reflect the nonlinear relationship between variables. NMI overcomes the defect of traditional
linear correlation analysis.

(2) KPCA is the nonlinear extension of PCA, that is, the original vector is mapped to the
high-dimensional feature space F by mapping function Φ, and PCA analysis is carried out in F. The
data in the original space, which are linearly indivisible, are almost linearly separable in the high
dimensional feature space. In this instance, PCA is done in a high-dimensional space, and extracted
principal components are more represented. Therefore, the feature extraction method based on KPCA
greatly improves the processing capacity of nonlinear data and has more advantages than the traditional
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feature extraction method based on PCA. In addition, the principal components extracted by KPCA
are orthogonal to each other, and the data are de-noised and de-redundant, which can well prevent the
overfitting of the neural network and improve the generalization ability of the network.

(3) With good robustness, nonlinear mapping, and strong self-learning ability, the artificial neural
network can mine the internal relations between the prediction factors and the prediction objects.
The Elman neural network selected in this paper is a typical dynamic regression network, which has
additional context layers compared with commonly used forward neural networks (such as BP neural
network). The context layer can record information from the last network iteration as input to the
current iteration, making the Elman network more suitable for prediction of time series data [35].
In addition, the neural network has parameter uncertainty. In order to reduce the uncertainty of
prediction, the method of multi-model set prediction is adopted to improve prediction accuracy.

In conclusion, NMI, KPCA and Elman neural network used in this paper have the ability to
process non-linear data, except linear data. In addition, the processed data can be de-noised and
de-redundant to prevent overfitting of the neural network and improve the generalization ability of the
network. The combination of the above three methods overcomes the limitation of traditional methods
and improves the stability and accuracy of model prediction. The main purpose of this paper is to build
an adaptive data driven runoff forecast [36,37] model, by using the normalized mutual information
method to automatically select predictors, and then use the KPCA method to extract features from
the selected factors; finally, based on the above, a cyclic neural network model is constructed for
runoff prediction. Through the analysis and evaluation of the experimental results, the accuracy of
the prediction [38] is improved, and the average annual runoff predicted by a single model. Multiple
models are realized based on the Elman neural network, which provides a reference for medium- and
long-term runoff prediction [39].

2. Materials and Methods

2.1. Study Area and Data

The data source of this study is the Jinping I hydropower station, which is located in the Ya-lung
River of Sichuan province, China. The Ya-lung River is the biggest branch of Chin-sha River, which
is the upper reaches of the Yangtze River. The reservoir power station is mainly used for power
generation, water storage, and flood control. In addition, the drainage area of the reservoir is complex
with interlaced mountains and rivers. Therefore, by using the data of this reservoir for research, the
experimental data becomes more real and representative. The accurate prediction of runoff in this area
is beneficial to the comprehensive development and utilization of water resources in this area, and the
experimental model can be simply processed and applied to other areas. The location of Jinping I
Hydropower Station is shown in Figure 1. The experimental data in the model used the annual average
runoff data of Jinping I Hydropower Station from 1960 to 2011 (provided by the China Institute of
Water Resources and Hydropower Research) and the 74 atmospheric circulation parameters from 1959
to 2010 (provided by the National Climate Center of China). Data from 1960–2006 were used to confirm
the model, and data from 2007–2011 were used to verify the model.

The average annual flow of the dam site is 1220 m3/s, the average annual flow from June to
October in flood season is 2230 m3/s, the average annual flow from November to May in flat and dry
season is 493 m3/s, and the average annual runoff is 38.5 billion m3.



Water 2019, 11, 1113 4 of 18
Water 2018, 10, x FOR PEER REVIEW  4 of 18 

 

 

Figure 1. Location of the study area. 

2.2. Methodology 

The runoff forecasting method presented in this paper consists of three parts: the automatic 

selection of predictors based on normalized mutual information, the extraction of principal 

components of predictors based on KPCA, and the forecast of runoff based on a circular neural 

network. In the following section, these three parts will be elaborated in detail. 

2.2.1. Automatic Selection of Predictors for Ranking Mutual Information Correlation 

In probability theory and information theory, mutual information is a measure of 

interdependence between two variables [1]. By calculating the mutual information between the 

factor time series and the runoff time series, this paper automatically selects the factor that the 

normalized mutual information is greater than a certain threshold value [40] (usually 0.9), as a 

predictor according to relevancy. The method of automatically selecting predictors based on mutual 

information can not only reflect the linear relationship between the factors and runoff, but also the 

degree of non-linear relationship between them. The traditional method based on linear correlation 

analysis (Pearson correlation, Spearman correlation) can only respond to the linear relationship 

between the factors and runoff. Therefore, the factors automatically selected by the correlation 

ranking method based on mutual information are more representative. The formula for calculating 

the mutual information between the runoff time series and the factor time series is defined as: 

𝑀𝐼(𝑋, 𝑌) = ∑∑ 𝑝(𝑥𝑖  , 𝑦𝑖) 𝑙𝑜𝑔 (
𝑝(𝑥𝑖 , 𝑦𝑖)

𝑝(𝑥𝑖)𝑝(𝑦𝑖)
)   𝑖, 𝑗 = 1,2,3…𝑛

𝑛

𝑗=1

𝑛

𝑖=1

 (1) 

where X is the runoff time series, X = (𝑥1, 𝑥2, 𝑥3 …𝑥𝑛)𝑇, Y is a factor time series, 𝑌 = (𝑦1, 𝑦2 , 𝑦3 …𝑦𝑛)𝑇 , 

n represents the number of elements in the time series matrix. The molecular 𝑝(𝑥𝑖 , 𝑦𝑖) is a joint 

distribution law of X and Y, and 𝑝(𝑥𝑖)and 𝑝(𝑦𝑖) are the marginal distributions of X and Y, 

respectively. 

For the convenience of comparison, the mutual information needs to be normalized. The value 

of normalized mutual information is between 0 and 1. The formula for normalized mutual 

information is: 

 𝑁𝑀𝐼(𝑋, 𝑌) = 2 ×
𝑀𝐼(𝑋, 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 (2) 

where 𝐻(𝑋) and 𝐻(𝑌) are the entropy of X and Y, respectively; 𝐻(𝑋) and 𝐻(𝑌) are expressed 

as: 

 𝐻(𝑋) = −∑𝑝(𝑥𝑖)𝑙𝑜𝑔2(𝑝(𝑥𝑖))

𝑛

𝑖=𝑖

 (3) 

Chengdu 

Jinping I Hydropower Station 

Chin-sha River 

Yangtze River 

Ya-lung River 
China 

Figure 1. Location of the study area.

2.2. Methodology

The runoff forecasting method presented in this paper consists of three parts: the automatic
selection of predictors based on normalized mutual information, the extraction of principal components
of predictors based on KPCA, and the forecast of runoff based on a circular neural network. In the
following section, these three parts will be elaborated in detail.

2.2.1. Automatic Selection of Predictors for Ranking Mutual Information Correlation

In probability theory and information theory, mutual information is a measure of interdependence
between two variables [1]. By calculating the mutual information between the factor time series and the
runoff time series, this paper automatically selects the factor that the normalized mutual information
is greater than a certain threshold value [40] (usually 0.9), as a predictor according to relevancy. The
method of automatically selecting predictors based on mutual information can not only reflect the linear
relationship between the factors and runoff, but also the degree of non-linear relationship between
them. The traditional method based on linear correlation analysis (Pearson correlation, Spearman
correlation) can only respond to the linear relationship between the factors and runoff. Therefore, the
factors automatically selected by the correlation ranking method based on mutual information are
more representative. The formula for calculating the mutual information between the runoff time
series and the factor time series is defined as:

MI(X, Y) =
n∑

i=1

n∑
j=1

p(xi, yi) log
(

p(xi, yi)

p(xi)p(yi)

)
i, j = 1, 2, 3 . . . n (1)

where X is the runoff time series, X = (x1, x2, x3 . . . xn)
T, Y is a factor time series, Y = (y1, y2, y3 . . . yn)

T,
n represents the number of elements in the time series matrix. The molecular p(xi, yi) is a joint
distribution law of X and Y, and p(xi) and p(yi) are the marginal distributions of X and Y, respectively.

For the convenience of comparison, the mutual information needs to be normalized. The value of
normalized mutual information is between 0 and 1. The formula for normalized mutual information is:

NMI(X, Y) = 2×
MI(X, Y)

H(X) + H(Y)
(2)

where H(X) and H(Y) are the entropy of X and Y, respectively; H(X) and H(Y) are expressed as:

H(X) = −
n∑

i=i

p(xi)log2(p(xi)) (3)
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H(Y) = −
n∑

i=i

p(yi)log2(p(yi)) (4)

2.2.2. Dimension Reduction of Adaptive Factors of KPCA

KPCA is a nonlinear extension of principal component analysis, which maps the original vector
to the high dimensional feature space F through the kernel function Φ, then carries on the principal
component analysis on F. The linear indivisible data in the original space can be linearly separable in
the high dimensional feature space, and the principal components extracted in the high-dimensional
space are more representative. After PCA transformation, data features can be extracted effectively,
which can not only reduce its dimension, but also retain the required recognition information [41].
Therefore, the feature extraction method based on KPCA greatly improves the processing ability
of non-linear data, and has more advantages than traditional feature extraction methods based on
principal component analysis. In addition, the principal components extracted by the kernel component
analysis are orthogonal to each other, and the principal components undergo automatic noise reduction
and de-duplication, which can alleviate the cyclic process of neural network overfitting and improve
the generalization ability of the network. The process of extracting principal components using KPCA
is as follows:

Step 1: Normalize the predictor data selected in the Section 2.2.1 by z-score, as follows:

Y∗ =
Y − µ
σ

(5)

In the formula, Y∗ is the normalized data, Y is the predictor data, µ is the mean value of the time
series of Y, σ is the standard deviation of Y.

Step 2: Calculate the kernel matrix K of the predictor. The calculation formula is obtained as:

K = exp(−
‖Y∗i , Y∗j‖

2

2σ2 ) (6)

Y∗i and Y∗j, respectively, is a sample of the predictor data Y∗.
Step 3: Computing the core matrix Kc. The calculation formula is:

Kc = K − J ×K −K × J + J ×K × J (7)

In Equation (7), J is the square matrix of n × n. The specific expression is defined as:

J =


1
n . . . 1

n
...

. . .
...

1
n · · ·

1
n

 (8)

Step 4: The eigenvalues and eigenvectors of Kc are computed, and the eigenvalues are arranged
in order from large to small, and the order of eigenvectors is adjusted according to the eigenvalues.

Step 5: Compute the principal component. The calculation formula is:

KPC = KC
TA (9)

where A is the normalized eigenvector matrix. A is defined as:

A = (a1, a2, ai, · · · , an) =


a11 . . . an1

... ai j
...

a1n · · · ann

 (10)
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where ai =
ui
√
λi

, i = 1, 2, · · · , n (11)

λi is eigenvalue, and ui is the eigenvector.

2.2.3. Elman Neural Network Model

The Elman Neural Network [35], which was first proposed by Elman in 1990 to address the voice
processing problem, is a typical dynamic recurrent neural network. The basic configuration of the
standard Elman Neural Network consists of an input layer, a hidden layer, an output layer and a
context layer. The context layer is a feedback connection from the hidden layer to the input layer. It is
worth mentioning that the context layer is able to record information from the last network iteration as
input to the current iteration. Therefore, compared with other models, the Elman neural network is
more suitable for the prediction of time series data [34]. A standard Elman neural network structure is
shown in Figure 2.
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The computational process of the Elman network model can be simply expressed as:
The output of the output layer at t time:

oq
(t) = f (

L∑
j=1

h j
(t)ω j,q) (12)

The output of the hidden layer at t time:

h j
(t) = f (

L∑
i=1

ui
(t)ωi, j +

L∑
k=1

ck
(t−1)ω j,k) (13)

The output of the context layer at t − 1 time:

ck
(t−1) = h j

(t) (14)

where the ω j,q, ωi, j and ω j,k are the connection weights between the layers, respectively. f is the
activation function. In this paper, the activation function of the hidden layer takes the sigmoid function:
f (x) = 1

1+e−x , and the activation function of the output layer takes the linear function f (x) = x.
The learning process of Elman neural network can be summarized as follows:
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Step 1: Use the random function to initialize the connection weights between the layers of the
network and determine the allowable error ε for the cost function. Once the network calculates the
output of one of the inputs, the cost function calculates the error vector. This error indicates how close
our guess is to the expected output. The most commonly used cost functions are the mean square
error (MSE), Cross Entropy (CE), and the SVM hinge loss function. Specifically, MSE is better suited to
solving the regression problem, which is the prediction of model data. Therefore, in this paper, the
mean square error function is used as the cost function, as follows:

E =
1
N

N∑
q=1

(O(t)
eq −O(t)

q )2 (15)

where O(t)
eq is the expected output of the network at t time, O(t)

q is the actual output of the network (the
observed value of the runoff).

Step 2: Normalize the input data, compute the value of E, and update the connection weights
between each layer according to E using the momentum gradient descent algorithm. The formula of
normalized input data and the formula of weight change are obtained as:

z = (zmax − zmin)
q− qmin

qmax − qmin
+ qmin (16)

∆ω(k) = −η
∂E
∂ω(k)

+ α∆ω(k−1) (17)

where z is normalized data, zmax = 1, zmin = −1, z ∈ (−1, 1), q is the runoff sequence or principal
component sequence data, qmin is the minimum value in the sequence q, qmax is the maximum value in
the sequence q. ∆ω(k) is the change of Elman Neural Network weights in the kth update, ∆ω(k) is the
change of Elman Neural Network weights in the k−1th update, α is the momentum constant, 0 ≤ α ≤ 1,
in this paper, α = 0.9, η is the learning rate, η = 0.01.

Step 3: When the value of E is greater than ε, go to step 2 or the end of the study, and compute the
output of the network according to Equations (12)–(14).

In addition, in order to stop the Elman Neural Network training process, we set the maximum
number of iterative trainings, and when that number is reached, ENN training stops.

2.2.4. Evaluation Criteria

In order to evaluate the performance of the model and the adaptive selection of model structure,
the qualified rate (QR), root mean square error (RMSE), mean absolute percent error (MAPE) and mean
absolute error (MAE) are adopted as the evaluation criteria. In addition, the reason why we choose
QR, RMSE, MAPE and MAE as the evaluation criteria is that these evaluation criteria are sufficient to
explain the stability and accuracy of the prediction model.

The formula for the qualified rate is defined as:

QR =
m
n
× 100% (18)

where m is the qualified forecast number, n is the total forecast number. If the single forecast error is
less than 20%, the forecast is qualified.

The calculation formula of root mean square error can be expressed as:

RMSE =

√√
1
n

n∑
t=1

(q(t)sim − q(t)obs)
2
QR =

m
n
× 100% (19)

where q(t)sim is the predicted value, q(t)obs is the observed value.



Water 2019, 11, 1113 8 of 18

The formula for calculating the mean absolute percent error is expressed as:

MAPE =
1
n

n∑
t=1

∣∣∣∣q(t)sim − q(t)obs

∣∣∣∣
q(t)obs

× 100% (20)

The formula for calculating the mean absolute error is defined as:

MAE =
1
n

n∑
t=1

∣∣∣∣q(t)sim − q(t)obs

∣∣∣∣ (21)

The Relative Error (RE) is defined as:

RE =
q(t)sim − q(t)obs

q(t)obs

× 100% (22)

3. Results and Discussion

3.1. Implementation of the Forecast Case

In order to verify its validity, the model proposed in this paper attempts to forecast the annual
runoff of Jinping I-Stage hydropower station in Yalong River [42] basin, Sichuan province, China. The
detailed automation process is shown in Figure 3.Water 2018, 10, x FOR PEER REVIEW  8 of 18 
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Figure 3. Automatic iteration flow chart for runoff forecasting.

3.1.1. Determining Forecasting Factor Sets

According to Figure 3, we need to analyze the physical mechanism and use the method of mutual
information [43] to filter the predictors:

Step 1: Collect historical runoff data from the research area and meteorological hydrological data
that can be used as predictors. Commonly used meteorological hydrological data include atmospheric
circulation characteristics, high altitude pressure field, and sea surface temperature index. The data
collected in this study include the annual average runoff data of the dam section of Jinping I-Stage
hydropower station for 1960–2011 and monthly 74 circulation characteristics data for 1959–2010.

Step 2: Because the forecast object is the average annual runoff, the factor cannot choose from
the time of the same year, at the same time considering that the influence of meteorological factors on
runoff has hysteresis [44]; thus, a one-by-one correspondence between annual average runoff of Jinping
I-Stage hydropower station and 74 atmospheric circulation indices of the previous year was established.
The corresponding relationship between the time series of a certain atmospheric circulation index and
the runoff time series is shown in Table 1; the others are similar.



Water 2019, 11, 1113 9 of 18

Table 1. The corresponding relationship between the time series of a certain atmospheric circulation
index and the runoff time series.

Annual Runoff Time Series An Exponential Time Series of Atmospheric Circulation

Annual runoff in 1960 Data in January 1959 Data in February 1959
. . .

Data in December 1959

Annual runoff in 1961 Data in January 1960 Data in February 1960
. . .

Data in December 1960

Annual runoff in 1962 Data in January 1961 Data in February 1961
. . .

Data in December 1961

. . . . . . . . .
. . .

. . .

Annual runoff in 2009 Data in January 2008 Data in February 2008
. . .

Data in December 2008

Annual runoff in 2010 Data in January 2009 Data in February 2009
. . .

Data in December 2009

Annual runoff in 2011 Data in January 2010 Data in February 2010
. . .

Data in December 2010

As can be seen from Table 1, the first column of the table shows the annual runoff time series from
1960 to 2011, and the second and final columns of the Table represent the exponential time series of
atmospheric circulation, in this part detailed listing of each month.

Step 3: The time series of the atmospheric circulation index and the average annual runoff time
series are divided into two parts, one part as training samples and the other as test samples. This
embodiment uses the data from the first 47 years as the training sample, and the data of the following
5 years as the test sample.

Step 4: Compute mutual information. For this embodiment, the mutual information between the
average annual runoff time series of the 1st column in Table 1 and the time series of the atmospheric
circulation index in the remaining columns in Table 1 is calculated according to Equation (1). It should
be noted that when only using the training sample data to compute the mutual information, the test
sample data should not be added to ensure reliability of the test.

Step 5: Compute normalized mutual information, which maps the mutual information values
computed by step 4 to between 0 and 1 with Equations (2)–(4).

Step 6: Select the index of the normalized mutual information [45] greater than a threshold (0.9
for this embodiment) as an initial selection of factors. In this embodiment, there are 205 indicators of
normalized mutual information greater than 0.9, and in Table 2, the first 20 indicators are presented as:
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Table 2. The first 20 factors of normalized mutual information greater than 0.9.

Initial Selection of Factors NMI MI

Sunspots in August 0.988375 5.426929

Sunspots in April 0.988375 5.426929

Sunspots in July 0.988375 5.426929

Sunspots in October 0.988375 5.426929

Sunspots in December 0.988375 5.426929

Sunspots in February 0.98444 5.384376

Sunspots in September 0.98444 5.384376

Sunspots in November 0.98444 5.384376

Sunspots in January 0.98444 5.384376

Sunspots in March 0.98444 5.384376

Sunspots in May 0.98444 5.384376

The northern hemisphere’s subtropical high intensity index in August
(5E-360) 0.980474 5.341823

The polar vortex area index for the northern hemisphere in March
(5E-360) 0.980474 5.341823

North American sub-index of north American strength in north Africa
Atlantic in June (110W-60E) 0.976477 5.299270

The northern hemisphere’s subtropical high intensity index in June
(5E-360) 0.976291 5.256717

The northern hemisphere’s subtropical high intensity index in April
(5E-360) 0.972448 5.256717

North American sub-index of north American strength in north Africa
Atlantic in July (110W-60E) 0.972448 5.256717

North American subindex of north American strength in north Africa
Atlantic in September (110W-60E) 0.972448 5.256717

Sunspots in June 0.972448 5.256717

Pacific subtropical high strength index in June (110E-115W) 0.970919 5.240655

Table 2 shows the first 20 factors of normalized mutual information greater than 0.9. The left
column of the table represents the initial selection of factors; it includes different time and different
space. In addition, the elements in the left column are sorted in descending order of mutual information
values. The middle columns of the table represent normalized mutual information. The right column
of the table represents mutual information. Details of the physical significance of 74 meteorological
factors for the runoff formation process can be found in [46].

3.1.2. Extract Principal Components

As shown in Figure 3, after using the method of mutual information to filter the factor, KPCA is
needed to extract the principal component. In Section 3.1.1, this study selected 205 factors, which often
have multicollinearity, repetitive information and noise, which directly affect the training speed and
generalization ability of the Elman Neural Network; therefore, feature extraction is needed. In this
example, the principal component is calculated according to Equations (5)–(7) and (9), and the principal
component is arranged in order of the variance contribution rate from large to small. The variance
contribution rate of the first five principal components is shown in Table 3.
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Table 3. Variance contribution ratio of the first five principal components.

The Principal Components 1 2 3 4 5

Variance contribution rate 25.7% 6.9% 5.6% 5.1% 3.9%

As can be seen from Table 3, the variance contribution rate of the first principal component reached
25.7%, which contains most of the information of the selected factor. The variance contribution rate
of other principal components is getting smaller, and the information containing the selected factors
is less and fewer. The trial-and-error method is used to determine which principal components are
selected as predictors. Through repeated experiments, it is found that when the first two principal
components are selected as prediction factors, the test period has the best prediction effect, so the first
two principal components are selected as the final prediction factors.

3.1.3. Determining the Elman Structure

As shown in Figure 3, after extracting the principal component, you need to determine the
structure of the Elman network. That is, the training algorithm, the number of nodes in the input layer,
the number of nodes in the hidden layer, the number of nodes in the layer, and the number of nodes
in the output layer need to be determined. This research case uses the momentum gradient descent
algorithm and the back propagation algorithm as the training algorithm of the Elman Neural Network.
The advantage of the momentum gradient descent algorithm is that each gradient descent will be
accompanied by previous speed. If the direction is the same as before, the previous speed will continue
to accelerate. If the direction is opposite to the previous one, it will not produce a sharp turn due to the
previous speed, but try to pull the route in a straight line. This solves the problem of time wasted in the
traditional gradient descent algorithm. Compared with other methods, back-propagation algorithm
can realize gradient descent search in the Elman network weight space, which can better reduce the
error between the actual value and the predicted value of historical runoff data. The number of nodes in
the output layer equals the number of the predicted objects; this embodiment is a single value forecast
for the average annual runoff, so the number of nodes in the output layer is 1. The number of nodes in
the context layer equals the number of nodes in the hidden layer. Therefore, as long as the number of
nodes in the hidden layer is determined, the number of nodes in the context layer is determined. The
number of nodes in the input layer equals the number of selected principal components. The number
of nodes in the input layer equals the number of selected principal components. The number of hidden
layer nodes has an important influence on the generalization performance of the network, but there is
no systematic or standard method to determine the number of hidden layer nodes. This study uses the
trial and error method (through different combinations of number of nodes in the input layer and the
number of nodes in the hidden layer), compares the prediction results of the Elman Neural Network,
and determines the optimal combination of the number of nodes in the input layer and the number of
nodes in the hidden layer.

In this paper, the principal component sequence and runoff time series data of the first 47 years
are used as training samples, and the data of the last five years are used as test samples. Due to
the uncertainty of the training data and model, we selected 14 models (this is our choice), and then
analyzed and evaluated the prediction results of these 14 single models, so as to determine the network
parameters and improve the stability and accuracy of the prediction results. In Tables 4–6, the predicted
results of the Elman Neural Network models of different structures are presented as:
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Table 4. With the first principal component as input, the performance of the Elman Neural Network
with different hidden layer nodes.

Model Name
Training Validation

MAPE RMSE MAE MRE MAPE RMSE MAE QR

1 1-2-1 0.160 224.616 189.946 0.272 0.133 172.002 138.249 60%
2 1-3-1 0.161 224.755 190.386 0.257 0.129 165.348 133.795 60%
3 1-4-1 0.160 224.426 189.586 0.255 0.128 163.045 132.988 60%
4 1-5-1 0.160 224.339 189.688 0.260 0.129 165.309 134.334 60%
5 1-6-1 0.156 222.070 184.753 0.348 0.146 191.760 152.287 60%
6 1-7-1 0.155 221.486 183.193 0.371 0.146 196.996 152.686 60%
7 1-8-1 0.154 221.553 182.727 0.375 0.149 199.493 155.148 60%
8 1-9-1 0.153 221.309 182.060 0.382 0.152 203.666 158.386 60%
9 1-10-1 0.154 221.619 183.238 0.362 0.145 193.697 151.519 60%

10 1-11-1 0.154 221.698 182.949 0.363 0.147 195.395 153.525 60%
11 1-12-1 0.156 222.047 185.180 0.330 0.143 185.852 148.957 60%
12 1-13-1 0.154 221.828 183.298 0.357 0.148 195.269 154.778 60%
13 1-14-1 0.154 221.582 182.858 0.369 0.149 198.017 155.001 60%
14 1-15-1 0.162 225.553 192.005 0.286 0.139 179.275 143.302 60%

Table 5. With the first and second principal components as input, the performance of Elman networks
with different hidden layer nodes.

Model Name
Training Validation

MAPE RMSE MAE MRE MAPE RMSE MAE QR

1 2-2-1 0.155 222.051 182.820 0.295 0.138 173.111 144.462 60%
2 2-3-1 0.148 213.096 176.010 0.216 0.115 143.593 122.346 80%
3 2-4-1 0.131 187.552 153.562 0.289 0.142 177.806 153.352 80%
4 2-5-1 0.138 200.655 164.461 0.158 0.078 105.308 88.466 100%
5 2-6-1 0.132 189.035 155.098 0.170 0.086 125.228 97.631 100%
6 2-7-1 0.132 188.624 154.443 0.178 0.090 129.553 102.225 100%
7 2-8-1 0.136 190.345 159.353 0.165 0.080 115.598 89.780 100%
8 2-9-1 0.135 197.805 160.718 0.127 0.069 95.339 78.964 100%
9 2-10-1 0.129 188.338 152.090 0.155 0.097 124.622 109.113 100%

10 2-11-1 0.131 189.741 154.595 0.152 0.086 116.728 97.551 100%
11 2-12-1 0.140 200.470 164.854 0.159 0.092 112.918 102.019 100%
12 2-13-1 0.134 192.657 157.422 0.156 0.089 119.336 99.144 100%
13 2-14-1 0.134 193.523 158.657 0.166 0.097 119.267 107.923 100%
14 2-15-1 0.134 191.521 157.844 0.155 0.084 114.188 95.899 100%
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Table 6. With the first, second and third principal components as input, the performance of Elman
networks with different hidden layer nodes.

Model Name
Training Validation

MAPE RMSE MAE MRE MAPE RMSE MAE QR

1 3-2-1 0.147 214.506 176.575 0.274 0.119 153.358 124.235 80%
2 3-3-1 0.147 213.411 176.485 0.202 0.106 132.191 113.081 80%
3 3-4-1 0.122 179.191 143.758 0.438 0.149 213.823 155.190 80%
4 3-5-1 0.121 170.440 141.632 1.106 0.319 509.077 336.476 60%
5 3-6-1 0.125 184.424 148.838 0.197 0.115 136.876 128.372 100%
6 3-7-1 0.119 172.714 141.197 0.471 0.197 278.944 222.419 60%
7 3-8-1 0.113 167.382 133.095 0.239 0.136 184.009 155.512 60%
8 3-9-1 0.136 194.311 161.320 0.191 0.110 133.774 121.915 100%
9 3-10-1 0.117 173.909 138.046 0.280 0.143 195.198 163.710 60%

10 3-11-1 0.129 181.719 152.612 0.169 0.114 146.366 126.855 100%
11 3-12-1 0.126 187.950 150.310 0.207 0.106 131.850 118.583 80%
12 3-13-1 0.115 169.871 136.686 0.379 0.135 211.644 149.332 60%
13 3-14-1 0.114 166.467 133.790 1.170 0.294 527.855 303.349 60%
14 3-15-1 0.128 188.502 152.513 0.179 0.113 148.934 126.428 100%

Table 4 records the performance of Elman Neural Networks when the principal component _1 is
used as input, and the hidden layer nodes change from 2 to 15. It can be seen from Table 4 that with
the increase of the number of hidden layers, the maximum relative error of the Elman Neural Network
in the verification period is greater than 20% and the qualified rate is only 60%, with the principal
component _1 as the input of Elman Neural Network. One of the best prediction models is Model
3, the maximum relative error in the verification period is 25.5%, the qualified rate is 60%, and the
forecast effect is poor.

Table 5 records the performance of the Elman Neural Network with principal component _1 and
principal component _2 as input and hidden layer nodes changing from 2 to 15. It can be seen from
Table 5 that the maximum relative error of Elman Neural Networks in the verification period decreasing
with the principal component _1 and principal component _2 as the input of and the number of hidden
layer nodes increasing from 2 to 9.

Table 6 records the performance of the Elman Neural Network with principal component _1,
principal component _2 and principal component _3 as input and hidden layer nodes from 2 to 15. It
can be seen from Table 6 that the evaluation index value fluctuates greatly and the forecast effect is not
good with the principal component _1, principal component _2 and principal component _3 as input
of Elman Neural Networks and the number of hidden layer nodes increasing from 2 to 9. One of the
best prediction models is Model 10—the maximum relative error is 16.9%, and qualified rate is 100%.

Figure 4 is plotted in order to compare the prediction effect of different network models with
different principal component combinations as input. Figure 4 is the maximum relative error in
Table 4, Table 5, and Table 6. As can be seen from Figure 4, with principal component _1 and
principal component _2 as input of the Elman Neural Network, the performance of each model in the
verification period is obviously better than that of principal component _1 or simultaneously with
principal component _1, principal component _2 and principal component _3 as input of the Elman
Neural Network.
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3.2. Evaluation of Forecast Performance

According to the network structure determined by step 3.1.3, the Elman Neural Network model is
trained by the average annual runoff data of Jinping hydropower station in 1960–2006 and tested by
the average annual runoff data of Jinping hydropower station in 2007–2011.

The Mean Absolute Percentage Error (MAPE), Maximum Relative Error (MRE) and Qualified
Rate (QR) are used as evaluation indexes for prediction. The indexes are calculated according to
Equations (16) and (20)–(22). In the verification period, the error of the five forecasts is shown in
Table 7. The predicted results are evaluated by mean absolute percent error, maximum relative error,
and qualified rate.

Table 7. Prediction error of single model in the verification period.

The Evaluation
Index Year The First

Time
The Second

Time
The Third

Time
The Fourth

Time
The Fifth

Time
Ensemble
Forecast

RE

2007 14.10% 13.15% 11.41% 12.86% 15.24% 13.35%
2008 −14.85% −14.20% −12.93% −14.76% −11.26% −13.60%
2009 1.63% 2.26% 3.70% 1.91% 6.57% 3.21%
2010 4.63% 6.80% 7.97% 4.96% 6.78% 6.23%
2011 −4.51% −11.77% −13.70% −2.06% −12.95% −9.00%

QR 100% 100% 100% 100% 100% 100%
MRE 14.85% 14.20% 13.70% 14.76% 15.24% 13.60%

MAPE 7.94% 9.64% 9.94% 7.31% 10.56% 9.09%

In order to verify the generalization ability of the network model in this paper and the stability of
the prediction, we carried out single model prediction 100 times. It is shown that the network model
used in the invention has good generalization ability and prediction stability. The error statistics of the
first five time forecasts are shown in Table 7.

As can be seen from Table 7, during the verification period, the maximum relative error of single
forecast is within 16%, and the qualified rate is 100% according to the precision evaluation scheme
of medium- and long-term runoff forecast [47]. This shows that the Elman Neural Network model
driven by mutual information and KPCA has good generalization ability and predictive stability.
The back propagation algorithm and momentum gradient updating algorithm are used to search the
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parameter space of the Elman Neural Network, and the error between the actual value of the historical
runoff data and the predicted value of the Elman Neural Network is reduced through continuous
training. However, the error surface may contain many different local minima, and in the search
process of the parameter space of the Elman Neural Network, it may stay in the local minimum point,
but not necessarily the global minimum point. Therefore, although the structure of each Elman Neural
Network is the same, the parameters are different, which leads to the difference of the prediction results
of each Elman Neural Network.

In order to reduce the deviation of prediction results caused by the uncertainty of model parameters,
we carried out single model prediction of runoff several times; the average value of the results of
multiple prediction is taken as the final prediction result. In this study, the average of 100 forecast
results can be taken as the final forecast result.

4. Conclusions

Due to the error of the original data and incompleteness of the model parameters, the prediction
results between single prediction models may be quite different. This paper determined the prediction
factors on the basis of rank correlation analysis, combined with the analysis of physical causes,
and realized the single model forecast and multi-model set forecast of annual average runoff based on
the Elman Neural Network, so as to provide reference for the medium- and long-term runoff forecast
of reservoir. The general method flow described in this article is shown in Figure 5.

In detail, the automatic selection of predictors, the automatic feature extraction of predictors and
the adaptive construction of the Elman Neural Network model are discussed, and the Elman Neural
Network model driven by normalized mutual information and KPCA is proposed. This model is
applied to the annual average runoff forecast of the Jinping I-Stage hydropower station in Sichuan,
China, and the forecast results show that the factor screening method based on normalized mutual
information and KPCA can effectively reduce noise and redundancy of a large number of predictors.
Taking these factors as inputs, the Elman Neural Network has shown good generalization performance.
High prediction stability, and prediction accuracy can meet actual production needs. The method of
ensemble forecasting with multiple neural networks can effectively solve the problem of parameter
uncertainty of the Elman Neural Network model and improve the accuracy of prediction. In addition,
for a single prediction model based on the Elman neural network, prediction accuracy can meet the
requirements but the prediction results between single prediction models may be quite different.
Multi-model ensemble forecasting can reduce the influence of uncertainty and improve forecasting
accuracy. However, due to error of the original data, the uncertainty of model parameters and
environmental differences in different regions—and there are significant differences in modeling
requirements for practical hydrological applications—more reliable and intelligent expert systems
for real-time forecasting purposes need to be developed [48]. The multi-model ensemble prediction
offers prediction deviation. How to determine the optimal ensemble prediction model needs to be
further studied.
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