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Abstract: With the increased availability of remote sensing products, more hydrological variables
(e.g., soil moisture and evapotranspiration) other than streamflow data are introduced into the
calibration procedure of a hydrological model. However, how the incorporation of these hydrological
variables influences the calibration results remains unclear. This study aims to analyze the impact
of remote sensing soil moisture data in the joint calibration of a distributed hydrological model.
The investigation was carried out in Qujiang and Ganjiang catchments in southern China, where the
Dem-based Distributed Rainfall-runoff Model (DDRM) was calibrated under different calibration
schemes where the streamflow data and the remote sensing soil moisture are assigned to different
weights in the objective function. The remote sensing soil moisture data are from the SMAP L3 soil
moisture product. The results show that different weights of soil moisture in the objective function
can lead to very slight differences in simulation performance of soil moisture and streamflow. Besides,
the joint calibration shows no apparent advantages in terms of streamflow simulation over the
traditional calibration using streamflow data only. More studies including various remote sensing
soil moisture products are necessary to access their effect on the joint calibration.

Keywords: SMAP; remote sensing; distributed hydrological model; joint calibration

1. Introduction

In past decades, numerous hydrological models have been developed and implemented in the
field of flood forecasting and water resources management. Hydrological models can help understand
the past and current state of water resources in the catchment and provide a way to explore the
implications of management decisions and imposed changes (such as climate change and anthropogenic
change) [1,2]. For most conceptual hydrological models, one or more of their parameters are designed
to represent mechanisms that are either poorly understood or too computationally expensive to
resolve [3]. These model parameters are generally unmeasurable from catchment conditions and
usually obtained from calibration procedures. The essence of the traditional calibration method is to tune
model parameters till the simulated hydrograph best fits the observed hydrograph. As the observed
outlet hydrograph is the result of interactions of numerous complex hydrological processes within a
catchment, several parameter combinations that produce similarly reasonable simulation results are
possible during calibration (i.e., equifinality [4]). Besides, other hydrologic variables (e.g., surface flow
and soil moisture) may be inaccurately reproduced with model parameters calibrated against only the
observed streamflow hydrograph.

Several recent researches have turned to soil moisture, evapotranspiration and other hydrological
variables as a complement for parameter calibration [5–14]. Among different surface/subsurface
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components, soil moisture plays a significant role in the energy and water balance of the hydrologic
cycle [15–18]. Especially in a heavy rainfall event where the amount of precipitation is close to the
storage capacity of the unsaturated zone, current soil moisture content has a tremendous influence
on whether surface flow would occur [19]. Therefore, ensuring accurate soil moisture accounting in
a hydrologic model can lead to a better simulation performance of hydrologic processes including
surface and subsurface flow.

Modern soil moisture monitoring technologies include in-situ measuring techniques and remote
sensing techniques [20–24]. The in-situ observations can provide continuous and accurate soil moisture
measurements but lack representativeness of regional soil moisture conditions. Remote sensing
(optical, thermal infrared and microwave) techniques can provide the spatial information on surface
soil moisture, compensating for the shortage of in-situ measuring techniques. Recent years have
witnessed the rapid development of remote sensing soil moisture products [25–30]. The European
Space Agency’s Soil Moisture Ocean Salinity (SMOS) satellite mission was launched in 2009 with
the purpose of measuring sea surface salinity over the world’s oceans and surface soil moisture over
land [26,27]. The Soil Moisture Active Passive (SMAP) mission from the National Aeronautics and
Space Administration (NASA) [28,29] launched in 2015, aimed to retrieve soil moisture information
from both active and passive microwave sensors. Currently, there are numerous remote sensing soil
moisture products available worldwide, which enables the wild application of soil moisture in the
fields of hydrological model (e.g., data assimilation) [31–38].

The potential of remote sensing soil moisture data as a tool for calibrating hydrological models
has been explored in recent studies [39–45]. Sutanudjaja et al. [39] applied ERS-SCAT (European
Remote Sensing Scatterometers)-derived soil moisture data for a coupled groundwater-land surface
model and found that the joint calibration using streamflow and remote sensing soil moisture data
can achieve a good simulation performance of soil moisture and streamflow, as well as ground
water head predictions. Rajid et al. [40] incorporated the AMSR-E (Advanced Microwave Scanning
Radiometer-Earth) soil moisture product into the calibration procedure of the SWAT (Soil and Water
Assessment Tool) model and their results showed that the application of remote sensing soil moisture
data in calibration improves surface soil moisture simulation, but other hydrologic components such
as streamflow, evapotranspiration and deeper layer moisture content in SWAT are less affected. These
studies demonstrated that parameter calibration using soil moisture can result in a better match
between observed and model-simulated soil moisture [41–45]. However, these studies focused on
improved surface or root-zone soil moisture simulation through either conceptual or physically-based
hydrological models. From the flood forecasting perspective, there are several important questions:
(1) how the joint calibration using remote sensing soil moisture and in-situ streamflow data affects
the streamflow simulation/forecasting; (2) how to leverage these observed variables (streamflow and
remote sensing soil moisture) for a better calibration; (3) what’s the advantage of the joint calibration
over the traditional calibration method using in-situ streamflow only.

To access the impact of incorporating remote sensing soil moisture data into the calibration
procedure, in this paper, the authors calibrated a distributed hydrological model under different
calibration schemes where the streamflow and remote sensing soil moisture data are resigned to
different weights in the objective function. The investigation was carried out for two humid catchments,
Qujiang (QJ) and Ganjiang (GJ) in southern China. The hydrological model used in this study is the
DEM-based distributed rainfall-runoff model (DDRM) proposed by Xiong et al. [46–49]. The remote
sensing soil moisture data used here is from the SMAP L3 soil moisture product [50].

2. Study Area and Data

2.1. Study Area

The Qujiang catchment (QJ) and the Ganjiang catchment (GJ) in southern China were chosen as the
study area in this study. The location of both QJ and GJ as well as the stations with hydro-meteorological
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measurements are shown in Figure 1. QJ covers 38,064 km2 with Luoduxi station as the catchment
outlet and lies between the coordinates 116◦10′–119◦00′ E and 30◦10′–33◦00′ N. The elevation within
QJ ranges from 128 to 2684 m and decreases from northeast to southwest. GJ is the seventh largest
branch of the Yangtze River, located between 113◦30′–116◦40′ E and 24◦29′–29◦21′ N, with a drainage
area of 81,158 km2 above the Waizhou hydrological station. The elevation of GJ ranges from 12 to
2108 m. Both catchments are dominated by a subtropical monsoon climate, with most precipitation
and flood events occurring in summer and early autumn. Based on the Digital Elevation Model (DEM)
data with a resolution of 1 km, the river channel and watershed boundary for both catchments were
delineated using the ArcGIS software (as shown in Figure 1).
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Figure 1. Location of the Qujiang basin (QJ) and the Ganjiang basin (GJ) and their corresponding
meteorological stations (blue dots) and hydrological station (red triangle).

2.2. Meteorological Data

The meteorological data required to force DDRM are precipitation P and potential
evapotranspiration PET. In this study, daily precipitation and temperature measurements from the
period from 1 January 2010 to 31 December 2017 were obtained from 70 (53 for QJ and 17 for GJ)
meteorological stations of National Meteorological Information Center of China (http://data.cma.cn/).
The daily potential evapotranspiration was calculated using the Blaney-Criddle method [51] from the
daily average temperature and the daily sunshine duration. In addition, the daily streamflow data
of Luoduxi and Waizhou hydrological station are obtained for the same period as the meteorological
data. Daily meteorological data including P and PET of both catchments were then interpolated into

http://data.cma.cn/
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the discretized cells (1 km × 1 km) as model inputs using the IDW (Inverse Distance Weighting)
method [52].

2.3. SMAP Soil Moisture Product

The SMAP satellite mission is the latest L-band satellite, which aims to retrieve global soil moisture
information by measuring brightness temperature through geophysical inversion. The SMAP satellite
was launched by NASA on 31 January 2015 and started to provide routine data since 31 March
2015 [28,29,50]. The SMAP mission provides soil moisture products at four different levels, as Level
1 for raw instrument measurements, Level 2 for half orbits based, Level 3 for daily composite, and
Level 4 for model assimilation [28]. There currently exists three products of SMAP Level 3 (L3) soil
moisture that can be downloaded from National Snow and Ice Data Center (NSIDC, https://nsidc.
org/data/smap), including: (1) passive soil moisture product derived from the radiometer signature;
(2) active soil moisture product derived from the radar signature; (3) the combined active-passive soil
moisture product. The SMAP L3 product is an estimate of surface soil moisture for the top 5 cm of the
soil column [25] and covers the period after April 2015. Given the failure of SMAP’s active L-band
radar after 2 months in orbit, the passive L-band L3 soil moisture product with a resolution of 9 km
(SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 2) was chosen
for this study.

3. Methodology

3.1. The DEM-Based Distributed Rainfall-Runoff Model (DDRM)

The DEM-based distributed rainfall-runoff model (DDRM) was developed by Xiong et al. [46]
and has been tested in several humid and semi-humid catchments of southern China [47–49]. To set
up DDRM, the study area (catchment) is divided into several sub-catchments which are relatively
homogeneous in terms of hydrologic responses; then each sub-catchment is further divided into an
array of individual cells, which are treated as the basic hydrologic response units, as demonstrated
in Figure 2a. For each cell, three layers are defined to describe the hydrological processes from
precipitation to runoff generation and runoff routing, including the river channel layer (blue part in
Figure 2b,c), surface layer (green part) and soil layer (grey part).

To account for the spatial heterogeneity of topography and its impact on hydrological process,
DDRM assumes that the soil moisture capacity (SMC) of each cell is related to the corresponding
topographic index, TIi. More details about the topographic index can refer to the work of
Beven et al. [53]. For cell i, the soil moisture capacity SMCi is calculated as follows:

SMCi = S0 + SM·
[

TIi − TImin

TImax − TImin

]n
(1)

where S0 is the minimum water storage capacity and SM stands for the variation range of the water
storage capacity across the catchment; n is an empirical constant that reflects the degree of heterogeneity
of SMCi and can take a value between 0 and 1. TImin and TImax are the minimum and maximum value
of cell-based topographic indexes across the whole catchment, respectively; S0, SM and n are model
parameters that require to be calibrated.

DDRM consists of three calculation components: runoff generation at cell scale, sub-catchment
outlet streamflow calculation and runoff routing through the river network.

https://nsidc.org/data/smap
https://nsidc.org/data/smap
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Figure 2. The spatial discretization strategy and water balance components for a basic hydrological
response unit (cell) within DEM-based distributed rainfall-runoff model (DDRM): (a) discretization of
a catchment into sub-catchments and cells; (b) situation where the cell is not saturated, and no surface
flow occurs; (c) situation where the cell is saturated and surface flow occurs.

3.1.1. Runoff Generation at Cell Scale

For cell i, the rainfall input for the soil layer at time t is Pi,t. The actual evapotranspiration, ETi,t, is
determined by both potential evapotranspiration PETi,t and the current water content of the soil layer
Si,t, which is calculated as follows:

ETi,t =
Si,t

SMCi
PETi,t (2)

DDRM incorporates the saturation excess runoff mechanism for runoff generation of each cell.
Before the soil layer becomes saturated, as shown in Figure 2b, there is no water exchange that occurs
between the soil layer and surface layer. When the water content in the soil layer Si,t exceeds the
maximum capacity SMCi of the cell, as shown in Figure 2c, the excess part Si,t–SMCi reaches the
surface layer and replenishes the surface ponding water storage SPi,t, as follows:

SPi,t = SPi,t−∆t + Si,t − SMCi (3)

The water content stored in the surface layer turns into surface flow under the force of gravity,
and subsequently flows into the river channel layer. The surface flow is calculated under the linear
reservoir assumption as:

QPi,t =
SPi,t

TP
(4)

where TP is a model parameter that determines the velocity of the surface flow.
For the soil layer, when the water content Si,t falls below a specific threshold STi, the outflow

of groundwater is zero. When Si,t exceeds the threshold STi, the groundwater outflow (QSout) is
calculated as follows:

QSouti,t =

{
Si,t−STi

TS (tan βi)
b Si > STi

0 Si < STi
(5)
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where TS is a model parameter that determines the velocity of the groundwater flow. βi is the average
downward slope across the catchment and b is an empirical constant between 0 and 1. The value of
threshold STi is smaller than SMCi and can be calculated by STi = α·SMCi. Here, α is treated as a
calibration parameter with a value between 0 and 1.

At time t, the groundwater inflow for cell i can be obtained by:

QSini,t = ∑
j

QSoutj,t (6)

where QSoutj,t with 0 < j < 8, are the groundwater outflows from the upstream cells of cell i.
At the end of the runoff generation procedure, the water content for the soil layer is updated

as below:
Si,t+∆t = Si,t + [Pi,t − ETi,t]·∆A·∆t + [QSini,t −QSouti,t]·∆t (7)

where ∆A, ∆t represent the area of each cell and the calculation time step of the model, respectively.

3.1.2. Sub-Catchment Outlet Streamflow Calculation

After the runoff generation calculation for each cell of a certain sub-catchment is completed,
the surface flow is routed from upstream cells to downstream cells successively using the
Muskingum routing method. The runoff routing procedure begins at the cells that are located at
the sub-catchment boundary, then its downstream cells, and ends at the cell with the lowest elevation,
i.e., the sub-catchment outlet.

For cell i, the surface inflow for the river channel layer can be obtained by,

Qini,t = ∑
j

Qoutj,t (8)

where Qoutj,t with 0 < j < 8, are the surface outflows from upstream cells.
The routed surface outflow Qouti,t is calculated as follows:

Qouti,t = c0[Qini,t + QPi,t] + c1[Qini,t−∆t + QPi,t−∆t] + (1− c0 − c1)Qouti,t−∆t (9)

where c0 and c1 are parameters related to the Muskingum routing method at cell scale and take a value
between 0 and 1.

3.1.3. Runoff Routing through River Networks

When streamflow simulation for each sub-catchment is completed, the streamflow at the outlet
of each sub-catchment (node) is subsequently routed through river networks to downstream nodes.
This is also done by applying the Muskingum routing method for each node. As shown in Figure 2a,
nodes d and e are the outlets of sub-catchment D and E, respectively. Node f is not only the outlet of
sub-catchment F, but also the outlet of the whole catchment. The streamflow at node f (i.e., Of) consists
of three parts: (1) streamflow routed from node d, Odf; (2) streamflow routed from node e, Oef and (3)
local outflow of sub-catchment F, Qoutf, which are calculated as follows:

Od f ,t = hc0Qoutd,t + hc1Qoutd,t−∆t + (1− hc0 − hc1)Od f ,t−∆t (10)

Oe f ,t = hc0Qoute,t + hc1Qoute,t−∆t + (1− hc0 − hc1)Oe f ,t−∆t (11)

O f ,t = Od f ,t + Oe f ,t + Qout f ,t (12)

where Qoutd and Qoute represent the runoff of node d and e, respectively; hc0 and hc1 are parameters
related to the Muskingum routing method at node scale and take a value between 0 and 1.
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3.1.4. Model Parameters

As described above, DDRM has 11 parameters, including runoff generation parameters (S0,
SM, TS, TP, n, α and b), cell channel routing parameters (c0 and c1), and the river networks routing
parameters (hc0 and hc1). A detailed description of the DDRM parameters are presented in Table 1.

Table 1. Descriptions of the DEM-based distributed rainfall-runoff mode (DDRM) parameters.

Parameter Description Unit Prior Range

S0 Minimum water storage capacity mm 1–200

SM Variation range of water storage capacity across the catchment mm 1–600

TS Time constant that determines the velocity of
groundwater flow h 1–300

TP Time constant that determines the velocity of surface flow h 1–300

α
Empirical constant describing the characteristic of

groundwater flow - 0–1

b Empirical constant describing the impact of cell slope on the
celerity of groundwater flow - 0–1

n Empirical constant describing the relationship between SMC
and the corresponding topographic index - 0–1

c0
Muskingum parameter for runoff routing within

a sub-catchment - 0–1

c1
Muskingum parameter for runoff routing within

a sub-catchment - 0–1

hc0
Muskingum parameter in association with river

channel routing - 0–1

hc1
Muskingum parameter in association with river

channel routing - 0–1

3.2. Pre-Processing SMAP Soil Moisture Product

To remove the systematic differences or bias between the raw SMAP soil moisture product
and the soil moisture simulated by DDRM, a rescaling procedure is needed. There are several
rescaling approaches for this end, including linear rescaling, mean-std rescaling, min-max matching
and cumulative distribution function (CDF) matching [15]. Here, the CDF matching method was
implemented to rescale the SMAP soil moisture against the DDRM simulated soil moisture (θDDRM).
This procedure was repeated for each cell within the catchment. As a reference of the CDF matching
method, θDDRM was obtained from the DDRM simulation after a small number of trial parameter
calibrations were conducted. Note that the spatial resolution of SMAP L3 soil moisture (9 km) is
different from the cell size of DDRM (1 km) in this study. Thus, before the CDF matching procedure,
the DDRM simulated soil moisture was resampled into the same spatial resolution with the SMAP
data through the nearest resampling technique via ArcGIS platform. Here, the resampled DDRM
simulated soil moisture for cell i at time t (i.e., θDDRM

i,t ) is calculated by:

θDDRM
i,t =

Si,t·∆A
SMCi·∆A

=
Si,t

SMCi
(13)

Although the CDF matching procedure changes the absolute values of the SMAP soil moisture
data, the relative dynamics of the original SMAP is preserved. The rescaled SMAP soil moisture data
is denoted by θCDFM hereafter.

Given that the SMAP soil moisture data only focuses on the top 5 cm of the soil profile, it remains
unfeasible to directly compare the rescaled SMAP soil moisture data (i.e., θCDFM) to the DDRM
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simulated soil moisture (θDDRM). This is because the DDRM simulates the dynamic of water content
of the whole root-zone. A common solution to this issue is to utilize the exponential filtering technique
proposed by Wagner et al. [54] to convert the remote sensing soil moisture data to soil wetness index
(SWI) of the root zone. To derive the SWI time series for each cell, the following exponential filter is
applied to the θCDFM series:

θSWI
i,tn

= θSWI
i,tn−1

+ Kn

(
θCDMF

i,tn
− θSWI

i,tn−1

)
(14)

where θSWI
i,tn

is the soil wetness index (SWI) at time tn for cell i. The gain K at time tn can be written in
recursive form as follows:

Kn =
Kn−1

Kn−1 + e−
tn−tn−1

T

(15)

where the parameter T is a characteristic time length that controls the smoothing degree of the θCDFM
i,tn

series and the response time to the changes in the surface wetness conditions. In this study, T takes the
value of 5 days as it provides the best correlation between θSWI and θDDRM for both QJ and GJ in a
series of trial tests. For the initialization of this filter, K1 and θSWI

i,t1
were set to 1 and θCDFM

i,t1
, respectively.

3.3. Parameter Calibration Schemes

The Kling-Gupta Efficiency (KGE) [55] is used as criteria to access the agreement between the
simulated and observed variables, including streamflow and soil moisture series. KGE is calculated
as follows:

KGE = 1−
√
(r− 1)2 + (µs/µo − 1)2 + (σs/σo − 1)2 (16)

where r is the correlation between the simulated and observed variables; µ and σ are the mean and
standard deviation of the variables; the subscript s and o represent the simulation and observation
data, respectively. KGE value ranges from −∞ to 1, with a value closer to 1 indicating a better
simulation performance. To avoid possible ambiguity, KGEQ is defined to represent the KGE statistic
of the simulated streamflow of the watershed outlet, while KGESMi indicates the KGE statistic of the
DDRM-simulated soil moisture for cell i,

KGESMi = 1−
√
(rθ − 1)2 +

(
µθDDRM

i
/µθSWI

i
− 1
)2

+
(

σθDDRM
i

/σθSWI
i
− 1
)2

(17)

where rθ represents the correlation between θDDRM
i and θSWI

i ; µθDDRW
i

and µθSWI
i

are the mean of θDDRM
i

and θSWI
i ; σθDDRM

i
and σθSWI

i
are the standard deviation of θDDRM

i and θSWI
i , respectively.

In addition, KGESM is defined to access the overall simulation performance of soil moisture,
as follows:

KGESM =

N
∑

i=1
KGESMi

N
(18)

where N is the number of cells within the whole catchment.
For the parameter calibration purpose, a weighted objective function KGEw is defined to access

the simulation performance in terms of the streamflow of the catchment outlet and the soil moisture,
as follows:

KGEw = w·KGESM + (1− w)KGEQ (19)

where w is the weight assigned to soil moisture and varies between 0 and 1.
To evaluate the relative effect of remote sensing soil moisture estimates in model calibration,

DDRM was calibrated under 11 different schemes for both study catchments. Under the 11 calibration
schemes, the w value in the objective function KGEw was set to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
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0.9 and 1.0, respectively (as shown in Figure 3). Note that when w is set to 0, the model is calibrated
against only the streamflow data, with KGEw equal to KGEQ.

Considering that the SMAP L3 soil moisture data is available since the year of 2015, the calibration
period for both QJ and GJ is defined as the period 2014–2017, using the year 2014 as the warm-up
period. After the parameter calibration procedure, the model is validated during the period 2010–2013.
In this study, parameter calibration for DDRM was performed using the shuffled complex evolution
method (SCE-UA) [56].
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4. Results and Discussion

4.1. Simulation Performance of Streamflow and Soil Moisture

Table 2 presents the simulation performance of streamflow and soil moisture under 11 different
calibration schemes. It is evident that the highest KGE value for streamflow (i.e., KGEQ) could be
achieved when the weight w was set to 0, without using remote sensing soil moisture data for parameter
calibration in the cases of both catchments. Meanwhile, an acceptable simulation of soil moisture was
also achieved, where KGESM for QJ and GJ are 0.483 and 0.772, respectively. This is in line with the
work of Xiong et al. [23]. With w increasing from 0 to 1.0, DDRM shows a better performance for soil
moisture simulation, with a slightly decreased ability in terms of streamflow simulation. For QJ, KGEQ
was 0.885 when the model was calibrated against the observed streamflow only, and slightly decreased
to 0.876 under the calibration scheme where w was set to 0.5. The lowest KGEQ value (0.853) was
achieved when w was set to 0.9. In the case of GJ, different calibration schemes led to similar streamflow
simulation performance in terms of KGEQ values, with KGEQ = 0.905 when w was 0 and KGEQ = 0.893
when w was set to 0.9. This is in line with the work of Li et al. [7] and Sutanudjaja et al. [39], where
they found that the joint calibration using both in-situ streamflow and remote sensing soil moisture
slightly degrades the streamflow simulation during the calibration period compared with calibration
using streamflow only. This may be partially attributed to the inadequacy of the model structure,
as the soil layer within DDRM serves as a conceptual module and may fail to accurately represent the
soil profile of the real world. Besides, the uncertainty of model inputs (precipitation and potential
evapotranspiration) and the pre-processed SWI series may also contribute to the degradation in
streamflow simulation during the calibration period in the case of joint calibration [7,11,39].

In the case where w = 1, DDRM presents the best soil moisture simulation for both QJ and GJ.
However, the simulated streamflow is quite unreasonable, and it is hard to access the simulation
performance of streamflow. As an intermediate variable of hydrological models, soil moisture is
affected by parameters that are related to runoff generation only (S0, SM, TS, TP, α, b, n for DDRM).
When calibrated using the remote sensing soil data only, these parameters can be ascertained while the
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parameters that related to runoff routing (c0, c1, hc0, hc1 for DDRM) become unregulated [5]. In such
a case, KGEQ may take an unpredictable value, and mostly a negative value, which indicates a poor
streamflow simulation.

Table 2. Simulation performance of streamflow and soil moisture under 11 calibration schemes for QJ
and GJ.

Catchment w Calibration Period Validation Period

KGEQ KGESM KGEw KGEQ

QJ

0 0.885 0.483 0.885 0.796

0.1 0.884 0.497 0.845 0.802

0.2 0.883 0.504 0.807 0.806

0.3 0.881 0.511 0.771 0.810

0.4 0.878 0.516 0.733 0.813

0.5 0.876 0.518 0.697 0.816

0.6 0.871 0.522 0.661 0.819

0.7 0.866 0.524 0.627 0.821

0.8 0.864 0.524 0.592 0.821

0.9 0.853 0.528 0.561 0.822

1.0 - 0.529 - -

GJ

0 0.905 0.772 0.905 0.826

0.1 0.901 0.784 0.889 0.824

0.2 0.899 0.788 0.877 0.822

0.3 0.904 0.788 0.869 0.817

0.4 0.913 0.788 0.863 0.815

0.5 0.901 0.789 0.845 0.812

0.6 0.895 0.789 0.831 0.809

0.7 0.901 0.790 0.823 0.798

0.8 0.898 0.791 0.812 0.794

0.9 0.893 0.792 0.802 0.779

1.0 - 0.792 - -

Note: the symbol “-” indicates that the calculation of KGE value is not applicable.

However, the streamflow simulation performance during the validation period shows a distinct
trend with the value of w for QJ, where the KGEQ value during the validation period increases as the
weight w increases from 0 to 0.9, with the highest KGEQ value achieved when w equals to 0.9. This is
in line with the findings of Li et al. [7]. This may indicate that calibration using soil moisture can
improve the transferability of DDRM across different periods for QJ. The case for GJ is completely
different from QJ. Considering that only 10 parameter sets for each catchment were tested here, a more
comprehensive analysis with more parameter sets is required to address this issue. This is not the
focus of this study but remains an interesting topic that deserves further research.

Table 3 presents the optimal parameter value under 11 calibration schemes for both QJ and GJ.
It should be noted that the parameters related to runoff routing are not available under the calibration
scheme w = 1, as explained above. For QJ, the values of the parameter α, b, c0 and c1 are quite
similar under different calibration schemes, while other parameters vary greatly. While in the case
of GJ, the values of parameter S0, SM, c0 and c1 are consistent among different calibration schemes.
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For example, the optimal values of parameter S0 range from 195.7 to 199.9, which is quite narrow
when compared to its priori range (1–200).

Table 3. Optimal parameter values under 11 calibration schemes for QJ and GJ.

Catchment w Optimal Parameter Value

S0 SM TS TP α b n c0 c1 hc0 hc1

QJ

0 144.3 491.7 252.7 28.6 0.66 0.001 0.989 0.993 0.003 0.828 0.091

0.1 138.8 481.2 254.5 28.4 0.65 0.001 0.977 0.993 0.004 0.804 0.102

0.2 131.4 482.9 254.1 28.4 0.64 0.001 0.965 0.994 0.003 0.788 0.103

0.3 120.9 491.4 247.4 28.5 0.63 0.001 0.956 0.993 0.003 0.789 0.102

0.4 112.3 465.9 246.6 28.4 0.62 0.001 0.899 0.992 0.003 0.830 0.105

0.5 116.6 472.6 243.8 18.5 0.61 0.001 0.971 0.991 0.004 0.783 0.108

0.6 107.9 439.1 222.4 19.1 0.61 0.001 0.909 0.989 0.005 0.829 0.105

0.7 101.0 456.9 206.0 19.8 0.61 0.001 0.913 0.992 0.004 0.759 0.112

0.8 101.1 497.5 213.7 25.1 0.59 0.001 0.961 0.993 0.003 0.739 0.135

0.9 89.1 393.4 175.8 23.8 0.61 0.001 0.813 0.987 0.005 0.754 0.142

1.0 95.7 395.4 172.2 24.3 0.61 0.001 0.842 - - - -

GJ

0 198.8 473.0 231.3 176.5 0.33 0.366 0.838 0.998 0.001 0.970 0.025

0.1 196.3 499.1 299.3 177.1 0.19 0.286 0.903 0.998 0.001 0.949 0.034

0.2 199.8 488.5 189.0 183.7 0.22 0.427 0.860 0.998 0.001 0.925 0.031

0.3 195.7 488.9 293.7 160.2 0.15 0.307 0.840 0.997 0.001 0.949 0.027

0.4 199.1 497.1 298.6 154.1 0.16 0.323 0.732 0.998 0.001 0.959 0.021

0.5 198.4 499.5 191.3 186.9 0.39 0.429 0.850 0.998 0.001 0.924 0.041

0.6 199.5 492.8 177.2 181.3 0.38 0.456 0.890 0.998 0.001 0.930 0.061

0.7 199.2 485.5 196.3 185.4 0.36 0.425 0.842 0.998 0.001 0.899 0.081

0.8 199.1 482.4 187.1 191.8 0.21 0.467 0.789 0.998 0.001 0.916 0.027

0.9 199.8 480.4 185.8 194.3 0.12 0.452 0.857 0.997 0.001 0.931 0.034

1.0 199.9 478.5 192.7 192.2 0.08 0.437 0.832 - - - -

Note: the symbol “-” indicates that the parameter value is not available.

4.2. Streamflow Simulation under Different Calibration Schemes

Figure 4 compares the observed streamflow and DDRM simulated streamflow (under four
calibration schemes where w = 0, 0.1, 0.5 and 0.9, respectively) for QJ and GJ during part of the
calibration period. For the sake of brevity, Figure 4 only covers part of the year 2016. The reason
why only the results of the four calibration schemes are presented here is that adjacent values of w
lead to pretty similar streamflow simulation performance and may overlap each other. As mentioned
in Section 4.1, a lower value of w means a better streamflow simulation performance during the
calibration period. In the cases of both QJ and GJ, the DDRM simulated streamflow represented by
the red dash line (w = 0.9) tends to overestimate the high flows and underestimate the low flows
(exceedance probability 0–10%: high flow; 10–60%, medium flow; 60–100%, low flow), when compared
to the blue and green dash line (w = 0.1, 0.5, respectively).

Figure 5 presents the observed flow-duration curve and DDRM simulated flow-duration curves
(under 4 calibration schemes where w = 0, 0.1, 0.5 and 0.9, respectively) for QJ and GJ. It can be found
that under the calibration scheme where w was set to 0.9, the simulation performance of the high flows
and low flows were poor. In contrast, DDRM calibrated using streamflow only (w = 0) shows the
best goodness of fit for all flow regimes (low, median and high flows), slightly outperforming those
calibrated under other schemes.
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Moreover, Figure 6 shows the relative error (RE) between observed and simulated streamflow
during the calibration period (2015–2017) under 10 calibration schemes. In the case of QJ, with w
increasing from 0 to 0.9, RE for high flow and low flow shows an uptrend while RE for median flow
is on a downtrend. The case of GJ is slightly different, where RE for three flow regimes shows no
apparent trend as w varies from 0 to 0.9. This is because the streamflow simulation performance under
the 10 calibration schemes are very similar, as presented in Table 2.
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Figure 6. Relative Error (RE) in simulated streamflow for (a) QJ and (b) GJ during the calibration
period (2015–2017) for three different flow regimes: (Exceedance probability 0–10%: high flow; 10–60%,
medium flow; 60–100%, low flow). RE = Abs (Simulated-Observed)/Observed × 100%.

It can be concluded that incorporating the SMAP soil moisture product into the calibration
procedure does not improve the streamflow simulation performance. Furthermore, a greater emphasis
on soil moisture (i.e., a larger value of w) during the calibration procedure leads to a slightly worse
ability for DDRM to accurately simulate streamflow during the calibration period.

4.3. Soil Moisture Simulation under Different Calibration Schemes

Under 11 calibration schemes, the highest value of KGESM was achieved when the weight w was
set to 1.0 for both QJ and GJ. Figures 7 and 8 show the spatial distribution of KGESMi values for the
whole calibration period, the dormant season (from November to April) and the growing season (from
May to October), respectively. For the sake of brevity, only the cases of w = 0.1, 0.5, 0.9 are presented
here. It should be noted that very slight difference between the three cases can be detected. This is not
unexcepted since the term KGESM in the objective function is the average of KGESMi values of all cells
within the catchments. For QJ, the spatial distributions of KGESMi values vary between the dormant
season and the growing season. During the dormant season, the KGESMi values of northern QJ are
much higher than those of southern QJ. In contrast, the spatial distribution of the KGESMi values is
quite homogeneous for the growing season. In the case of GJ, the KGESMi values during the growing
season are higher than those of the dormant season for most cells within the catchment.
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respectively).

Figures 9 and 10 show the temporal comparison of SWI series θSWI
i and DDRM simulated soil

moisture series θDDRM
i of two cells for QJ and GJ, respectively. Though the choice of the cells is quite

subjective, the cells presented here are representative among all cells within the catchment. Under
three calibration schemes (w = 0.1, 0.5, 0.9), the DDRM simulated soil moisture series shows very
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similar temporal variations. As w increases from 0.1 to 0.9, the DDRM simulated soil moisture series
shows a better agreement with the SWI series for these cells.
Water 2019, 11, x FOR PEER REVIEW 16 of 20 

 

 

Figure 9. Temporal comparison of cell-based SWI series (𝜃𝑖
𝑆𝑊𝐼) and DDRM-simulated soil moisture 

series (𝜃𝑖
𝐷𝐷𝑅𝑀 ) for QJ. Two cells (a) cell ID 43 and (b) cell ID 280 are shown here for illustration 

purposes. 

 

Figure 10. Temporal comparison of cell-based SWI series (𝜃𝑖
𝑆𝑊𝐼) and DDRM-simulated soil moisture 

series (𝜃𝑖
𝐷𝐷𝑅𝑀) for GJ. Two cells (a) cell ID 295 and (b) cell ID 729 are shown here for illustration 

purposes. 

Though the incorporation of the remote sensing soil moisture data into the calibration procedure 

fails to achieve a better streamflow simulation, it is an interesting finding that even under the 

calibration scheme where the weight w was set to 0.1, the DDRM could reproduce an acceptable 

simulation of the soil moisture series. This indicates that a good simulation of soil moisture does not 

necessarily collide with a good simulation of streamflow. As a key variable in hydrological models, 

Figure 9. Temporal comparison of cell-based SWI series (θSWI
i ) and DDRM-simulated soil moisture

series (θDDRM
i ) for QJ. Two cells (a) cell ID 43 and (b) cell ID 280 are shown here for illustration purposes.

Water 2019, 11, x FOR PEER REVIEW 16 of 20 

 

 

Figure 9. Temporal comparison of cell-based SWI series (𝜃𝑖
𝑆𝑊𝐼) and DDRM-simulated soil moisture 

series (𝜃𝑖
𝐷𝐷𝑅𝑀 ) for QJ. Two cells (a) cell ID 43 and (b) cell ID 280 are shown here for illustration 

purposes. 

 

Figure 10. Temporal comparison of cell-based SWI series (𝜃𝑖
𝑆𝑊𝐼) and DDRM-simulated soil moisture 

series (𝜃𝑖
𝐷𝐷𝑅𝑀) for GJ. Two cells (a) cell ID 295 and (b) cell ID 729 are shown here for illustration 

purposes. 

Though the incorporation of the remote sensing soil moisture data into the calibration procedure 

fails to achieve a better streamflow simulation, it is an interesting finding that even under the 

calibration scheme where the weight w was set to 0.1, the DDRM could reproduce an acceptable 

simulation of the soil moisture series. This indicates that a good simulation of soil moisture does not 

necessarily collide with a good simulation of streamflow. As a key variable in hydrological models, 

Figure 10. Temporal comparison of cell-based SWI series (θSWI
i ) and DDRM-simulated soil

moisture series (θDDRM
i ) for GJ. Two cells (a) cell ID 295 and (b) cell ID 729 are shown here for

illustration purposes.

Though the incorporation of the remote sensing soil moisture data into the calibration procedure
fails to achieve a better streamflow simulation, it is an interesting finding that even under the calibration
scheme where the weight w was set to 0.1, the DDRM could reproduce an acceptable simulation of the
soil moisture series. This indicates that a good simulation of soil moisture does not necessarily collide
with a good simulation of streamflow. As a key variable in hydrological models, soil moisture plays a
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significant role in water content allocation and runoff generation procedures. An accurate simulation
of the soil moisture is a prerequisite for reliable streamflow simulating and forecasting.

5. Conclusions

This study incorporated the SMAP soil moisture and streamflow data into the joint calibration of
the DEM-based distributed rainfall-runoff model (DDRM) and analyzed the simulation performance
of soil moisture and streamflow under 10 different calibration schemes, where the SMAP soil moisture
data are assigned to different weights in the objective function. The investigation was carried out for
the Qujiang and Ganjiang catchment in southern China. The main findings are as follows:

(1) DDRM can reproduce an acceptable soil moisture simulation when calibrated using the
streamflow data only. With a greater emphasis on soil moisture in the joint calibration procedure, the
simulation performance of streamflow slightly decreases while a better soil moisture simulation is
achieved. However, the difference in simulation performance of these two variables under different
calibration schemes is very slight.

(2) From the perspective of flood forecasting, the joint calibration using remote sensing soil
moisture and streamflow data shows no apparent advantages in terms of streamflow simulation over
the traditional calibration schemes where only streamflow data are used.

It is excepted that a better soil moisture simulation should lead to a better streamflow simulation.
However, this is not the case in this study due to the inadequacy of the DDRM model structure
and the uncertainty from model inputs (precipitation and potential evapotranspiration) and the
remote sensing soil moisture. For the purpose of fully exploring the skill of streamflow prediction,
a hydrological model should be calibrated against the historical streamflow data only. For a more
realistic representation of the hydrological processes, the joint calibration using both soil moisture and
streamflow data can serve as a promising alternative of the traditional calibration approach. Though
the compromise between good simulation of soil moisture or streamflow is inevitable for DDRM,
this study proves that cost is acceptable as different weights of soil moisture in the objective function
cause slight differences in the simulation performance of both soil moisture and streamflow.

Considering the availability of the SMAP soil moisture product, the calibration period (2014–2017)
for DDRM was quite short, which prevented a further investigation of the proposed calibration
schemes under different climate conditions (e.g., dry period and wet period). Due to the lack of in-situ
soil moisture observation, the DDRM simulated soil moisture was used as reference to rescale the
SMAP soil moisture. Further studies could focus on how to rescale the remote sensing soil moisture
data where reliable in-situ soil moisture data are unavailable. In addition, a more remote sensing soil
moisture product (e.g., AMSR-E and SMOS) can be considered in further studies.
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