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Abstract: The biological treatment of the aqueous residue produced during poplar wood pyrolysis
was investigated. The biological treatment experiments were carried out at two different pH
conditions (controlled at 7, uncontrolled) in batch mode at three different temperatures (15 ◦C,
25 ◦C and 30 ◦C) and initial total organic carbon of the water ranging from 800 mg/L to 2800 mg/L.
Results show that a substantial removal of organic carbon could be achieved in aerobic conditions
after biomass acclimation. After 72 h of treatment, total organic carbon (TOC) removal mean values
of 49.47% and 53.03% were observed at 30 ◦C for solution at 1400 and 2000 mg/L initial TOC,
respectively. In the case of 1400 mg/L, a further mineralization (61.80%) was achieved during 144 h
of treatment, by using a two-step process. A kinetic study of the process was also made, showing
that organics mineralization followed a first-order kinetic model.
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1. Introduction

Pyrolysis is the thermal decomposition of organic matrices in the absence of oxidizing agents,
with the production of an array of solids, liquid and gaseous products [1]. The interest in pyrolysis is
mainly related to the conversion of solid biomass and organic wastes into liquid products (bio-oil and
water containing soluble organics compounds), thus showing great advantages in terms of transport
and storage [2]. Seeking to achieve an environmentally sound production based on the principles of
circular economy, pyrolysis bio-oil can be successfully used to replace fossil fuel for heat and power
generation, providing a renewable source of energy. In addition, the solid residue (char) could be used
as cheap carbon-based material precursor for the production of activated carbon [3–5], the properties
of which depend on the raw materials and activation processes used [6,7]. The liquid generated
during the pyrolysis process, also known as “pyroligneous liquor” is a complex mixture of water,
alcohols, organic acids, phenols, aldehydes, ketones, esters, furan and pyran derivatives, hydrocarbons,
and nitrogen compounds [8,9], yield and composition depending on the operating conditions of the
process as well as biomass composition.

While the process is highly variable, it typically produces an amount of highly polluted wastewater
that accounts for up to 50% of the liquid phase.

Many organic compounds and a list of hazardous constituents have been identified in such
wastewaters [10]. As an example, the reddish-brown wood distillate was considered in the past as
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a major source of chemicals, including acetic acid and methanol. At present the recovery of chemicals
appears to not be economically feasible, especially in the case of small decentralized plants, although it
still has some minor application as natural antiseptic, and in the food industry as additives [11],
and smoke flavoring [12]. The correct disposal of pyrolysis aqueous phase becomes, therefore,
critical for the diffusion of small-scale pyrolysis technology; as a consequence alternative treatment
technologies need to be evaluated to limit the environmental impact of such products [13].

To this purpose, physicochemical methods, mainly based on radical mechanisms activated
through the combined use of ozone, H2O2, UV, cavitation (Advanced Oxidation Processes—AOP),
have been proposed for the destruction of refractory organic pollutants [14,15]. Catalytic and
photocatalytic ozonation of pyrolysis wastewaters showed good results in alkaline conditions [16].

As an alternative, chemical processes could be used to increase wastewater biodegradability
as a pretreatment of a biological process. Silva et al. [17] reported promising results of the hybrid
electrochemical/microbiological degradation of phenolic compounds from pyrolysis wastewater.
Despite these methods having demonstrated high treatment efficiencies, they still present a relative
high-energy footprint and can generate uncontrolled by-products [18]. Therefore, these methods
are still considered complex and expensive with respect to the most common biological oxidation
processes, which are generally environmentally friendly and cost-effective [19,20].

Furthermore, the biological oxidation of selected pollutants generally found in pyrolysis
wastewater have already been investigated, even in complex mixtures [21].

To our knowledge, very few experiments of biological treatment of pyrolysis wastewater have
been carried out. In addition, biodegradation efficiency is strongly related to the biomass pyrolyzed
due to the presence of slowly biodegradable or even refractory compounds.

In this paper, the aerobic biological process has been investigated as a possible solution for the
treatment of pyrolysis wastewater. A careful investigation of the influence of operating conditions
was performed, by evaluating the effect of total organic carbon (TOC) concentration, pH conditions
and temperature on biodegradation efficiency. A simplified kinetic model has also been proposed to
evaluate the experimental results.

2. Materials and Methods

2.1. Pyrolysis Process

Pyrolysis of dried and crushed poplar wood was carried out in a continuous screw reactor
(25 mm i.d., 550 mm length) under N2 atmosphere. Before starting the pyrolysis experiment, 150 g of
dried biomass was loaded in the hopper, and the system was flushed with nitrogen at 500 mL/min
to ensure inert atmosphere. After 30 min, the reactor was heated up to 450 ◦C and the feeding was
started at a rate of 100 g/h. The vapors produced during biomass pyrolysis were cooled down and
the condensate collected in liquid traps. The condensate separates spontaneously into two phases,
an organic phase, the so called bio-oil, and an aqueous phase. In this work, to reduce the separation
time and to assure a reduced amount of bio drops in the aqueous phase, a centrifugation step was also
adopted. The aqueous phase was then analyzed by a GC-MS analyzer (Agilent, Santa Clara, CA, USA)
using a thin film (30 m × 0.32 mm, 0.5 µm film thickness) HP-MS5 capillary column to determine the
main soluble organic compounds TOC and pH were also determined. The main characteristics of the
aqueous phase are reported in Table 1.
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Table 1. Main physicochemical characteristic of the aqueous phase.

Parameter Value

TOC 82,700 mg/L
pH 3.2

List of the soluble organic compounds on dry basis

Retention Time (min) Organic Compound Mass Fraction (%)

1.85 Acetic acid, methyl ester 8.65
1.97 Acetic acid 24.49
1.98 2-Butanol 11.92
2.22 2-Propanone, 1-hydroxy- 12.48
2.30 Propanoic acid 4.36
2.42 2-Butanone, 3-hydroxy- 3.64
2.61 2-Butanol, 3-methyl- 0.72
2.70 Butanamide, 3,N-dihydroxy- 0.44
2.79 1-Hydroxy-2-butanone 2.63
2.84 Butanoic acid 0.78
2.89 Propanal 2.02
2.99 Cyclopentanone 1.36
3.05 3-Pentanol 0.84
3.11 Butane,2-ethoxy- 0.64
3.36 2-Cyclopenten-1-one 3.86
3.55 Pentane, 1,3-epoxy-4-methyl- 0.65
3.87 2-Furanmethanol, tetrahydro- 0.26
3.90 1,3-Butanediol 0.62
4.05 2-Cyclopenten-1-one, 2-methyl- 1.37
4.09 Ethanone, 1-(2-furanyl)- 0.50
4.12 Butyrolactone 3.74

4.52 2(3H)-Furanone,
dihydro-5-methyl- 0.62

4.57 2H-Pyran-2-one, tetrahydro- 0.43
4.65 2-Cyclopenten-1-one, 3-methyl- 1.06
4.81 Phenol 1.15
4.94 6-Methyl-3-heptyne 0.30
4.98 Cyclohexanone, 3-methyl-, (R)- 0.29
5.00 1-Hydroxy-2-pentanone 0.56
5.23 1,2-Cyclopentanedione, 3-methyl- 3.10
5.35 2-Cyclopenten-1-one, 2,3-dimethyl 0.52
5.48 2-Hydroxy-3,5-dimethylcyclopent-2-en-1-one 1.25
5.80 Phenol, 2-methoxy- 2.46

6.07 2-Cyclopenten-1-one,
3-ethyl-2-hydroxy 0.50

6.30 4-Isoprpylcyclohexanone 0.51
6.74 Phenol, 2-methoxy-4-methyl- 1.11

2.2. Biological Treatment of the Liquid Residue

A microbial biomass from municipal wastewater treatment was used. Microbial acclimation was
carried out in a 1 L glass batch reactor, filled by 800 mL of municipal wastewater, by addition of 20 mL
of pyrolysis wastewater every 5 days for a month, at 25 ◦C under aerated condition and stirring at
1000 rpm by Velp Scientifica (Velp Scientifica, Usmate, Italy) magnetic stirrer.

The biomass taken from the acclimation reactor (5 mL) was inoculated in 500 mL flasks, where
batch tests were conducted to investigate the effect of TOC, pH and temperature on the biodegradation
rate. In the first series of tests performed at 30 ◦C, the effect of initial organics concentration was
investigated. To this aim, TOC starting values of 800 mg/L, 1400 mg/L, 2000 mg/L and 2800 mg/L
were tested.
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Subsequently the effect temperature was assessed through tests at 15 ◦C, 25 ◦C and 30 ◦C and
fixed pH conditions (pH = 7) obtained by adding to the reactor an equimolar buffer phosphate solution
to the reactor, and at an initial TOC concentration of 1400 mg/L. The tests lasted 72 h and were carried
out under oxygen flow (3.5 L/min) provided by an air pump (AC 9902, Resun, Shenzhen, China).

A supplementary test was finally performed by adding a second reactor in series, to evaluate the
enhancement of the degradation rate by the addition of acclimated microbial biomass.

Samples from each reactor were analyzed in term of TOC (Total Organic Carbon analyzer TOC-L,
Shimadzu, Milan, Italy), and pH (GLP21, Crison Instrument, Barcelona, Spain). Chemical oxygen
demand (COD) was measured by the colorimetric method [22] with an UV/Vis spectrophotometer
(UV-2700, Shimadzu Co., Kyoto, Japan).

All results are reported as mean value of at least three repetitions and a standard deviation of 5%
was calculated.

3. Results

3.1. Influence of the Initial Concentration

Figure 1 reports trend of TOC removal during the 72 h aerobic degradation experiments for water
at different initial TOC values.

Water 2019, 10, x FOR PEER REVIEW  4 of 12 

 

were carried out under oxygen flow (3.5 L/min) provided by an air pump (AC 9902 (Resun, Shenzhen, 
China)). 

A supplementary test was finally performed by adding a second reactor in series, to evaluate 
the enhancement of the degradation rate by the addition of acclimated microbial biomass. 

Samples from each reactor were analyzed in term of TOC (Total Organic Carbon analyzer TOC-
L (Shimadzu, Milan, Italy)), and pH (GLP21 (Crison Instrument, Barcelona, Spain)). Chemical oxygen 
demand (COD) was measured by the colorimetric method [22] with an UV/Vis spectrophotometer 
(UV-2700, Shimadzu Co., Kyoto, Japan). 

All results are reported as mean value of at least three repetitions and a standard deviation of 
5% was calculated. 

3. Results 

3.1. Influence of the Initial Concentration 

Figure 1 reports trend of TOC removal during the 72 h aerobic degradation experiments for 
water at different initial TOC values.  

 
Figure 1. Total organic carbon (TOC) removal trends during the aerobic treatment of pyrolysis 
wastewater at 30 °C (TOC initial concentration: (♦) 800 mg/L, (■) 1400 mg/L, (▲) 2000 mg/L and (○) 
2800 mg/L). 

During 72 hours of biodegradation at 30 °C and uncontrolled pH, TOC removal efficiency was 
similar for all the tested initial TOC concentration up to 2000 mg/L. Removal of TOC was 55.65%, 
49.47% and 53.03% for initial TOC 800 mg/L, 1400 mg/L, and 2000 mg/L, respectively. These results 
suggested that microorganism acclimation successfully occurred. The TOC removal rate for the initial 
concentrations of TOC 800 mg/L, 1400 mg/L, and 2000 mg/L for 72 h, shows a similar trend, and the 
TOC profile show an alternating degradation period and adaptation period (Figure 1).  

The same microbial activity is shown in the COD degradation (Figure 2). In fact COD/TOC ratio 
in experiments with an initial TOC concentration 800 mg/L, 1400 mg/L, and 2000 mg/L was almost 
constant, and equal to 2.44 (±0.29), 2.72 (±0.14), and 2.78 (±0.19), respectively. Such proportional 
removal of COD and TOC also highlighted the absence of other reducing compounds apart from 
organic compounds in the tested pyrolysis wastewater. 

Figure 1. Total organic carbon (TOC) removal trends during the aerobic treatment of pyrolysis
wastewater at 30 ◦C (TOC initial concentration: (�) 800 mg/L, (�) 1400 mg/L, (N) 2000 mg/L and
(#) 2800 mg/L).

During 72 h of biodegradation at 30 ◦C and uncontrolled pH, TOC removal efficiency was similar
for all the tested initial TOC concentration up to 2000 mg/L. Removal of TOC was 55.65%, 49.47% and
53.03% for initial TOC 800 mg/L, 1400 mg/L, and 2000 mg/L, respectively. These results suggested that
microorganism acclimation successfully occurred. The TOC removal rate for the initial concentrations
of TOC 800 mg/L, 1400 mg/L, and 2000 mg/L for 72 h, shows a similar trend, and the TOC profile
show an alternating degradation period and adaptation period (Figure 1).

The same microbial activity is shown in the COD degradation (Figure 2). In fact COD/TOC ratio
in experiments with an initial TOC concentration 800 mg/L, 1400 mg/L, and 2000 mg/L was almost
constant, and equal to 2.44 (±0.29), 2.72 (±0.14), and 2.78 (±0.19), respectively. Such proportional
removal of COD and TOC also highlighted the absence of other reducing compounds apart from
organic compounds in the tested pyrolysis wastewater.
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Figure 2. Chemical oxygen demand (COD) removal trends during the aerobic treatment of pyrolysis
wastewater at 30 ◦C (TOC initial concentration: (�) 800 mg/L, (�) 1400 mg/L, (N) 2000 mg/L and
(#) 2800 mg/L).

By comparing the TOC and COD degradation curves (Figures 1 and 2), the highest TOC and
COD removal rate (21.02% and 43.21%) was observed during the first 24 h of degradation at the
initial TOC 2800 mg/L, but further degradation was negligible. In this case, the largest proportion
of readily and hardly biodegradable compounds was observed and this could be explained by the
occurrence of an initial fast degradation followed by inhibition of the microbial biomass. Ruiz-Ordaz
and co-workers (1998) found that a concentration of phenols, as an organic carbon source exceeding
2500 mg/L (TOC 1900 mg/L) determined a substrate inhibition due to their toxicity effect on microbial
growth [23]. In the present work, the overall concentration of phenolic compounds resulted in a TOC
value of 140 mg/L, suggesting that the inhibitory effect cannot be associated only with phenolic
compounds but also with the co-presence of slowly biodegradable or even refractory species such as
butyrolactone (3.47%) [24]. However, since acetic acid was the most abundant fraction of the liquid
phase, the occurrence of pH fluctuations in the reaction media was assumed to be the main factor
responsible for the inhibition of microorganisms activity [25].

Acidic conditions were observed during the 72 h of treatment in all the tests, except at the low
TOC initial value (800 mg/L), where neutral condition (pH equal to 7.2) were achieved after 27 h
(Figure 3). This result suggests that in the case of low TOC values a faster degradation occurred,
with the mineralization of acidic compounds, thus resulting in a quick increase of pH. On the basis of
the above results and in view of the implementation of a biological step for the treatment of pyrolysis
wastewater, a pretreatment depending upon organics concentration could be required to reduce initial
organics concentration to a suitable range for bacterial degradation. To this aim an additional test
of bioaugmentation was carried out: 1400 mg/L was considered as optimal value for the biological
treatment of pyrolysis water. After the first 72 h treatment a new amount of biomass (5 mL) was added
by driving the test for further 72 h. A further degradation (from 72–144 h) was interpreted from the
initial TOC 1400 mg/L at 30 ◦C, and resulted in a degradation of TOC of 61.80%, after 144 h (Figure 4).
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Figure 4. Aerobic biological with two-reactor system of pyrolysis wastewater with TOC initial value
equal to 1400 mg/L at 30 ◦C.

A reduction of COD/TOC down to 1.77 after 144 h was determined.

3.2. Influence of pH

Tests were carried out to investigate the effect of pH on organic degradation at an initial
concentration of 1400 mg/L. In Figure 5, TOC and COD removal over time are presented in the
tests performed at controlled (pH = 7) and uncontrolled pH.
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Figure 5. Effect of pH on aerobic biological treatment of pyrolysis wastewater. COD (empty symbols)
and TOC (full symbols) at free pH (square) and pH = 7 (rhomboid).

In the tests performed at pH = 7, a 30.12% TOC removal and 39.40% COD removal were observed.
Comparing these values to the corresponding values obtained in the tests performed at uncontrolled
pH (49.47% TOC removal and 51.54% COD removal), it was possible to confirm that neutral pH
compromised the microbial metabolism reducing process effectiveness (Figure 5). This effect also
suggests that the acclimation of microorganism under acidic pH conditions could result in a process
enhancement and prevent process inhibition under acidic conditions [26,27].

3.3. Influence of Temperature

In regards to the influence of temperature on the degradation rate, tests at 15 ◦C, 25 ◦C and 30 ◦C
were performed at 1400 mg/L, initial TOC value and at uncontrolled pH. The results of TOC and COD
removal yields are reported in Figure 6.
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As expected, the TOC and COD removal rate increased when temperature increased. TOC removal
was 12.62%, 20.90% and 49.47% for tests performed at 15 ◦C, 25 ◦C and 30 ◦C, respectively, while the
COD removal in the same tests was 27.47%, 29.35% and 51.54 %. The mean COD/TOC ratio values
after 72 h of treatment in these last tests were 2.54 (±0.27), 2.64 (±0.17) and 2.72 (±0.14) respectively,
in accordance with the results discussed above. The results confirm the inhibiting effect of low
temperature on microorganisms activity, as generally observed in the aerobic oxidation process [25].
pH values measured in these tests, are reported in Figure 7. Results show that acidic conditions were
established during the experiments.
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The same tests were performed under controlled pH condition (equal to 7) to evaluate a possible
positive effect of neutral pH conditions when temperature is increasing. In the tests at 15 ◦C and 25 ◦C
neutral pH condition did not affect the organic removals. The TOC removal yield was 10.24% and
19.94% respectively. Conversely, the inhibition due to neutral pH conditions was observed during
the test performed at the higher temperature (30 ◦C) in which a substantial decrease in terms of TOC
(30.12%) and COD (39.40 %) was observed.

3.4. Kinetic Analysis

Figure 8 reports the observed first-order kinetic at different initial organic contents as COD.
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The substrate (expressed as COD) removal rate of an enzyme-catalyzed reaction is described by
Equation (1) according to the model of Michaelis Menten.

dCOD
dt

= −Vmax × COD
KM + COD

× X
Y

(1)

where X is the biomass concentration and Vmax is the maximum reaction velocity, Y is the biomass
yield coefficient and KM is the Michaelis Menten constant showing the affinity between enzyme and
substrate. In the case of a fist-order kinetic (COD concentration much lower than KM), it is possible to
rewrite Equation (1), and expressed as Equation (2):

dCOD
dt

= −Vmax × COD
KMY

× X (2)

with an apparent kinetic constant, va = (Vmax X)/(KM Y) which has been determined through data
fitting with an exponential decay, as depicted in Figure 8. The resulting non-dimensional equation
describing completely the experimental data-set, with an average pre-exponential factor va = 0.012 1/h,
is reported in Equation (3):

COD(t)
COD0

= exp(−va × t) (3)

The va values, obtained at different pH values, have been fitted by a least-squares procedure and
plotted against the pH in Figure 9.
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The activities of many enzymes vary with pH, according to the dissociation of acids and bases,
which can modify the overall electrical distribution on active catalysis site, by modifying enzyme
catalysis capacity. The plot of (va) vs. (pH) shows an optimal pH condition, that can be described
by Equation (4)

ve f f =
va

1 + KI I
[H+]

+
[H+]

KI

(4)

where va is the fitted kinetic parameter, veff is the ‘pH-corrected’ parameter, [H+] is the hydrogen-ion
concentration and KI and KII are the ions dissociation constants. Similar results obtained for phenolic
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compounds in another study [26] proved the pH-stability of enzymes and the dissociation pathways
in the same optimal pH range of 5–6.

Finally, the temperature effect on kinetic parameters is reported as linear regression of (va) vs.
(1/T), as shown in Figure 10.
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Equation (5) that best fits the experimental data obtained at pH = 7, is:

va = 101.8 − 2.81 × 104/T (5)

This equation shows that a temperature increases has a positive effect on reaction velocity in the
range below the beginning of thermal unfolding of enzyme structure.

4. Conclusions

An aerobic biological process was proposed and tested for the treatment of pyrolysis wastewater.
The effect of initial TOC concentration, pH and temperature was investigated. Results show
that a single aerobic biological process can be successfully used to induce organic mineralization.
These results are promising in view of implementing a simple and cost effective method to reduce
the environmental impact of pyrolysis residues, to be applied to small size plant, where byproducts
recovery is not economically feasible.

The efficiency of the removal of TOC, after 72 h of treatment, was 55.65%, 49.47% and 53.03% in
experiments with initial TOC of 800 mg/L, 1400 mg/L and 2000 mg/L respectively. The COD/TOC
ratio was almost constant in all tests and a substrate inhibition on microorganism activity at high
TOC initial value (2800 mg/L) was observed. An increase of removal efficiency could be successfully
achieved by implementing a double step treatment. Experiments performed by adding the microbial
biomass after 72 h showed that a TOC removal of 61.80% after 144 h was obtained and a reduction of
COD/TOC from 2.72 to 1.77 was also observed. These results were attributed to the large amount of
recalcitrant compounds compared to biological oxidation in the wastewater. A further enhancement of
the overall treatment efficiency could be achieved by introducing a pretreatment of chemical oxidation,
to increase the biodegradable fraction of the pollutant loading.
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Symbols Used

COD (mg/L) chemical oxygen demand
KM (mg/L) semi-saturation constant
T (◦C) temperature
T (h) time
TOC (mg/L) total organic carbon
V (1/h) observed initial rate
va (1/h) apparent rate
veff (1/h) effective pH-corrected rate
vmax (1/h) limiting value of the rate
X (mg/L) biomass concentration
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