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Abstract: The influence of El Niño Southern Oscillation (ENSO) on the north Indian temperature,
precipitation, and potential evapotranspiration (PET) change patterns were evaluated during the
monsoon season across the last century. Trends and shifts in 146 districts were assessed using
nonparametric statistical tests. To quantify their temporal variation, the concept of apportionment
entropy was applied to both the annual and seasonal scales. Results suggest that the El Niño years
played a greater role in causing hydro-climatological changes compared to the La Niña or neutral
years. El Niño was more influential in causing shifts compared to trends. For certain districts,
a phase change in ENSO reversed the trend/shift direction. The century-wide analysis suggested
that the vast majority of the districts experienced significant decreasing trends/shifts in temperature
and PET. However, precipitation experienced both increasing and decreasing trends/shifts based
on the location of the districts. Entropy results suggested a lower apportionment of precipitation
compared to the other variables, indicating an intermittent deviation of precipitation pattern from
the generic trend. The findings may help understand the effects of ENSO on the hydro-climatological
variables during the monsoon season. Practitioners may find the results useful as monsoon is the
most important season for India causing climate extremes.
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1. Introduction

Studies on extreme climate events, i.e., droughts and floods, across the world, have found
that such extremes are likely to be associated with the anomalies in zonal sea surface temperature
(SST) fluctuations observed in the oceans. In turn, these fluctuations cause severe changes in the
temperature and precipitation patterns, global and regional atmospheric pressure systems, formation
of surface winds, and moisture sources and evaporative demands [1,2]. Studies also suggest that
these extremes are likely being aggravated by global warming [3,4]. The recent California drought
has been of great interest to many climate researchers, e.g., [5,6]. One study [7] identified major
atmospheric circulation patterns affecting precipitation in California. However, the authors indicated
that the contributions from the various components of the hydrologic cycle are yet to be properly
understood. As a result, besides analyzing SST anomalies and precipitation patterns, recent studies
have incorporated hydro-climatological variables like moisture sources, evaporative demand, and
temperature in order to understand these climate extremes more thoroughly [7–9]. In addition, various
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combinations of these variables have been found to show significantly different and sometimes inverse
correlations with certain climate extremes. A few cases—for example, lower moisture with higher
temperature—were found to affect the extremes even more severely [8].

Several studies have presented ample evidence to support that climate change has immensely
intensified the hydrologic cycle [10,11]. This intensification has raised questions [12–14] such as: What
is the distribution of this intensification across the different components of the water cycle? How do
changes in the amount of precipitation affect other components? And, what are the consequences
of these changes in climate patterns? Some researchers have suggested that increased (decreased)
precipitation can cause increased (decreased) vegetation, which in turn may cause an increase (decrease)
in evapotranspiration [15–17]. Other studies have suggested that increased evapotranspiration
resulting from increased vegetation may potentially affect the CO2 concentration, which in turn
can act as a cooling mechanism to reduce the temperature [18–20]. These studies have shown how the
dynamics among hydro-climatological variables might bring about a change in the long-term patterns
and have reinforced the need for multi-variable analyses to predict and confront climate extremes.

Out of the many different regions of India, the northern region, referred to as North India in the
following sections, is currently of particular interest to many climate researchers [21–23]. North India
is situated in the Earth’s northern temperate zone [24] and has experienced major climate diversity
over the years [25–27]. Temperatures in North India have been recorded as varying over a wide range,
from below freezing temperatures in some states to over 50 ◦C in the deserts [28–30]. Rainfall and
snow in North India result from two major weather patterns, i.e., the western disturbances and the
Indian monsoon. The western disturbances, originating from the Atlantic Ocean as well as the Caspian
and the Mediterranean Seas, are called extratropical weather phenomena; they carry moisture towards
the east over North India [31–33]. On the other hand, the monsoon, a large-scale circulation pattern
lasting from June through September each year, carries moisture of the humid southwest summer
wind from the Indian Ocean towards the north and provides the vast majority of the annual rainfall to
the entire Indian subcontinent. As a result, understanding the behavior of the monsoon has been of
major interest to climatologists for many years.

The India Meteorological Department (IMD) has observed and recorded monsoon patterns for
several decades and has developed multiple stochastic models to forecast the initiation, recession, and
strength of the Indian summer monsoon rainfall (ISMR). Out of the many different factors affecting
ISMR, the El Niño Southern Oscillation (ENSO) has been considered to be one of the most significant
large-scale forces that influences the behavior of ISMR [34,35]. ENSO is a natural cycle caused by
the SST fluctuations originating from the strengthening and weakening of the trade winds [36]. It is
observed in the tropical Pacific and affects the surrounding oceanic-atmospheric systems [37–39].
ENSO consists of two phases, namely, El Niño, which is the warmer (positive) phase, and La Niña,
which is the cooler (negative) phase [40]. Each phase can last from a few months to a year, and they
occur every two to seven years. From 1950 to 2012, ISMR was found to be above average or around
average in almost all the La Niña years. Contrarily, five of the most prominent droughts in India
during that period coincided with the El Niño years [41]. A monsoon followed by El Niño does not
necessarily result in poor rainfall all the time; however, as studies suggest, there might be other climate
and weather factors, e.g., the extent of Himalayan/Eurasian snow, that influence the circulation of
the monsoon [35]. Studies have also suggested that other factors complementary to ENSO may affect
ISMR, e.g., the Indian Ocean dipole (IOD), complex coupling and dynamics of multiple variables, and
variations in heat flux over different land masses [42–44].

The tropical Indian Ocean experiences a basin-wide change after an ENSO event. In the north
equatorial Indian Ocean, this change starts in late winter (early spring) and continues until summer.
The prolonged influence of ENSO continues into the following seasons, and eventually causes climate
anomalies in Southeast Asia, especially during summer [45,46]. Analyzing the phase relationships
between ENSO and ISMR, one study [47] found significant correlations across several timescales, with
stronger coherence during intervals of higher variance. Another study [43] found that ENSO, along
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with IOD, affected the rainfall amount immensely from 1958 to 1997. Other researchers observed that
IOD could reduce the effect of ENSO on ISMR based on the different phased relationships [48,49]. This
explains why all the years associated with El Niño did not cause a drought in India. A further study [50]
found a strong correlation between inter-decadal ISMR and ENSO variations. In addition, this study
explained the possible reasons for major regional and equatorial circulation patterns, e.g., Hadley
circulation and Walker circulation, and how their anomalies caused these variations.

A study [41] suggested that the SST anomalies in the central (eastern) equatorial Pacific strengthen
(weaken) the likelihood of droughts during the monsoon. Other studies observed multi-scale,
e.g., interannual, quasi-decadal, and decadal variations, relationships among ISMR, Indian Ocean
oscillations, and the ENSO phases [51–53]. Besides monsoon rain, temperature variations of the
tropical Indian Ocean, along with the prolonged effects of ENSO and the associated heat flux over
India, were studied by the authors of [44,46]. One study [45] concluded that El Niño not only
affects SST fluctuations of the Indian Ocean but also plays an important role in the summer climate
variability across the Indo-Western Pacific basins. A study [54] found that El Niño alters the cloud cover
and evaporation configuration of atmospheric circulations, which in turn affect the heat flux of the
surrounding basins. Another study [55] observed major shifts in the intensity and initiation of monsoon
after the 1970s, which likely were affected by anomalies in global temperature and precipitation.

Analyzing anomalies in pressure, temperature, wind, and cloud cover over the Indian Ocean in
the different phases of ENSO during monsoon, [51] emphasized that multi-variable analyses need to
be conducted across various temporal scales, e.g., annual and seasonal, for a better understanding
of the physical relationships and correlation patterns. Some combinations of the interconnected
hydro-climatological variables and their extremes, such as lower precipitation levels with higher
temperatures, have the potential to cause severe adversity in the hydro-ecological as well as the
socio-economic systems, even though the individual variables may not indicate extreme conditions [56].
Considering the advantages of multi-variable analyses as a major motivation, the current study
focused on understanding the influence of ENSO on the spatiotemporal change patterns of three
hydro-climatological variables—temperature, precipitation, and potential evapotranspiration (PET)
—during the monsoon season across North India. In addition, this study determined the all-year
(century-wide) trend and shift patterns of the selected variables from 1901 to 2002. The Mann-Kendall
test [57,58] and Pettitt’s test [59]—both nonparametric in nature—were used to detect the presence of
trends and shifts, respectively. To evaluate the distribution (apportionment) of the temporal variability
of the historical changes on an annual and seasonal scale, the concept of entropy was applied, which
quantitatively measured the dispersion, disorder, and variability in the long-term trends [60]. Moreover,
the study provided an extensive literature review of the relevant studies highlighting the relationships
between monsoonal change patterns and the ENSO phases, and applied the multi-variable analyses
approach to provide insights that may explain some of the research questions discussed earlier.
The results obtained may help practitioners to prepare for flood and drought risks as a response to the
changes in ENSO phases. The major contributions of the study are:

• Evaluation of the long-term trend and shift patterns of temperature, precipitation, and PET across
North India in various ENSO phases using nonparametric statistical tests;

• Determination of the spatiotemporal relationships between the selected variables during the
monsoon and at each of the monsoonal months over century-wide data;

• Comparison between the major shift points during monsoon and the phases of ENSO, which
might have resulted in extreme climate events, throughout the study period;

• Analyses of apportionment entropy to quantify how the detected variations were distributed
temporally over the years (annually) and during the months (seasonally) of monsoon along the
study area.
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2. Study Area and Data

According to the Geological Survey of India [61], eight states, namely, Chandigarh, Delhi, Haryana,
Himachal Pradesh, Jammu and Kashmir, Punjab, Uttarkhand, and Uttar Pradesh, officially form the
northern region of India. These eight states consist of 147 districts. The supplementary material
(Table S1) contains the names of the individual districts in each of the states. As reported by the IMD,
the monsoon or the rainy season lasts from June to September. Temperature, precipitation, and PET
data were obtained from 1901 to 2002 on a monthly mean basis for 146 districts, as data for one of the
districts were unavailable (Figure 1). The data were accessed through the online database of the India
Water Portal (IWP) [62]. The IWP database contains data in downloadable “comma-separated values”
format (more commonly known as the csv format) after initial error correction. Then, the downloaded
data were standardized by subtracting the mean and dividing by the standard deviation. Moreover, the
methods used in the study (described in the next section) are resilient against outliers and missing data
points, which makes them appropriate for the types of analyses adopted in the study. The trend/shift
patterns of the selected variables were evaluated during the monsoon in four different combinations
of the ENSO phases, namely, (1) the El Niño years, (2) the La Niña years, (3) the non-El Niño years
(either the La Niña or neutral years), (4) and the non-La Niña years (either the El Niño or neutral years).
The ENSO (Niño 3.4) indices used in this study (Figure 2) were accessed through the online database
of the United States National Oceanic and Atmospheric Administration [63]. During the study period
of 102 years, there were 37 instances that were found to be neutral years, 32 instances were found to be
El Nino years, and 33 instances were found to be La Nina years. Hence, a total of 70 instances were
non-El Niño years, while a total of 69 instances were non-La Niña years.
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Figure 1. Map showing the selected states representing North India and the constituent districts (data
for the gray-shaded district in Himachal Pradesh were unavailable).

Besides the trend and shift patterns of the selected variables at each of the four ENSO phases
mentioned earlier, the all-year (century-wide) trend and shift patterns during the monsoon as well
as during each of the monsoonal months were evaluated. For the temperature and PET trends and
shifts, the monthly mean of the monsoon and of each of the monsoonal months were analyzed.



Water 2019, 11, 189 5 of 21

For precipitation, the monthly totals were used. The annual and seasonal apportionment entropy
were evaluated using the annual data—the sum of all the monthly means, and the seasonal data—the
monthly means of each of the monsoonal months.
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Figure 2. Plot showing the variation of El Niño Southern Oscillation (ENSO, Niño 3.4) index over
the current study period. The orange (blue) horizontal line, which delineates 0.5 times the standard
deviation above (below) the mean, represents the threshold for El Niño (La Niña).

3. Methodology

3.1. Trend and Shift Tests

Two nonparametric tests—namely, the Mann-Kendall (MK) trend test [57,58] and the Pettitt’s
test [59]—were used to detect the presence of trends and shifts, respectively. A trend shows the past
behavior of a variable that is more likely to be of a monotonic nature and may continue in the future
unless an anomaly occurs [64,65]. The MK trend test is based on the null hypothesis that there is
no trend in the time series. The test determines the direction of the trend, which can either be an
increase (positive), decrease (negative), or absence of a trend, from the sign of a signum function.
In contrast, a shift is an abrupt change in the data distribution, which remains unaltered until the
next change occurs [66,67]. Pettitt’s test detects the shift in a time series by testing the anomaly
between the mean of two independent samples from the same time series. The direction of the
shift, which can be either positive (increasing), negative (decreasing), or an absence of a shift, is
determined from the maximum and minimum probability estimates based on the significance level
used. Nonparametric tests are better suited for hydro-climatological data distributions since such
data distributions are more likely to be nonstationary and nonlinear in nature. The resilience against
missing data points and robustness against the initial assumption of a normal distribution makes
nonparametric tests a preferred choice over traditional statistical tests that have an inherent assumption
of nonstationarity and nonlinearity [68,69]. Both the tests have been recommended in earlier studies
due to their advantages over the other test methods as well as for their higher accuracy. Further
remarks about these tests can be found in the works of [70–73]. Several modified versions of the MK
test, named MK2, MK3, and MK4, accounting for different types of autocorrelation or persistence,
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are found in the literature [65,68,74]. These modified MK tests were also utilized in this study to
analyze the trends. However, the results did not produce noticeable differences from the original
results. Hence, descriptions of such methods have been omitted from the study. The lack of noticeable
differences from the original test method suggests that autocorrelation or persistence had minimal
influence on the datasets used in the study.

To calculate the slope (rate of change or change per unit time) of the observed trends, the
Theil-Sen approach (TSA) was employed [75,76]. The TSA is non-parametric in nature, which makes
it appropriate to be applied in conjunction with the MK test. Moreover, the TSA determines the
median slope of all possible pairs, which makes the test robust against possible outliers. Walker’s
test [77] was used to determine the global (field) significance of each of the eight states consisting of
multiple districts. A confidence interval of 90% (p ≤ 0.10) was used for the statistical significance tests
performed in this study.

3.2. Entropy Test

Entropy measures the variance in the temporal distribution of a variable [78]. According to [60],
entropy measures the dispersion (range), uncertainty, anomaly, and variation in data. Such a measure
can help distinguish between trends of similar types based on their uniformity over time. A review of
entropy applications in the field of hydrology and water resources can be found in the work of [78].
Several indices of entropy can be calculated to measure variability in data [79]. For example, while
studying the dynamics in complex systems, such as climate, recent studies have used a new time
domain termed natural time [80,81] in which the entropy is defined as a dynamic property that captures
the time arrow, while the corresponding entropy change under time reversal is used to identify the
occurrence (from approaching state to critical state) of extreme scenarios including earthquakes [82,83],
ENSO events [84,85], and quasi-biennial oscillations [86]. In this study, apportionment entropy was
used to evaluate the variability in the annual and seasonal (monsoonal) temperature, precipitation,
and PET data. The following formulations are based on the works of [60,78].

The total annual (seasonal) aggregate, R—aggregated over the study period of 102 years (over the
4 months of monsoon)—of a variable, (i.e., temperature, precipitation, and PET) can be expressed as:

R =
n

∑
i=1

ri (1)

where ri is the annual aggregate amount of a variable during the ith year of the study period (monthly
amount of a variable during the ith month of the season), with i = 1 to 102 for annual apportionment
(i = 1 to 4 for seasonal apportionment).

The apportionment entropy (AE) of a variable can be written as:

AE = −
n

∑
i=1

(
ri

/
R
)

log2

(
ri

/
R
)

(2)

The annual apportionment entropy (AEa) measured the temporal variability in the annual
dispersion of the variable over the study period. Equation (2) denotes that when a variable was
evenly distributed, on an annual scale, over the study period of 102 years, with a probability of 1/102,
AEa had the maximum value of log2(102) (or 6.6724). If the apportionment occurred during only one
out of the 102 years, with a probability of 1, AEa would take the minimum value of zero.

Similarly, the seasonal apportionment entropy (AEs) for the monsoon season was calculated using
the June through September monthly mean data. This value varied from zero to log2(4) (or 2.0). AEs

for all the districts were calculated for each of the 102 years during the study period. For the purpose
of representation, the mean AEs of the 102 years for each of the districts are reported in the study.
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4. Results and Discussion

4.1. Temperature Change Patterns

4.1.1. Changes Associated with ENSO

The spatial distribution of trends suggested that the western regions, i.e., Chandigarh, Haryana,
and Punjab, as well as a significant portion of Uttar Pradesh, experienced a decreasing trend in all the
ENSO phases (Figure 3). States, such as Himachal Pradesh, Jammu and Kashmir, and Uttarkhand,
did not show much of a presence of significant trends except during the El Niño years. The spatial
distribution of districts with significant trends during the El Niño (La Niña) and non-La Niña (non-El
Niño) years were found to be comparable. Districts with significant decreasing trends during the El
Niño (La Niña) years were found to be the maximum (minimum) among the four ENSO phases
analyzed in the study. An increasing trend was observed only during a neutral year. Table 1
summarizes the results in terms of the number of districts with significant trends. It can be inferred
from the results that the El Niño years, compared to other phases of ENSO, had a higher influence on
the decreasing trends in temperature during the monsoon season. The prolonged effect of El Niño on
temperature variations of the Indian Ocean and the resulting heat fluxes among various land masses
can be attributed as one of the major reasons for the observed variations [44,46].Water 2019, 11, 189 8 of 23 
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Figure 3. Maps showing the spatial distributions of districts with significant trends in the
monsoon season under the Mann-Kendall (MK) test for temperature, precipitation, and potential
evapotranspiration in the (a) El Niño, (b) La Niña, (c) non-El Niño, and (d) non-La Niña years. Blue
(red) represents districts with increasing (decreasing) trends.
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The spatial pattern of shifts suggested that the El Niño (La Niña) and non-La Niña (non-El Niño)
years had a similar influence on the study area. All the states—or a large portion of them except for
Jammu and Kashmir, and Uttarkhand—had significant negative shifts during the El Niño and non-La
Niña years (Figure 4). Districts in Uttarkhand and Uttar Pradesh, which did not show the presence of
shifts during the El Niño or non-La Niña years, were found to be significant during the La Niña and
non-El Niño years. This feature of the shift patterns suggested that the two opposing phases of ENSO
influenced certain regions of North India in distinct ways (Figure 4). The El Niño (La Niña) years
showed similar spatial patterns as the non-La Niña (non-El Niño) years. The maximum (minimum)
number of districts with significant negative shifts was observed during the non-La Niña (La Niña)
years (Table 1).Water 2019, 11, 189 9 of 23 
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Figure 4. Maps showing the spatial distributions of districts with significant shifts in the monsoon
season under the Pettitt’s test for temperature, precipitation, and potential evapotranspiration in the
(a) El Niño, (b) La Niña, (c) non-El Niño, and (d) non-La Niña years. Blue (red) represents districts
with positive (negative) shifts.
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Table 1. The number of districts (out of a total of 146) with significant increasing or decreasing trends and shifts in temperature, precipitation, and potential
evapotranspiration during the different ENSO phases.

El Niño Years La Niña Years Non-El Niño Years Non-La Niña Years

Variable Change Type Increasing Decreasing Increasing Decreasing Increasing Decreasing Increasing Decreasing

Temperature Trends _ 125 _ 47 1 53 _ 84
Shifts _ 99 _ 20 _ 23 _ 102

Precipitation Trends 43 3 16 33 5 47 20 6
Shifts 22 18 4 2 23 25 41 41

Pot. Evap. Trends _ 120 _ 15 _ 15 _ 78
Shifts _ 88 _ 52 _ 52 _ 88
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4.1.2. All-Year Change Patterns

The all-year (century-wide) trend patterns suggested that the entire states of Haryana and Punjab,
as well as the western regions of all the remaining states, experienced decreasing trends either during
the entire four-month summer monsoon or in any of the monsoonal months (Figure 5). The eastern
regions of Himachal Pradesh, Jammu and Kashmir, Uttarkhand, and Uttaranchal did not show a
significant presence of trends. The monthly variation of trends showed that from June to September,
the spatial location of districts with significant trends shifted from the southwest towards the north,
then shifted back towards the southwest (Figure 5). This change in spatial distribution could be
explained by the direction of the monsoon circulation, which carries humid summer winds from the
southwest direction in June and sweeps across the Indian subcontinent by moving north; eventually,
these winds move back to the southwest of India in September. Table 2 lists the number of districts
with significant trends during the monsoon and in each of the monsoonal months. The range of TSA
slopes during the monsoon and the monsoonal months also showed the overall inclination towards
decreasing trends (Table 3). The TSA slopes suggest that the month of June experienced the highest
variation in temperature over the study period. Decreasing trends in temperature in many parts of
North India also were observed in the mean temperature trends from 1951 to 2010 by [26], which
support the findings of the current study.Water 2019, 11, 189 14 of 23 

 

 

Figure 5. Maps showing the spatial distributions of districts with significant trends under the MK test 

for temperature, precipitation, and potential evapotranspiration in, (a) the monsoon, and the 

monsoonal months of (b) June, (c) July, (d) August, and (e) September. Blue (red) represents districts 

with increasing (decreasing) trends. The inset maps show the spatial dispersal of the slope values of 

the trends obtained from TSA. States with light gray hatches represent the presence of field 

significance. 

 

Figure 6. Maps showing the spatial distributions of districts with significant shifts under Pettitt’s test 

for temperature, precipitation, and potential evapotranspiration in (a) monsoon, and the monsoonal 

months of (b) June, (c) July, (d) August, and (e) September. Blue (red) represents districts with positive 

(negative) shifts. States with light gray hatches represent the presence of field significance. 

Figure 5. Maps showing the spatial distributions of districts with significant trends under the MK
test for temperature, precipitation, and potential evapotranspiration in, (a) the monsoon, and the
monsoonal months of (b) June, (c) July, (d) August, and (e) September. Blue (red) represents districts
with increasing (decreasing) trends. The inset maps show the spatial dispersal of the slope values of the
trends obtained from TSA. States with light gray hatches represent the presence of field significance.
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Table 2. The Number of districts (out of a total of 146) with significant increasing or decreasing trends and shifts in temperature, precipitation, and potential
evapotranspiration during the monsoon and in each of the monsoonal months.

Monsoon June July August September

Variable Change Type Increasing Decreasing Increasing Decreasing Increasing Decreasing Increasing Decreasing Increasing Decreasing

Temperature Trends _ 109 _ 49 _ 76 _ 60 _ 92
Shifts _ 122 _ 99 _ 86 _ 76 1 113

Precipitation Trends 35 32 23 6 24 33 25 38 _ _
Shifts 45 43 43 7 31 38 41 40 _ 1

Pot. Evap. Trends _ 93 _ 14 _ 31 _ 31 _ 53
Shifts _ 140 _ 93 _ 89 _ 113 _ 146
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Table 3. The range of all-year Theil-Sen approach (TSA) slopes of temperature, precipitation, and
potential evapotranspiration during the monsoon and in each of the monsoonal months.

TSA Range

Variable (Slope) Monsoon June July August September

Temperature (◦C/time unit) −0.97 to +0.31 −1.50 to +0.22 −1.12 to +0.18 −0.85 to +0.09 −1.08 to +0.54
Precipitation (cm/time unit) −26.30 to +14.55 −8.33 to +3.61 −11.20 to +7.34 −9.43 to +9.65 −3.54 to +2.34
Pot. Evap. (cm/day/time unit) −2.56 to −0.04 −0.63 to +0.16 −0.65 to −0.06 −0.62 to +0.00 −0.42 to −0.06

The all-year shift patterns suggested that except for a few districts in the eastern part of Jammu
and Kashmir and Uttar Pradesh, the remainder of North India experienced negative shifts either
during the monsoon or in any of the monsoonal months (Figure 6). Similar to the trends, the shift
patterns showed a northbound movement followed by a southbound movement in districts having
significant shifts during the individual monsoonal months. Table 2 summarizes the results in terms of
the number of districts with significant shifts. Table 4 shows the earliest and latest shift along with
the major intervals having a higher number of shift points in temperature during the study period.
A comparison of the shift points (Table 4) with the ENSO indices (Figure 2) showed that most of
the shift points coincided with the El Niño and non-La Niña years. Previous studies and historical
events [35,41], causing climate extremes, were found to be consistent with the major shift points
detected in the current study. For both the trend and shift patterns, states with field significance were
observed to vary across the months (Figures 5 and 6).
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Figure 6. Maps showing the spatial distributions of districts with significant shifts under Pettitt’s test
for temperature, precipitation, and potential evapotranspiration in (a) monsoon, and the monsoonal
months of (b) June, (c) July, (d) August, and (e) September. Blue (red) represents districts with positive
(negative) shifts. States with light gray hatches represent the presence of field significance.
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Table 4. The location in time of the earliest and latest significant shift of temperature, precipitation,
potential evapotranspiration. The major intervals, with years without significant shifts in between,
show where the majority of the significant shift points were detected in the study.

Variable Earliest Shift Latest Shift Major Intervals

Temperature 1908 1997
1915–1932
1947–1973
1985–1986

Precipitation 1905 1996

1908–1917
1920–1934
1939–1978
1980–1996

Pot. Evap. 1920 1976
1920–1930
1941–1958
1970–1975

4.2. Precipitation Change Patterns

4.2.1. Changes Associated with ENSO

A distinct separation across North India was observed between the districts with increasing and
decreasing trends in the spatial patterns of trends. During the various ENSO phases, the western
regions, i.e., Delhi, Haryana, and Punjab, a significant portion of Jammu and Kashmir, and a few
districts in Himachal Pradesh and Uttar Pradesh, experienced increasing trends (Figure 3). Decreasing
trends were localized in the eastern regions, i.e., significant portions of Himachal Pradesh, the entire
state of Uttarkhand, and the eastern part of Uttar Pradesh. The maximum numbers of districts with
increasing (decreasing) trends were observed during the El Niño (non-El Niño) years (Table 1). In some
instances, the direction of the trends reversed when the ENSO phase changed from El Niño to non-El
Niño. As suggested by previous studies, these variations could be explained by factors that either
could strengthen or weaken the effects of ENSO on the monsoon [48,49,87]. Other studies suggest that
the teleconnection has different correlations based on the time scales (i.e., interannual, quasi-decadal,
or decadal), which might affect long-term trend patterns [47,51,53].

Similar to the trend patterns, shift patterns of precipitation also showed a spatial separation
between the districts with positive and negative shifts (Figure 4). Spatial patterns in the various ENSO
phases showed that both the El Niño and neutral years played a significant role in the precipitation
shift patterns across North India. In the various ENSO phases, the western regions, i.e., Delhi, Haryana,
and Punjab, as well as a few western districts of Jammu and Kashmir and Uttar Pradesh, showed
positive shifts (Figure 4). Negative shifts were observed only in the eastern part of Uttar Pradesh and
in a few districts of Uttarkhand. This showed that North India experienced both positive and negative
shifts during the various ENSO phases even though the shifts were spatially separated and localized
to certain regions. In the precipitation trends, there were instances in which the direction of the trend
reversed with the change of the ENSO phase from El Niño to La Niña; however, precipitation shift
patterns did not show such a reversal in direction. The La Niña (non-La Niña) years had the minimum
(maximum) number of districts with significant shifts (Table 1).

4.2.2. All-Year Change Patterns

In the all-year trend patterns, the western regions, i.e., Delhi, Haryana, and Punjab as well as a
few western districts of Jammu and Kashmir, and Uttar Pradesh, experienced increasing trends either
during the monsoon or in any of the monsoonal months (Figure 5). Decreasing trends were observed
in the eastern districts of Uttarkhand and Uttar Pradesh and in a few of the western districts of Uttar
Pradesh. (Figure 5). A greater tendency towards decreasing trends in the eastern regions was observed
by [26]. Monthly trends followed similar spatial patterns, although the number of districts with trends
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varied significantly across the monsoonal months (Table 2). July and August showed a higher number
of districts with significant trends compared to June. This monthly variation could be explained by the
timing of the monsoon circulation. Since the monsoon season starts in June and ends in September,
it can be inferred that the effects of the monsoon developed fully during July and August. Since the
monsoon recedes in September, it might be possible that the change in wind direction does not result
in causing significant change. This also was observed in the TSA slope values for September (Figure 5),
as the slopes during September did not follow any spatial pattern; rather, they were quite arbitrary
in nature (Table 3). Comparison of TSA values suggested that July and August experienced a higher
change over the study period.

Similar to the all-year trend patterns, the all-year shift patterns also showed a separation in the
locations of districts with significant positive and negative shifts (Figure 6). Southwestern districts
of Uttar Pradesh showed positive shifts but did not show increasing trends in the trend pattern.
Similar to the trend pattern, September did not show significant shifts except for a single district with
negative shift in Uttar Pradesh. The northbound movement followed by a southbound movement of
the districts with significant trends (shifts) occurring from June to August could also be explained by
the direction of the monsoon circulation as discussed earlier. The monthly variation (Table 2) showed
a similar generic spatial pattern of increasing and negative shifts—for the western and the eastern
regions, respectively—but varied significantly in terms of the number of districts with significant
shifts (Figure 6). Table 4 shows the locations of the major shift points in precipitation during the study
period. The shift points observed mostly coincided with the non-La Niña years, as was observed by
comparing the results with Figure 2. States with field significance were observed to vary across the
various monsoonal months in both the trend and shift patterns.

4.3. Potential Evapotranspiration Change Patterns

4.3.1. Changes Associated with ENSO

All the states of North India, or a significant portion of them, were observed to experience
decreasing trends during the El Niño years in the PET trend patterns (Figure 3). The states showed
hardly any significant trends during the La Niña and non-El Niño years, except for a portion of Jammu
and Kashmir and a district each in Himachal Pradesh, Punjab, and Uttar Pradesh. This suggested that
the effect of ENSO phases on PET was not evenly distributed across the districts. With fewer districts
of significance in Uttar Pradesh, the non-La Niña years had a similar spatial pattern as the El Niño
years. The La Niña years and non-El Niño years also showed similar spatial patterns. The maximum
(minimum) number of districts with decreasing trends was observed during the El Niño (La Niña and
non-El Niño) years (Table 1). Similar to the temperature trends, the effect of neutral years, compared
to the El Niño and La Niña years, on the change patterns of PET was observed to be less significant
(Figure 3). Previous studies have suggested that El Niño has a much higher potential of altering the
evaporation configuration around Indian Ocean basins, which eventually could affect the temperature
of those basins [54], as was found in the current study, especially during the El Niño and non-La
Niña years.

The spatial distribution of PET shift patterns revealed that all the districts, except for a few
districts in Uttar Pradesh, experienced negative shifts either during the El Niño or the La Niña years
(Figure 4). The comparisons revealed that the neutral phases did not play a significant role in the
shifts, as the El Niño (La Niña) years had exactly the same spatial patterns as the non-La Niña (Non-El
Niño) years. This suggested that the districts experiencing shifts during the El Niño and La Niña
years were mutually exclusive (Figure 4). The El Niño (non-La Niña) years had a higher number of
districts with negative shifts compared to the La Niña (non-El Niño) years (Table 1). In the PET trend
patterns, the same districts showed the presence of trends during both the El Niño and La Niña years.
This was not observed in the shift patterns of PET, which suggests that the El Niño and La Niña years
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were associated with or influenced the PET shifts of the northern and southern regions of North India
mutually exclusively.

4.3.2. All-Year Change Patterns

The all-year trend patterns revealed that most of the decreasing trends were observed in the
northwestern regions, i.e., Himachal Pradesh, Punjab, and Jammu and Kashmir, as well as in the
southeastern districts of Uttar Pradesh either during the monsoon or in any of monsoonal months
(Figure 5). The central part of Uttar Pradesh and the entire state of Uttarkhand did not show much
presence of trends in any of the monsoonal months. The monthly variation (Table 2) of trend patterns
showed that June and July had districts with decreasing trends, mostly in the northern regions;
meanwhile, August and September had decreasing trends both in the northern and southern regions
(Figure 5). Compared to the temperature and precipitation trend patterns, the change in PET across the
months did not follow a northbound and a subsequent southbound movement. However, northern
regions showed a higher number of districts with trends in the first half of the season, while southern
regions had a higher number of districts with trends in the second half of the season. The TSA values
(Table 3) suggested that June experienced the greatest change in PET over the study period (Figure 3).
Moreover, the results suggested that the decreasing trend in temperature did not necessarily cause a
decreasing trend in PET – at least not during all the months of the monsoon (Figure 5). The decreasing
trends in PET and its anomaly with temperature trends could be explained by the stressed crops and
reduced vegetation across India [88,89].

In the all-year shift patterns, all the districts of North India were observed to experience negative
shifts either during monsoon or in any of the monsoonal months. Some mid-southeastern and
southeastern districts of Uttar Pradesh did not show the presence of a trend during June, July, and
August (Figure 6). However, during September, all of North India experienced negative shifts. Except
for one district in June, which could be considered as an anomaly, no presence of positive shifts was
observed across the study period during the monsoon season or in any of the monsoonal months.
The locations of the major shift points in PET during the study period are shown in Table 4. Comparing
the results with Figure 2 showed that the shift points coincided with both the El Niño and La Niña years,
but not so much with the neutral years. Districts all across North India experienced shifts, while mostly
northern and southern regions showed the presence of trends—which was a significant difference
between the PET trend (Figure 3) and PET shift patterns (Figure 5). For both the all-year trend and
shift patterns, states with field significance were observed to vary across the monsoonal months.

4.4. Entropy

4.4.1. Temperature Entropy

The AEa suggested that the temperature change was distributed quite evenly over the study
period (102 years) across most of North India (Table 5), except for a few northeastern regions that
experienced apportionment over approximately 98 years (Figure 7). The spatial distribution suggested
that the southeastern and northwestern regions had higher AEa values compared to the rest of the
study area. The AEs of temperature suggested that the temperature change also was quite uniform
across the monsoonal months, with the lowest AEs value referring to a change apportioned over
3.86 months (Table 5). The spatial pattern of AEs was found to be more dispersed across the different
districts compared to the AEa pattern. This variation was more prominent in the comparison between
the standardized AEa and AEs values (Figure 7). For most districts, annual variation was observed to
be close to the mean value, which was not the case for seasonal variation. The results showed that a
variation in AEs was much higher than in AEa, even among nearby districts. This suggests that the
different months of monsoon affected change patterns differently for each district; however, on an
annual scale, the change was much more uniform across years. A comparison between the trends in
temperature (Figure 3) and the entropy distribution of temperature (Figure 7) suggested that many
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districts with significant decreasing trends had higher entropy values, indicating an even distribution
of change over the study period.
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Figure 7. Maps (at the top) showing the spatial distribution of the annual and seasonal apportionment
entropy for (a) temperature, (b) precipitation, and (c) potential evapotranspiration. Plots (at the bottom)
showing the variation in the standardized annual and seasonal variation of the apportionment entropy
index across all the districts for the chosen variables. The supplementary material (Table S1) contains
the names and numbers of the individual districts in each of the states.

4.4.2. Precipitation Entropy

The values of the precipitation AEa were found to be apportioned over approximately 97 to
100 years (Table 5) across the districts, which suggested that the variation in precipitation was less
evenly distributed over the study period compared to the variation in temperature (Figure 7). On the
other hand, the AEs of precipitation were found to be apportioned over 3.00 to 3.67 months, indicating
higher monthly variation across the monsoonal season (Table 5). The spatial distribution of both the AEa

and AEs were found to be similar for the mid-eastern and southeastern regions having higher entropy
values, and the mid-western and northwestern regions having lower entropy values. This similarity
of apportionment was evident when comparing the standardized AEa and AEs values (Figure 7),
which suggested that the nearby districts had similar temporal variations. A comparison between the
precipitation trend patterns (Figure 5) and precipitation entropy distribution (Figure 7) suggested that
districts with increasing (decreasing) trends had lower (higher) entropy. This could be an important
feature when trying to understand trend patterns. The results imply that even though some districts
showed increasing trends, their temporal distribution was less evenly distributed over the years, as
well as across the monsoonal months, when compared to the districts with decreasing trends. This
suggested that the overall trend pattern of precipitation has decreased with much greater uniformity,
compared to the increase, during the study period. This could be an important insight regarding
the increasing trends observed during the El Niño years. Although the difference in apportionment
was found to be only three years (97 and 100 years for districts with the lowest and highest entropy,
respectively), the results certainly showed how apportionment entropy could explain trend patterns
with greater insight.
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Table 5. The range of annual and seasonal apportionment entropy of temperature, precipitation, and
potential evapotranspiration across the study period of 102 years and over four months of monsoon.

Variable Annual Apportionment Entropy (AEa) Seasonal Apportionment Entropy (AEs)

Range
(from 0 to 6.6725)

Apportionment
(Years)

(from 1 to 102)

Range
(from 0 to 2)

Apportionment
(Months)

(from 1 to 4)

Temperature 6.6187 to 6.6723 98.27 to 101.99 1.9481 to 1.9985 3.86 to 3.99
Precipitation 6.6007 to 6.6506 97.05 to 100.47 1.5982 to 1.8742 3.02 to 3.67

Pot. Evap. 6.6701 to 6.6724 101.84 to 101.99 1.9787 to 1.9973 3.94 to 3.99

4.4.3. Potential Evapotranspiration Entropy

On an annual scale, the AEa of PET showed that the variations observed were quite evenly
distributed (apportionment of approximately 102 years) over the study period (Table 5). The AEs of
PET showed higher values of apportionment over almost all the months of monsoon; however, the
spatial distribution was found to be quite different than what was observed in the AEa (Figure 7). Even
though the actual range within which the values varied (1.9787 to 1.9973) was quite narrow (Table 5),
the variation was quite high among the adjacent districts. The results showed that the spatial pattern of
districts with higher and lower apportionment indices was quite opposite in the AEa and AEs. Higher
AEa values were observed in the mid-western and southern regions, while the northeastern regions
showed lower AEa values. This pattern was reversed in the AEs distribution (Figure 7). The reversed
behavior was more evident when comparing the standardized AEa and AEs values (Figure 7). Although
both the annual and the seasonal variations suggested an even distribution temporally, the reversal in
their spatial distribution suggested that the variation in PET during monsoonal months was opposite
from the long-term annual variation. A comparison of PET trend patterns (Figure 5) and PET entropy
distribution (Figure 7) revealed that many of the districts with significant decreasing trends showed
higher AEa values, indicating that the change was fairly even.

The analyses of entropy for each of the variables showed how the change patterns were distributed
temporally across the years and the monsoon season. In the cases when a variable experienced both
the increasing and decreasing trends, the entropy revealed if one of the trends was more prevalent
over the years (or across the season) or both had similar temporal distribution. Thus, the conjunction
of the entropy analysis with the trend test (coupled with slope detection) provides greater insight into
the nature of a trend.

5. Conclusions

In this study, three hydro-climatological variables, i.e., temperature, precipitation, and PET, were
analyzed over century-wide data (from 1901 to 2002) to evaluate the influence of various ENSO phases
on the change patterns across North India during the monsoon season. Trend and shift patterns of
146 districts in eight North Indian states were analyzed, and the annual and the seasonal (monsoonal)
apportionment entropy that quantified the temporal distribution of the change patterns were evaluated.
Besides the effects of ENSO, the all-year (century-wide) change patterns were analyzed to determine
the effect of each of the monsoonal months on the long-term patterns. Results suggested that the
El Niño years, compared to the La Niña and neutral years, had a much greater influence on the
change patterns of the variables. The all-year change patterns suggested a significant decrease in the
temperature and PET trends and shifts across North India, while the precipitation change patterns
(both increasing and decreasing) were found to be region-specific. The entropy analyses suggested
that the highest variation in the long-term change pattern occurred in precipitation data, whereas
temperature and PET experienced more variation during the monsoon season compared to changes
over the years.

Major physical and dynamic relationships affecting the monsoon season due to the change in
ENSO phases in Indian subcontinent were compiled and discussed in this study based on the previous



Water 2019, 11, 189 18 of 21

literature. By analyzing multiple hydro-climatological variables of North India, the study illustrated
how various variables can be affected by the different phases of ENSO. Climate researchers and
policymakers may find the results useful to understand the variability resulting from the various
ENSO phases during the north Indian monsoon season. Such understanding may help devise strategies
to mitigate the adverse effects of climate extremes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/2/189/s1,
Table S1: Names and numbers of the individual districts in each of the states.
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