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Abstract: Due to changing precipitation patterns induced by climate change, urban planners are
confronted with new challenges to effectively mitigate rainfall runoff. An important knowledge gap
that needs to be addressed before tackling these challenges is how and to which extent street/drainage
grid density and spatial land use configuration influence the amount of runoff. Therefore, a virtual
experiment was conducted to assess the influence of grid density and spatial land use configuration
on the functional runoff connectivity (Fc), which is a measure of the easiness by which water flows
through the landscape. Through the use of a design of experiments approach in combination with
the SCS—Curve Number runoff model, a wide variety of neutral landscape models with a fixed
percentage of pervious- and impervious cover were generated that maximized the variance of
Fc. Correlations between landscape metrics and neutral landscape models were calculated. Our
results indicated that, out of the 17 landscape metrics tested, the average impervious cluster area,
the number of impervious clusters, the standard deviation of the cluster size, two proximity indexes
and the effective impervious area were strongly correlated with Fc throughout all grid scenarios.
The relationship between Fc on the one hand and the average impervious cluster area and the effective
impervious area on the other hand, was modelled. The average impervious cluster area models
showed a relationship with Fc that closely approximated a logarithmic function (R2: 0.49–0.73), while
the effective impervious area models were found to have a linear relationship with Fc (R2: 0.63–0.99).
A dense grid was shown to cause a strong increase in Fc, demonstrating the effectiveness of an urban
grid in channeling and removing runoff. Our results further indicate that fine-grained landscapes
with a lot of small impervious clusters are preferred over course-grained landscapes when the goal
is to reduce Fc. In highly urbanized landscapes, where the percentage of impervious area is high,
small changes in landscape pattern could significantly reduce Fc. By using a downward hydrological
modeling approach this research aims to bring more clarity to the underlying variables influencing
Fc, rather than trying to generate realistic prediction values.

Keywords: urban runoff; functional runoff connectivity; grid; neutral landscape models; curve
number model; landscape metrics; impervious surface; urban green; optimization
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1. Introduction

1.1. Context

Migration from rural to urban areas is rising around the world and is predicted to further increase.
Currently around 54% of the world’s population is living in urban areas and this number is predicted to
increase to 66% by 2050 [1]. This migration towards urban areas brings a wide array of new challenges
and opportunities. Sustainable, integral water management certainly is one of those challenges that
is rapidly gaining traction, especially now that rainfall distribution patterns are changing due to
climate change [2]. These changing rainfall patterns lead to a change in runoff processes. Runoff or
overland flow is an important component of the hydrological balance that causes many problems
such as flooding paired with loss of human lives and high economic costs [3,4]. The disrupted natural
hydrological cycle in urban areas, impeding infiltration and stimulating runoff, exacerbates these
problems [5,6]. The conventional solution to these problems is to guide the excess water away from
the city [7]. Urban environments are characterized by grids of street networks that channel this
runoff through the drainage system running underneath them. Once this water enters the drainage
system, it is usually immediately diverted away from the city so it is lost for other usages within the
cities’ boundaries [8,9]. Moreover, the relatively clean rainwater often puts unneeded pressure on
the drainage system and water treatment processing facilities, causing them to overflow when their
maximal capacity is reached [10]. A solution to this problem could be to introduce more pervious
spots in urban areas, disconnected from the drainage network, through which runoff can infiltrate
and replenish the often depleted groundwater table underneath cities. Introducing more greenery in
urban areas seems to be a simple, cost-effective, and aesthetically pleasing way of achieving this goal.
Besides intercepting considerable amounts of rainfall [11], the soil under vegetation is less compacted
than the soil under other urban land uses, thereby facilitating natural infiltration [12].

1.2. Problem Statement

Insight into which variables or processes govern the amount of overland flow that is guided
to the drainage system is thus needed to establish a sustainable water management policy. It is
well established that the amount of runoff is directly related to the amount of impervious area in a
hydrological catchment [13]. However, the influence of the pattern of impervious area on hydrological
variables such as runoff is much less studied [14]. The spatial arrangement of impervious area could be
equally important as the impervious area per se because of the influence of connectivity and patchiness
on runoff generation [15].

To date, most scientific literature regarding spatial land use pattern and its influence on runoff

focuses on natural dryland areas. In a field study of hillslope runoff in drylands in Alicante, Spain,
Mayor et al. [16] found that landscapes with a strongly clustered, coarser pattern increased runoff.
The coarser structures enhanced the overall connectivity of the landscape classes, thereby enhancing
runoff through the impervious class. The landscape metric they used to express landscape connectivity
was the average flow length from the source (runoff producing) cells to the catchment’s outlet. Other
research found similar results in drylands: Coarser landscapes enhance water- and sediment fluxes
while landscapes with a fine-grained spatial land use configuration reduced them [17]. In a follow-up
study, they confirmed their results in a simulation experiment [18]. By creating landscapes with
different spatial land use configurations and comparing water- and erosion fluxes, they found that
discharge was greater for the landscapes where the land use classes were coarsely clustered.

The main limitation of these studies, when applying these findings to an urban environment,
is the absence of roads in natural dryland areas. Roads, together with the drainage system running
underneath them, act as channels for runoff that enhance the connectivity between impervious surfaces.
Alberti et al. [14] discerned roads as a key stressor in urbanized landscapes. The more roads, the higher
the runoff reaching the catchment’s outlet. Shields and Tague [19] studied vegetation water use in an
urban area with roads, found the effective impervious surface area (EIA) to be the main predictive
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variable, with the vegetation receiving less water when EIA increases. EIA is the amount of impervious
area directly connected to the drainage system. A higher disconnected impervious area had a positive
effect on vegetation water use, meaning that a higher percentage of total impervious area does not
necessarily mean that urban vegetation receives less water. They concluded that lowering the EIA
fraction and making more impervious area hydrologically disconnected from the drainage network,
will have the largest impact on conserving rainwater in the city.

1.3. Research Questions

More knowledge is needed on how and to which extent different urban environments, marked by
different street grid densities, influence landscape pattern and runoff. More specifically, this study
defines two main research questions:

1. Which variables or landscape metrics influence runoff in an urban environment, characterized by
different street grid densities?

2. To what extent can a landscape, constrained by a certain street grid density and percentage of
impervious surface, minimize runoff and maximize infiltration?

In general, the goal of this study is to provide a better insight in the processes governing overland
flow in an urban environment. This knowledge can be used to optimize the urban spatial configuration
to improve runoff channeling to the pervious areas in the landscape and partially restore the natural
hydrological cycle. Because the drainage system plays an important role in channeling runoff, urban
centers were chosen with different grid densities to provide insight in the effect of drainage network
density on overland flow. Considering drainage networks are difficult to acquire due to region- or
country specific limitations, the street grid was chosen as a replacement of the drainage network.

2. Material and Methods

This section is divided in three main parts according to the workflow adopted in this study
(Figure 1). The process to generate Neutral Landscape Models (NLMs) with different grid densities and
spatial patterns will be explained first. Next, the landscape metric selection and modelling procedure
is described. Finally, the optimization technique used in this research to find landscapes with spatial
patterns where runoff is minimized and infiltration is maximized is explained.
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Figure 1. Schematic workflow of the study. (1) Landscape creation; (2) modelling and (3) Optimization.
DEM: Digital Elevation Model; NLM: Neutral Landscape Models; CN model: Curve number model;
Fc: Functional runoff connectivity; SHERPA: Optimization algorithm. The meaning of these terms will
be explained in the remainder of the Material and Methods section.
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2.1. Landscape Creation

2.1.1. Grid Extraction

Three urban grids were used in this study: (1) Irvine, California (4.2 km roads/km2), (2) Concord,
San Francisco (13.7 km roads/km2), and (3) Point Breeze, Philadelphia (25.4 km roads/km2) (Figure 2).
Four km2 of these urban grids were downloaded from www.openstreetmap.org with the Osmnx
python plugin [20]. These grids were selected from an analysis of 27,000 urban street networks in the
USA [21] and were chosen because of their large difference in road density. A fourth grid consisted
only of an outlet and one road in the lower- and right boundary of the landscape to channel all runoff

to the outlet. This grid represented a natural, pre-construction landscape and acts as a reference.
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Figure 2. Urban grids (2 × 2 km) used in this study. (A) Reference scenario; (B) Irvine; (C) Concord;
and (D) Point Breeze.

2.1.2. Digital Elevation Model Creation

A digital elevation model (DEM) was generated, sloping towards the lower-right corner of the
landscape with the street grid embedded into it (Figure 3). This assured that, once runoff entered
the grid, it remained there and was guided to the outlet. By generating an identical DEM for all
NLMs, the virtual experiment was set up to optimally detect the influence of the grid and the spatial
configuration of the landscape on runoff rather than to predict realistic numbers. Every landscape had
only one outlet in the lower right corner where the outlet volume was used to calculate the runoff.
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Figure 3. Example of a generated DEM with the grid of the Concord scenario embedded into it.
The outlet is located in the lower right corner. x- and y-axis are in pixels (pixel size 10 × 10 m). The colors
in the figure range from yellow (high) to dark blue (low). Because the grid is embedded in the landscape,
runoff entering the grid will remain there until it reaches the outlet.

2.1.3. Neutral Landscape Model Generation

NLMs are able to generate spatial landscapes with different layers of complexity [22]. The number
of land use classes, their abundance and complexity can be adapted according to the modeler’s interests.
Within the chosen urban grids, 200 × 200 pixel NLMs with a spatial resolution of 10 × 10 m were
generated with the pseudo- random Perlin noise function. Perlin noise was originally conceived in

www.openstreetmap.org
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1983 to reproduce natural form and behavior. Since then it has been modified and used in a wide
variety of applications, among which 2- and 3-dimensional realistic landscape generation [23]. It is
also called fractal noise because of its addition of multiple noise layers with different weights that have
varying amplitudes and wavelengths. Each layer is called an octave and the addition of these octaves
results in a fractal structure that forms a natural, irregular pattern [24]. The more octaves are added
to the function, the more fractal, or heterogeneous the final pattern will be. Different landscapes can
by produced by Perlin noise by varying the number of octaves and several other intrinsic function
variables. The fractal patterns produced by Perlin noise are suitable to reproduce urban landscapes
because of the different layers of heterogeneity or organization inherent to them [25]. For example,
urban areas consist of different land uses such as a commercial district or a park. Both land uses
predominantly consist of impervious- and pervious respectively, but not exclusively. In the commercial
district there will be small patches of pervious surface such as street trees or other small green elements,
while in the park there will be small impervious patches such as a basketball field or a public bathroom.

Urban land use complexity was downscaled by generating NLMs with a discrete number of land
use classes: An impervious class consisting of impervious- and street grid surfaces, and a pervious
class consisting of common urban green types. The pervious class contained grass, shrubs, and trees.
On a first level of complexity, NLMs were constructed where the pervious and impervious surfaces
varied in abundance. Landscapes where the pervious class occupied 20%, 40%, 60%, and 80% of the
total surface area were generated, representing a transition from a very dense to a less dense urban area.
In the high grid density Point Breeze scenario, the road grid consisted of 29.5% impervious surface,
meaning a degree of 80% perviousness could not be reached. In the Concord scenario, the road grid
occupied 18.9% of impervious surface, leaving only 1.1% impervious surface to be spatially allocated
by the Perlin Noise function. For this reason, the highest level of pervious surface generated for these
scenarios was 60%. A second level of complexity was added by applying the Perlin Noise function on
the pervious surface area only. This way different spatial configurations of the above described urban
green types were generated inside the pervious surface class. Proportions of the urban green types
inside the pervious class were kept constant to accurately examine the effect of spatial urban green
configuration on the runoff. The pervious surface consisted of 50% grass surface, 30% trees and 20%
shrubs (Figure 4). The tree class contained both free standing- and more clustered park trees, as well as
street trees standing directly besides a road.
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Reference scenario.

2.1.4. Landscape Metrics

Landscape pattern is investigated through the usage of several landscape metrics. Landscape
metrics were originally developed to measure the ecological impacts of landscape changes [26] but
have since been applied to several other domains such as water quality assessment, urban sprawl
detection and even to visual landscape appreciation [27]. To explain the observed differences in runoff

between NLMs, the landscape metrics were calculated for each NLM (Table 1). A spatial clustering
algorithm using a 4-neighbourhood classification divided the pervious- and impervious surface fraction
in clusters that were used to calculate several landscape metrics. A cluster or patch is a basic element
or unit that makes up a landscape [26]. In this study a cluster is defined as a unit of uniform land cover.
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Table 1. Landscape metrics calculated for each NLM.

Variable Unit Abbr.

Average area of impervious clusters m2 A
Number of impervious clusters no. NIC
Number of pervious clusters no. NPC
Standard deviation of impervious cluster size m2 STDIC
Size of the median impervious cluster m2 MIC
Size of the largest impervious cluster m2 LIC
Ratio of the effective impervious area to the total impervious area / EIA
Average flow path to outlet for each impervious pixel m FPOIP
Average flow path to nearest road for each impervious pixel m FPRIP
Average flow path from mass center impervious clusters to outlet m FPMICO
Average flow path from mass center impervious clusters to nearest road m FPMICR
Flow path largest impervious cluster to outlet m FPLICO
Flow path largest impervious cluster to nearest road m FPLICR
Proximity index impervious clusters to outlet / PXICO
Proximity index impervious clusters to nearest road / PXICR
Proximity index largest impervious cluster to outlet / PXLICO
Proximity index largest impervious cluster to nearest road / PXLICR

The landscape metrics can be divided into area metrics, distance metrics, and proximity indexes,
the latter of which are a combination of the first two [28]. The number of pervious clusters (NPC) is not
directly correlated with the number of impervious clusters (NIC). The metric NPC calculates the number
of pervious urban green patches and represents the spatial autocorrelation of urban green. A high NPC

means that there are a lot of urban green patches and the urban green types are predominantly mixed.
A low NPC means that the spatial configuration of the different green types is more coarse-grained and
that all grass, shrub, or green patches are more clustered together. The EIA is calculated with the Flow
Distance function in ArcPy. This function calculates the length of the flow path of all impervious pixels
to the nearest road. Impervious pixels where the flow path does not reach a road are assigned a ‘no
data’ value. The EIA is calculated as the ratio of impervious pixels of which the flow path reaches a
road over the total number of impervious pixels. The landscape metrics that use the largest impervious
cluster (LIC, FPLICO, FPLICR, PXLICO, PXLICR) will be used to indicate if this cluster has a dominant
effect on runoff in comparison with the other clusters. The proximity index (PX) gives an indication
of the relative importance of a cluster in relation to other clusters. It is calculated as the ratio of the
impervious clusters’ sizes to the clusters’ flow path to the outlet or road respectively. In this research
the PX is used to describe the contribution of an impervious cluster to the amount of runoff that reaches
the outlet. For example, when a small impervious cluster close to the outlet has the same contribution
to the amount of runoff that reaches the outlet as larger impervious cluster that is further away from
the outlet, their PX is the same. PXICO and PXICR are the ratios of the impervious clusters’ sizes to
the clusters’ flow path to the outlet or road respectively. PXLICO and PXLICR are similar to PXICO and
PXICR but only take the largest impervious clusters’ size and flow path. In the Reference scenario, only
landscape metrics were used that not contained the road grid. The metrics applicable to the Reference
scenario are A, NIC, NPC, STDIC, MIC, LIC, EIA, FPOIP, FPMICO, FPLICO, PXICO, PXLICO.

2.2. Modelling

2.2.1. Downward Modelling Approach

In the past decennia urban hydrological modeling has predominantly focused on ever increasingly
refined, more detailed models to better predict urban water flows. This is the so-called reductionist
approach. However, because of the complexity of the hydrological cycle and its multiple paths
interacting at various scales, there is a limit to the extent the reductionist approach can accurately
predict water flows, and more complex models inevitably have a higher uncertainty [29,30]. Moreover,
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the success of these models in predicting the hydrological balance can to some extent be attributed to
the extensive calibration and parametrization they require. This can lead to over-parameterization
until the model accurately simulates reality. Because parameter calibration suffers from equifinality or
the principle that a given result can be achieved through multiple pathways [31], the underlying real
causes of the modelled variables’ variation can be obscured. Opposite of the reductionist approach
stands the downward approach [32]. This approach starts from a simple framework and its complexity
can be increased in a hierarchical manner. Benefits of the downward approach include, according
to [32], that individual model components can be selected, left out or combined based the modelers
interest and that this approach is suited for all model types irrespective of their spatial resolution
or degree of heterogeneity. This approach is thus not so much suitable for realistic prediction of the
hydrological components, but serves well to increase our theoretical understanding of the processes at
play that influence the observed variation. Due to the inherent complexity of an urban environment,
the reductionist approach is bound to run into some problems. The downward approach, by scaling
down the level of complexity present in an urban environment and by then subsequently adding
layers of heterogeneity in a hierarchical matter, is better suited to provide insights in the causational
processes of overland water flow [32].

Combining the downward hydrological modeling approach with NLMs provides an ideal
experimental setup for testing the influence of grid density and spatial configuration of land uses on
overland flow.

2.2.2. Curve Number Hydrological Model and Functional Runoff Connectivity

The SCS-Curve Number hydrological model (CN model) [33] was used to model overland
flow. This event-based conceptual model assigns a number to each land-use class that represents its
hydrological characteristics. Its dependence on a single parameter (CN number) makes the model easy
to use and is often the preferred method for water conservation planning and flood control design [34].
The CN number essentially reduces the total precipitation to runoff, after abstraction of the other water
balance components. To determine the CN number of a land use class, the hydrological soil group
(HSG) and antecedent moisture condition (AMC) need to be specified. Because the HSG and AMC are
undefined in this virtual experiment, their default values are used. The HSG of all land uses in this
experiment is ‘A’ and their AMC is ‘II’. For further elaboration on these variables, see [33]. The original
CN model uses an initial abstraction equation before overland flow begins of Ia = 0.2 S, where Ia is
the initial abstraction (mm) and S is the potential water storage (mm) of a land use class. This study
uses the equation Ia = 0.05 S which is based on more recent experiments that were fitted to urban
environments [35]. The original curve numbers as developed by the SCS [36] are converted using the
equations of [35]. The curve numbers used in the hydrological modelling procedure were 97.9 (grid),
85.5 (impervious), 33.7 (grass), 27.8 (trees), and 20.7 (shrubs). The CN model framework was originally
developed for agricultural purposes and does not provide exact numbers for these urban green classes
so some degree of liberty was taken in selecting those numbers. Because the goal of this research is to
expose the influences of landscape pattern and grid on runoff instead of making realistic predictions,
these values are deemed acceptable.

The functional runoff connectivity (Fc) (Equation (1)) was used to quantify the effect of grid density
and spatial configuration on runoff. The Fc is a dimensionless property of a system that is defined as
the ratio of the total outlet volume over the internal runoff production and can be seen as the ease
of which water flows through the landscape and reaches the outlet [28]. Fc varies between 0 and 1,
with 0 meaning all produced runoff infiltrates, while 1 means all produced runoff reaches the outlet.
This variable was chosen because it is easily interpretable and comparable between scenarios because
of its dimensionlessness.

Fc =
Total outlet volume

Total internal run o f f production
(1)
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Next, a rain event of 20 mm was simulated. Because the functional runoff connectivity is measured
at the outlet and is not affected by rain duration or intensity, these rain event characteristics were
not specified. Van Nieuwenhuyse et al. [28] found that the influence of pattern on runoff was most
pronounced when the parameters of the different land covers differed sufficiently but not extremely,
and that the simulated rainfall event made one type of land cover act as a source area and the other
type as a sink area. A 20 mm rain event made the impervious areas act as a source patch, while the
pervious areas acted as sink patches, absorbing runoff from nearby impervious pixels before getting
saturated. During a rain event of 20 mm, the street grid and impervious surface produced 15.5 and
5.2 mm of runoff respectively, while no runoff was generated on the grass-, tree-, and shrub patches.
During and after the rain event, these patches could absorb an additional 5, 13, and 28.7 mm of runoff

respectively from nearby impervious surfaces before saturating.

2.2.3. Landscape Metric Correlation and Selection

To find the landscape metrics most heavily correlated with Fc, a process optimization software
HEEDS|MDO 2019 [37] was used to perform a design of experiment (DOE) analysis. A design of
experiments analysis is a method that examines how a selected number of variables influence a specified
design. The Perlin Noise function variable values were selected with Latin hypercube sampling,
generating a near-random sample of variable values to produce landscapes [38]. Next, for each grid
and each percentage of pervious surface, 100 iterations were done. Spearman rank correlation plots
were made of Fc with the landscape metrics for each degree of perviousness. Spearman was preferred
over Pearson because the Spearman’s rank correlation coefficient describes monotonic relationships
instead of linear relationships. Moreover Spearman makes no assumption about the underlying data
distribution and Spearman’s rho is more robust to outliers [39].

2.2.4. Landscape Metric and Functional Runoff Connectivity Modelling

The landscape metrics that were consistently correlated for all grid scenarios and all degrees of
pervious surface were closer examined. A PCA and Spearman correlation analysis was done between
these selected metrics to determine their level of similarity. Finally, the two most suitable landscape
metrics were selected and their behavior in relation to Fc was modelled. Model assumptions were
checked and the goodness of fit (R2) and root mean square error (RMSE) were calculated.

2.3. Optimization with SHERPA Algorithm

To minimize Fc for a given grid and percentage of impervious surface, HEEDS|MDO 2019 uses an
optimization technique called SHERPA [40]. SHERPA is a hybrid adaptive method that satisfies the
specified objective(s) by iteratively searching for more optimal landscape patterns. Starting from a
user defined initial landscape pattern, SHERPA is able to find the NLM that best satisfies the specified
objective (minimize Fc) faster than other methods by looking at previously produced landscape patterns.
By specifying the surface area of all landscape classes as a constraint for the optimizing algorithm,
SHERPA found the most optimal NLM for each grid with 20%, 40%, 60%, and 80% pervious surface
area. The process of finding the best landscape pattern is depicted in Figure 5. Starting from an initial
landscape pattern, SHERPA iteratively searches until it finds the landscape pattern best complying to
the specified objective(s) and constraints.
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0.87, and 0.77 respectively.

3. Results

3.1. Landscape Metrics Correlations and Models

3.1.1. Landscape Metrics Correlations

The Spearman correlations of the landscape metrics with Fc are shown in Table 2. Notice that the
Reference scenario has less landscape metrics because, due to the absence of a road grid, the metrics
FPRIP, FPMICR, FPLICR, PXICR, and PXLICR were not applicable.

Table 2. Spearman correlations of the landscape metrics for each degree of perviousness in the
landscape. A deep blue color means a strong positive correlation while a deep red color signifies a
strong negative correlation. See Table 1 for the full names of the landscape metrics. Extended tables
with p values and sample sizes can be consulted in Appendix A.

Pervious Fraction
Reference 0.20 0.40 0.60 0.80

A 0.40 0.76 0.78 0.35
NIC −0.40 −0.76 −0.78 −0.35
NPC −0.74 −0.63 −0.45 −0.12

STDIC 0.40 0.80 0.81 0.34
MIC 0.66 0.50 0.36 0.30
LIC −0.09 0.69 0.77 0.30
EIA 0.66 0.82 0.88 0.80

FPOIP −0.43 −0.36 −0.39 −0.64
FPMICO 0.39 0.24 0.39 −0.18
FPLICO −0.18 −0.19 −0.24 −0.38
PXICO 0.38 0.73 0.78 0.35
PXLICO 0.59 0.72 0.88 0.53

Pervious fraction
Irvine 0.20 0.40 0.60 0.80

A 0.69 0.90 0.93 0.93
NIC −0.69 −0.90 −0.93 −0.93
NPC −0.78 −0.60 −0.38 −0.15

STDIC 0.68 0.93 0.96 0.96
MIC −0.01 −0.08 0.05 0.21
LIC −0.03 0.88 0.92 0.94
EIA 0.79 0.97 0.97 0.97

FPOIP −0.05 −0.08 0.01 0.15
FPRIP −0.08 0.88 −0.24 −0.33
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Table 2. Cont.

Pervious fraction
Irvine 0.20 0.40 0.60 0.80

FPMICO 0.10 −0.08 −0.06 0.06
FPMICR −0.45 −0.29 −0.83 −0.75
FPLICO 0.01 −0.20 0.02 0.17
FPLICR 0.22 0.04 −0.19 0.14
PXICO 0.64 0.88 0.93 0.94
PXICR 0.70 0.89 0.93 0.93

PXLICO 0.21 0.67 0.89 0.89
PXLICR 0.07 0.71 0.84 0.85

Pervious Fraction
Concord 0.20 0.40 0.60 0.80

A 0.85 0.95 0.94 -
NIC −0.85 −0.95 −0.94 -
NPC −0.77 −0.56 −0.27 -

STDIC 0.85 0.96 0.93 -
MIC 0.83 0.80 0.83 -
LIC 0.39 0.88 0.86 -
EIA 0.80 0.98 0.98 -

FPOIP −0.11 −0.07 0.06 -
FPRIP 0.04 −0.09 −0.14 -

FPMICO −0.03 0.16 0.30 -
FPMICR 0.40 −0.69 −0.88 -
FPLICO −0.18 0.07 0.08 -
FPLICR 0.05 0.19 0.29 -
PXICO 0.75 0.94 0.94 -
PXICR 0.85 0.94 0.93 -

PXLICO 0.27 0.67 0.79 -
PXLICR 0.38 0.48 0.63 -

Pervious Fraction
Point B. 0.20 0.40 0.60 0.80

A 0.93 0.97 0.97 -
NIC −0.93 −0.97 −0.97 -
NPC −0.77 −0.50 −0.13 -

STDIC 0.88 0.93 0.92 -
MIC 0.83 0.91 0.88 -
LIC 0.66 0.75 −0.03 -
EIA 0.84 0.99 0.99 -

FPOIP 0.04 0.01 0.07 -
FPRIP 0.10 −0.16 −0.48 -

FPMICO −0.09 −0.10 0.04 -
FPMICR 0.79 0.54 −0.21 -
FPLICO −0.15 0.08 0.06 -
FPLICR −0.25 −0.54 0.01 -
PXICO 0.89 0.96 0.97 -
PXICR 0.90 0.97 0.96 -

PXLICO 0.17 0.22 0.71 -
PXLICR 0.67 0.59 0.72 -

The most important observations from these correlation matrices are the following: A and
NIC display behavior exactly opposite of each other throughout all scenarios and all percentages
of perviousness. They are exact adversaries of each other because a higher average surface area of
impervious clusters (A) means a lower number of impervious clusters (NIC). A is positively correlated
and NIC is negatively correlated with Fc, meaning that a high number of small impervious clusters
results in a lower Fc and a small number of large impervious clusters results in a higher Fc. This is
also demonstrated in the high positive correlation of the standard deviation of the impervious clusters
(STDIC) throughout all scenarios and all percentages of perviousness. The strong positive correlation
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of STDIC means that equal-sized impervious clusters are preferred over a wider variation of cluster
sizes when the goal is to reduce Fc. Another metric that shows a strong positive correlation in all
scenarios and degrees of perviousness is the effective impervious surface area (EIA). This means that a
higher EIA invariably results in a higher Fc and when the goal is to minimize Fc, care should be taken
to reduce the impervious area directly connected to the street grid or outlet. For the Reference scenario,
EIA depicts the amount of impervious surface directly connected to the lower- or right border of the
landscape or outlet. Finally, PXICO and PXICR are two proximity indexes that show strong positive
correlations throughout all scenarios and degrees of perviousness. Their positive correlation means
that large impervious clusters close to the outlet or to a road result in a strong increase of Fc and
that if the goal is to reduce Fc, large impervious patches are best located far from the nearest road or
outlet. Another measure that deserves attention is the number of pervious clusters (NPC). In every
grid scenario NPC starts with a strong negative correlation at a low percentage of perviousness, after
which the strength of the correlation decreases with an increasing amount of pervious surface. This
means that when the pervious surface area is small (e.g., 20%), a more mixed spatial configuration of
urban green types is preferred to reduce Fc. When on the contrary a lot of pervious surface area is
present (e.g., 80%) the spatial correlation of urban green does not matter much anymore.

The landscape metrics A, NIC, STDIC, EIA, PXICO, and PXICR show consistent and strong behavior
across all grid scenarios and all degrees of perviousness. After a PCA and Spearman analysis among
these metrics, A, NIC, STDIC, PXICO, and PXICR were shown to display strong levels of correlation,
with only EIA showing distinct behavior. Out of these correlated metrics, the landscape metric A is
selected to be modelled together with EIA due to its easiness to measure and intuitive understanding.
The Spearman correlations of A and EIA with Fc across all street grids and degrees of pervious surface
are shown in Figure 6.Water 2020, 12, x FOR PEER REVIEW 13 of 28 
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Figure 6. Spearman correlation plots for average impervious cluster area (A), and effective impervious
surface area (EIA) with Fc for each grid scenario across all degrees of pervious surface.

Some similar behavioral trends can be observed between the two landscape metrics plotted in
Figure 6: the landscape metrics show consistently lower correlations in the Reference scenario than
in the three other grid scenarios. Most notably the metric A still shows good correlations for the
Reference scenario with a pervious area of 40% and 60% but in the more extreme scenarios (20% and
80% pervious surface area), the correlation coefficient drops significantly. The two metrics show good
to very good correlations in the other grid scenarios with a slightly lower correlation when the pervious
surface area is low (20%).

3.1.2. Landscape Metrics Models

When plotted with Fc, the landscape metric A followed a curve closely resembling a logarithmic
function. The metric EIA could be modelled with a linear function. The variable A is modelled for
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every grid scenario separately while EIA is modelled for every grid scenario and every degree of
perviousness separately (Table 3).

Table 3. Models of Fc with the variables A and EIA. The graphs of A can be viewed in Figure 7.
The graphs of EIA can be viewed in Figures 8 and 9. Parameter estimates with 95% confidence intervals
can be consulted in the Appendix B. The parameter a is the intercept of the functions, the parameter b
is the base of the logarithmic function and the slope of the linear function.

Metric Model Function Grid Scenario Pervious (%) Parameters R2 RMSE ANOVA

A Logarithmic Reference all a1, b1 0.49 0.16 <0.0001
Fc = ai + bi × Log(A) Irvine all a2, b2 0.60 0.10 <0.0001

Concord all a3, b3 0.73 0.03 <0.0001
Point Breeze all a4, b4 0.69 0.01 <0.0001

EIA Linear Reference all a11, b11 0.85 0.09 <0.0001
Fc = ai j + bi j × EIA Irvine 20 a21, b21 0.68 0.07 <0.0001

40 a22, b22 0.96 0.04 <0.0001
60 a23, b23 0.96 0.03 <0.0001
80 a24, b24 0.90 0.03 <0.0001

Concord 20 a31, b31 0.63 0.03 <0.0001
40 a32, b32 0.97 0.01 <0.0001
60 a33,b33 0.97 0.01 <0.0001

Point Breeze 20 a41, b41 0.71 0.01 <0.0001
40 a42, b42 0.99 0.00 <0.0001
60 a43, b43 0.98 0.00 <0.0001

All grids all a5, b5 0.85 0.11 <0.0001Water 2020, 12, x FOR PEER REVIEW 15 of 28 
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Figure 7. Scatterplots with logarithmic regression line for A and Fc for the Reference, Irvine, Concord,
and Point Breeze scenarios. Notice the different x- and y-axis in the figures. ‘n’ is the number of NLMs
generated for each grid scenario. Because in the Concord and Point Breeze scenarios no NLMs with
80% pervious surface were generated, these scenarios only have 300 NLMs.
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Figure 8. Scatterplots with linear regression lines for EIA and Fc for the Reference, Irvine, Concord,
and Point Breeze scenarios. The Reference scenario shows no difference between different levels of
perviousness. The other scenarios do show marked differences between pervious percentages which
are highlighted with different regression lines. ‘n’ is the number of NLMs generated for each grid
scenario. Because in the Concord and Point Breeze scenarios no NLMs with 80% pervious surface were
generated, these scenarios only have 300 NLMs. Notice the different x- and y-axis in the figures.
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The parameters a and b are the intercept and base term of the logarithmic function. For the linear
function the parameters a and b are the intercept and slope. In the case of A, different parameters were
found for every grid scenario. The parameters with subscript ‘1’, ‘2’, ’3’, and ‘4’ are the parameters for
the Reference, Irvine, Concord, and Point Breeze scenario respectively. For the metric EIA, one linear
model was constructed for the Reference scenario. For the Irvine, Concord, and Point Breeze scenarios,
separate models were constructed for each degree of perviousness. The relationship between A and FC

is shown in Figure 7 and the relationship between EIA and FC is shown in Figures 8 and 9. Because of
the large differences in value ranges, the scales of the x- and y-axis of the subpanels in both Figures 7
and 8 are different. The parameter estimates with their 95% confidence intervals and standard errors
can be found in Appendix B.

The metric A (Table 3 and Figure 7) shows a different behavior with increasing grid density.
The higher the grid density, the more A fits a logarithmic curve when plotted against Fc. The R2 increases
from 0.49 in the Reference scenario to 0.73 and 0.69 in the Concord and Point Breeze scenarios while
the RMSE decreases from 0.16 in the Reference scenario to 0.01 in the Point Breeze scenario. The street
grid divides the landscape and this is reflected in the value of A. The range of the average impervious
cluster area strongly decreases from the Reference to the Point Breeze scenario. The variation of the
residuals seems to decrease slightly from low A values to high A values in all grid scenarios, indicating
some degree of heteroscedasticity. This minor degree of heteroscedasticity however is not seen as a
problem and corrections should only be made with more severe cases [41].

The variable EIA (Table 3, Figures 8 and 9) showed different behavior for different grid scenarios
and degrees of perviousness. Only in the Reference scenario, one linear model could encompass all
degrees of perviousness. With an R2 of 0.85 and an RMSE of 0.09 this model succeeds very well in
predicting Fc for all degrees of perviousness when no roads are present in the landscape. When a grid
is introduced in the landscape, model parameters change according to the degree of pervious surface.
For each of the grid scenarios, the slope (parameter b) decreases when the degree of pervious surface
increases. A minor increase in EIA will lead to a much larger increase in Fc in a landscape with 20%
pervious surface than in a landscape with 60% or 80% pervious surface. This effect is amplified with a
higher grid density: In the Point Breeze scenario, the slope of 20% pervious regression line is steeper
than the slope of the 20% pervious regression line in the Irvine scenario. A denser street grid also has
influence on the possible range of values EIA can take. This range decreases strongly with higher grid
density: In the Reference scenario EIA ranges from zero to one, while in the Point Breeze scenario EIA
only ranges from 0.64 to one. As a result of the higher grid density in the Concord- or Point Breeze
scenario, there are less isolated impervious clusters that are disconnected from the street grid, meaning
EIA will have larger values.

A surprising observation is that in the three grid scenarios, at 20% pervious surface, the R2 of the
EIA models is considerably lower compared to other degrees of perviousness (Table 3: Irvine R2: 0.67;
Concord R2: 0.63; Point Breeze R2: 0.71). The relationship between EIA and Fc in these cases shows a
deviation from linearity and the lowest Fc seems to be found at intermediate EIA values (Figure 8,
20% pervious regression line). At 20% pervious surface, NPC has a strong correlation with Fc (Table 2),
that quickly decreases with increasing degree of perviousness. When NPC is added as a predictor
variable to these EIA models, the non-linearity instantly disappears and the resulting MLR reaches an
R2 comparable to the other EIA models (See Appendix C).

When all scenarios and all degrees of pervious surface are modelled together, a relatively good
linear relationship could be modelled between Fc and EIA with an R2 of 0.85 and an RMSE of 0.11
(Figure 9).

3.2. Optimization

The lowest Fc SHERPA found varied significantly between grids and pervious area abundances
(Figure 10).
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Figure 10. Lowest Fc found by SHERPA for all grids and pervious surface abundances.

The first thing that stands out are the high differences in Fc between the different grid scenarios.
The higher the grid density, the higher Fc, demonstrating the efficiency of a grid transport system
in channeling and leading runoff to the outlet. In all scenarios from 20% to 40% pervious surface Fc

decreases. This decrease in Fc is greater in the low density grid scenarios (Reference and Irvine) than
in the high density grid scenarios (Concord and Point Breeze). From 40% pervious surface upwards
to 80% pervious surface, Fc, perhaps contra intuitively, rises again for the Irvine, Concord, and Point
Breeze scenario.

4. Discussion

4.1. Landscape Metrics Correlations and Modelling

The focus of this virtual experiment was to determine landscape metrics that are strongly correlated
with Fc throughout a wide variety of landscapes. The average impervious cluster area (A), the number
of impervious clusters (NIC), the standard deviation of impervious clusters (STDIC), the effective
impervious area (EIA), the proximity index from the impervious clusters to the outlet (PXICO), and the
proximity index from the impervious clusters to the nearest road (PXICR) were found to do this. Of
these metrics A, NIC, STDIC, PXICO, and PXICR showed strong correlations among each other, meaning
they influence Fc in a similar way. All these metrics have an impact on pattern formation in a landscape.
The signs of their correlations with Fc indicates that evenly distributed, fine-grained patterns are best
suitable to reduce Fc (Table 2). These findings are in line with [16–18]. Mayor et al. [16] used flow path
length as a predictive variable to express landscape connectivity. This study could not find consistent
correlations between flow path length and Fc across all NLMs (Table 2) but the metrics PXICO and
PXICR, that include flow path length, did show a consistent correlation.

Figure 6 shows that with increasing street/drainage grid density, the correlation of these metrics
with Fc grows stronger. This indicates the importance of a grid in cluster formation and the dependence
of these landscape metrics on grid density. As a denser grid produces more clusters, the strength of the
correlations between the metrics and Fc grows. This is also seen in Figure 7, where the relation between
A and Fc better approximates a logarithmic function with increasing grid density. The importance of a
grid in a landscape is conform the results of Alberti et al. [14], who differentiates roads as key stressors
in a landscape.

In accordance to the findings of Shields and Tague [19], the metric EIA was found to have a large
influence on the catchment’s hydrology. EIA was modeled for each grid scenario and each degree
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of perviousness separately (Figure 8). The steeper slope of the linear models at low pervious surface
percentages means that in a strongly urbanized landscape with a lot of impervious surface, even a
small change in EIA can lead to a dramatic increase in runoff. Landscapes with higher percentages of
pervious area, on the other hand, are better buffered against an increase in Fc when EIA rises.

The lesser performance of the EIA models at low degrees of pervious surface (Table 3) are due
to the non-linear behavior of EIA. This non-linearity is corrected with the addition of the variable
representing the number of pervious clusters (NPC), that exhibits a strongly negative correlation
with Fc at 20% pervious surface (Table 2). The implication is that at high degrees of imperviousness,
when few pervious spots are available for runoff to infiltrate, the spatial mixture of urban green
becomes increasingly important and a stronger mixture of urban green is preferred. At higher degrees
perviousness, there is sufficient area for runoff to infiltrate and disrupt the connectivity of impervious
surfaces that enhances Fc. The added effect of spatial arrangement of urban green is negligible in these
cases. The spatial arrangement of different urban green types thus only becomes important in highly
urbanized landscapes with a lot of impervious surfaces.

4.2. Optimization

The sharp increase in Fc from the Reference to the Point Breeze scenario (Figure 10) shows that a
drainage system is a very efficient means to transport runoff water to the catchments’ outlet. At higher
grid densities, such as in the Point Breeze scenario, almost all runoff reaches the catchments’ outlet,
regardless of the percentage of pervious surface present. At lower grid densities, lower values of
Fc are observed because a smaller percentage of impervious surface is connected to the grid. More
runoff flows into pervious areas where it can infiltrate. Depending on where the impervious surface is
located relative to the outlet, produced runoff has to flow past patches of pervious surface. In the Irvine
scenario and to a lesser extent in the Concord- and Point Breeze scenario, Fc decreases until the amount
of pervious area is 40%. More pervious area and a less dense grid thus means the possibility is higher
that patches are isolated and not connected to the grid. After 40% pervious surface we see an increase
in Fc for the Irvine-, Concord-, and Point Breeze scenario. The reason for this is that in the higher
percentage pervious scenarios, a higher percentage of the impervious area is road grid, which has a
very high runoff potential. Most water that directly falls on road surface reaches the outlet, resulting
in a higher Fc. When the road grid occupies a high percentage of the total impervious area, less
impervious surface is available to disconnect from the drainage system. This will result in a high EIA
and less potential disconnected impervious surface area. For example, in the 60% pervious scenario for
the Concord gird, 18.9% of the remaining 40% impervious surface consists of road grid. All rain that
falls on the road grid will be guided to the outlet. This means that only 21.1% of impervious surface
remains to be reallocated and disconnected from the outlet. The potential reduction in Fc will thus
decrease with higher pervious surface percentages.

4.3. Real World Implications

The results of this virtual experiment reveal that the amount of runoff that reaches the catchments’
outlet is highly dependent on the density of the street grid. The street grid in turn has a strong impact
on the landscape metrics that were used in this study to measure the landscape pattern. The strong
and consistent correlations between the metrics A, NIC, and STDIC on the one hand and Fc on the other
showed that a fragmented, fine-grained landscape is able to absorb more runoff than a more clumped,
course-grained landscape.

The metric EIA showed that the imperious area directly connected to the grid should be reduced
if the goal is to let more water infiltrate in pervious spots in the city and the metrics PXICO and PXICR

showed that large impervious clusters are best located far from the outlet or road to give runoff a
better chance to infiltrate. The logarithmic models of the metric A (Figure 7) show that gaining a
continuous reduction in Fc comes with smaller efforts when Fc is already low. The models of the metric
EIA (Figure 8) show that, when pervious surface area is low, strong reductions in Fc can be achieved
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with only minor changes in EIA. The strongest reductions can be made when the reduction in EIA is
accompanied with the creation of small impervious spots with a mixture of different urban green types
(Models see Appendix B).

These findings advocate for the decentralization of the water system. By creating small pervious
spots in the landscape that are disconnected from the drainage system runoff finds alternative spots to
infiltrate, thereby relieving pressure on the traditional drainage system. These small pervious spots
can have multiple uses: They can be traditional vegetation such as grass, shrubs, and trees that capture
rainfall and let it infiltrate in the groundwater table or they could be water sensitive urban design
(WSUD) systems such as rainwater tanks, bioretention systems, or swales that capture runoff for
other purposes [42]. Recent remote sensing research found that cities around the world are made
of a strongly fragmented mosaics of impervious- and pervious surface with often high to very high
impervious area fractions [43]. Because of these high impervious surface area fractions, the construction
of even a small amount of pervious spots can disconnect a substantial amount of impervious area,
thereby strongly increasing natural infiltration and decreasing Fc. The positive correlations of the
proximity indexes PXICO and PXICR with Fc show that large impervious clusters are best located far
from the outlet. In practice, large impervious spots such as parking areas are directly connected to the
drainage system. Disconnecting these spots from the drainage system through the use of alternative
management practices (e.g., the construction of a swale) provides the opportunity to greatly reduce Fc.

These potential reductions in Fc increase with increasing grid density as well, which gives highly
urbanized regions with a high grid density and low pervious surface percentage an extra favorable
cost/benefit ratio to improve natural infiltration.

4.4. Simplifications

Due to the nature of virtual experiments, a lot of simplifications are made. These simplifications
are acceptable because this study does not aim to make accurate predictions of runoff amounts but
rather aims to unveil underlying patterns and relationships between variables. The assumption
that road networks are a good substitute for the drainage system might not be the case everywhere.
Moreover actual drainage systems can saturate, impeding outlet flow. The land use classes used in this
study are a simplification of reality and the CN number assigned to them lies in the range of those
of [35] but are a simplification nonetheless because they were not designed to differentiate between
different urban green classes. By changing the CN numbers, the values of Fc will undoubtedly change
but the general patterns and relationships between the landscape metrics and Fc found in this study
will remain. The CN hydrological model is event based, no time variable is used and the effect of
rain intensity and time of concentration is not investigated. We hypothesize that, with increasing
rain intensity, the effect of the pervious patches will diminish because rain will have less time to
infiltrate [44]. We think that the general results found in this research however will remain valid.
The question also remains to which extent the generated NLMs capture the spatial configuration of an
actual urban environment. The strength of this virtual experiment lies in the fact that it scales down
the complexity of an urban environment and only allows certain components to vary, thereby exposing
underlying mechanisms that could otherwise be obscured by the complexity of the data.

Finally, this study attempts to expose the mechanisms underlying Fc by creating NLMs and
calculating landscape metrics to predict Fc. It is however situation dependent if a higher- or lower Fc is
preferred. Cities located in semi-arid environments such as Irvine and Concord likely would prefer a
low Fc to keep as much rainwater in the city as possible for uses such as purification for drinking water
or to water urban vegetation [19]. Cities or neighborhoods located in humid- and wet environments
such as Point Breeze that have no water shortage might prefer a high Fc, but even in these cases it
could be interesting for these cities to capture runoff and utilize it for other purposes than to guide the
water away from the city.
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4.5. Future Research

Recommendations for follow up studies are to add layers of complexity to the model such as the
use of more land use classes, a drainage network with a maximal transport capacity and adding a time
variable to investigate variability of peak flows and volumes. Urban environments are characterized
by linear- and polygonal structures that have specific shapes such as buildings and parking spaces.
The effect of these structures on Fc would be interesting to examine. A similar experimental design
as the one used in this paper could be used to determine the effect of these structures on Fc. Instead
of creating patterns through a pseudo-random noise function, a function that creates patterns with
these specific shapes, altering their size and orientation, could be used. By adding complexity, the
bridge with reductionist models can be closed through the development of ‘middle path’ models that
capture the spatial characteristics of a landscape without the risk of over parameterization [45]. Remote
sensing data has a high potential to serve as good quality data source to quantify runoff volumes in an
urban catchment, thereby facilitating data input [46]. The insights gained in this study can contribute
to more thoughtful city planning. Further research should also be directed towards existing urban
landscapes where only minor changes can be made. The optimization technique used in this research
can be adapted towards real landscapes where additional constraints towards land use allocation could
be implemented. Urban planners often only have limited budget and space to allocate pervious spots
such as trees and shrubs. The optimization technique presented this paper can help them determine
the most optimal location to implement pervious spots to maximally reduce Fc. Moreover, the methods
presented in this paper can provide valuable data for decision support methods such as Multi-Criteria
Decision Analysis (MCDA) [47].

5. Conclusions

Fc varies significantly with street/drainage system density and spatial land use configuration.
A dense grid is very efficient in transporting runoff to the outlet, giving rainwater few opportunities to
infiltrate and replenish the ground water table. Our results indicate that stronger reductions in Fc are
achievable in a landscape with a sparser street grid. A strongly fragmented, fine-grained landscape
with equally sized impervious patches was found to be more efficient in absorbing runoff than a more
coarse-grained landscape. Our results indicate that the mixture of urban green only becomes important
in these highly urbanized landscapes. The landscape metrics A, NIC, STDIC, EIA, PXICO, and PXICR

showed strong correlations with Fc in all scenarios across all levels of perviousness. Their correlation
with Fc increased with a denser drainage system. The relationship of the metrics A and EIA with Fc was
modelled. The models of the metric A showed that by reducing the average impervious cluster area,
increasing reductions in Fc are to be expected. The EIA models showed that decreasing the effective
impervious area might be a more effective measure and that the strongest reductions in Fc can be
accomplished in strongly urbanized landscapes with small percentages of pervious area. This reduction
in EIA can be achieved through alternative measures such as rain gardens or tree infiltration pits
that decentralize water management and partly mitigate the negative consequences of the increasing
degree of impervious area in urban environments. The optimization analysis showed that around 40%
pervious surface area, the lowest values of Fc are found in the grid scenarios. The results in this study
can be used to improve our understanding of landscape dynamics on runoff in urban environments.
Recommendations for further research include adding layers of complexity to the model to gain more
insight on the interaction between landscape configuration and runoff. The optimization technique
used in this study could also be useful for decision making on where to best construct urban green
areas in real urban landscapes.
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Appendix A. Landscape Metrics Spearman Correlations with p Values

Appendix A.1. Reference Scenario (n = 400)

Table A1. Correlation table Reference scenario.

Pervious Fraction p Values

Fc 0.20 0.40 0.60 0.80 Fc 0.20 0.40 0.60 0.80
A 0.40 0.76 0.78 0.35 A 0.0001 <0.0001 <0.0001 0.0004
NIC −0.41 −0.76 −0.78 −0.35 NIC 0.0001 <0.0001 <0.0001 0.0004
NPC −0.74 −0.63 −0.45 −0.12 NPC <0.0001 <0.0001 <0.0001 0.2535
STDIC 0.40 0.80 0.81 0.34 STDIC 0.0002 <0.0001 <0.0001 0.0005
MIC 0.66 0.50 0.36 0.30 MIC <0.0001 <0.0001 0.0002 0.0025
LIC −0.09 0.69 0.77 0.30 LIC 0.4154 <0.0001 <0.0001 0.0027
EIA 0.66 0.82 0.88 0.80 EIA <0.0001 <0.0001 <0.0001 <0.0001
FPOIP −0.43 −0.36 −0.39 −0.64 FPOIP <0.0001 0.0002 <0.0001 <0.0001
FPMICO 0.39 0.24 0.39 −0.18 FPMICO 0.0002 0.0149 <0.0001 0.0677
FPLICO −0.18 −0.19 −0.24 −0.38 FPLICO 0.1058 0.0579 0.0153 <0.0001
PXICO 0.38 0.73 0.78 0.35 PXICO 0.0003 <0.0001 <0.0001 0.0003
PXLICO 0.59 0.72 0.88 0.53 PXLICO <0.0001 <0.0001 <0.0001 <0.0001

Appendix A.2. Irvine scenario (n = 400)

Table A2. Correlation table Irvine scenario.

Pervious Fraction p Values

Fc 0.20 0.40 0.60 0.80 Fc 0.20 0.40 0.60 0.80
A 0.69 0.90 0.93 0.93 A <0.0001 <0.0001 <0.0001 <0.0001
NIC −0.69 −0.90 −0.93 −0.93 NIC <0.0001 <0.0001 <0.0001 <0.0001
NPC −0.78 −0.60 −0.38 −0.15 NPC <0.0001 <0.0001 <0.0001 0.1244
STDIC 0.68 0.93 0.96 0.96 STDIC <0.0001 <0.0001 <0.0001 <0.0001
MIC −0.01 −0.08 0.05 0.21 MIC 0.9028 0.4062 0.6477 0.0338
LIC −0.03 0.88 0.92 0.94 LIC 0.7872 <0.0001 <0.0001 <0.0001
EIA 0.79 0.97 0.97 0.97 EIA <0.0001 <0.0001 <0.0001 <0.0001
FPOIP −0.05 −0.08 0.01 0.15 FPOIP 0.6187 0.4364 0.9564 0.1467
FPRIP −0.08 0.88 −0.24 −0.33 FPRIP 0.4306 <0.0001 0.0161 0.0009
FPMICO 0.10 −0.08 −0.06 0.06 FPMICO 0.3194 0.4036 0.5678 0.5223
FPMICR −0.45 −0.29 −0.83 −0.75 FPMICR <0.0001 0.0038 <0.0001 <0.0001
FPLICO 0.01 −0.20 0.02 0.17 FPLICO 0.9468 0.0442 0.8733 0.0841
FPLICR 0.22 0.04 −0.19 0.14 FPLICR 0.0288 0.705 0.062 0.1788
PXICO 0.64 0.88 0.93 0.94 PXICO <0.0001 <0.0001 <0.0001 <0.0001
PXICR 0.70 0.89 0.93 0.93 PXICR <0.0001 <0.0001 <0.0001 <0.0001
PXLICO 0.21 0.67 0.89 0.89 PXLICO 0.0385 <0.0001 <0.0001 <0.0001
PXLICR 0.07 0.71 0.84 0.85 PXLICR 0.478 <0.0001 <0.0001 <0.0001
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Appendix A.3. Concord scenario (n = 300)

Table A3. Correlation table Concord scenario.

Pervious Fraction p Values

Fc 0.20 0.40 0.60 0.80 Fc 0.20 0.40 0.60 0.80
A 0.85 0.95 0.94 A <0.0001 <0.0001 <0.0001
NIC −0.85 −0.95 −0.94 NIC <0.0001 <0.0001 <0.0001
NPC −0.77 −0.56 −0.27 NPC <0.0001 <0.0001 0.0064
STDIC 0.85 0.96 0.93 STDIC <0.0001 <0.0001 <0.0001
MIC 0.83 0.80 0.83 MIC <0.0001 <0.0001 <0.0001
LIC 0.39 0.88 0.86 LIC <0.0001 <0.0001 <0.0001
EIA 0.80 0.98 0.98 EIA <0.0001 <0.0001 <0.0001
FPOIP −0.11 −0.07 0.06 FPOIP 0.2782 0.5199 0.5329
FPRIP 0.04 −0.09 −0.14 FPRIP 0.7095 0.3545 0.1546
FPMICO −0.03 0.16 0.30 FPMICO 0.7619 0.1212 0.0022
FPMICR 0.40 −0.69 −0.88 FPMICR <0.0001 <0.0001 <0.0001
FPLICO −0.18 0.07 0.08 FPLICO 0.081 0.5001 0.4386
FPLICR 0.05 0.19 0.29 FPLICR 0.6363 0.0599 0.0034
PXICO 0.75 0.94 0.94 PXICO <0.0001 <0.0001 <0.0001
PXICR 0.85 0.94 0.93 PXICR <0.0001 <0.0001 <0.0001
PXLICO 0.27 0.67 0.79 PXLICO 0.0073 <0.0001 <0.0001
PXLICR 0.38 0.48 0.63 PXLICR <0.0001 <0.0001 <0.0001

Appendix A.4. Point Breeze scenario (n = 300)

Table A4. Correlation table Point Breeze scenario.

Pervious Fraction p Values

Fc 0.20 0.40 0.60 0.80 Fc 0.20 0.40 0.60 0.80
A 0.93 0.97 0.97 A <0.0001 <0.0001 <0.0001
NIC −0.93 −0.97 −0.97 NIC <0.0001 <0.0001 <0.0001
NPC −0.77 −0.50 −0.13 NPC <0.0001 <0.0001 0.1906
STDIC 0.88 0.93 0.92 STDIC <0.0001 <0.0001 <0.0001
MIC 0.83 0.91 0.88 MIC <0.0001 <0.0001 <0.0001
LIC 0.66 0.75 −0.03 LIC <0.0001 <0.0001 0.777
EIA 0.84 0.99 0.99 EIA <0.0001 <0.0001 <0.0001
FPOIP 0.04 0.01 0.07 FPOIP 0.6899 0.9513 0.4646
FPRIP 0.10 −0.16 −0.48 FPRIP 0.2996 0.1203 <0.0001
FPMICO −0.09 −0.10 0.04 FPMICO 0.3504 0.3365 0.686
FPMICR 0.79 0.54 −0.21 FPMICR <0.0001 <0.0001 0.0356
FPLICO −0.15 0.08 0.06 FPLICO 0.1359 0.4532 0.5624
FPLICR −0.25 −0.54 0.01 FPLICR 0.0122 <0.0001 0.932
PXICO 0.89 0.96 0.97 PXICO <0.0001 <0.0001 <0.0001
PXICR 0.90 0.97 0.96 PXICR <0.0001 <0.0001 <0.0001
PXLICO 0.17 0.22 0.71 PXLICO 0.0958 0.0254 <0.0001
PXLICR 0.67 0.59 0.72 PXLICR <0.0001 <0.0001 <0.0001
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Appendix B

Table A5. Parameter estimates of variable A with Std. Error and 95% confidence intervals (Table 3 and
Figure 7).

Parameter Group Estimate Std Error Prob > |t| Lower 95% Upper 95%

a1 Reference 0.0399599 0.017786 0.0252 0.0049899 0.0749298
b1 Reference 0.0620165 0.003245 <0.0001 0.055637 0.068396
a2 Irvine 0.4321842 0.012495 <0.0001 0.4076191 0.4567494
b2 Irvine 0.0686067 0.002824 <0.0001 0.0630545 0.074159
a3 Concord 0.7302278 0.00613 <0.0001 0.7181638 0.7422918
b3 Concord 0.0471453 0.001641 <0.0001 0.0439159 0.0503748
a4 Point Breeze 0.9120371 0.002328 <0.0001 0.9074561 0.916618
b4 Point Breeze 0.0178047 0.000689 <0.0001 0.0164488 0.0191605

Table A6. Parameter estimates of variable EIA with Std. Error and 95% confidence intervals (Table 3
and Figures 8 and 9).

Parameter Group Estimate Std Error Prob > |t| Lower 95% Upper 95%

a11 Reference 0.1452904 0.006163 <0.0001 0.1331733 0.1574075
b11 Reference 0.853726 0.018431 <0.0001 0.8174878 0.8899642
a21 Irvine 0.1549416 0.04437 0.0007 0.0668905 0.2429927
b21 Irvine 0.8133143 0.056582 <0.0001 0.7010291 0.9255995
a22 Irvine 0.2409955 0.009794 <0.0001 0.2215605 0.2604306
b22 Irvine 0.7599255 0.016019 <0.0001 0.7281361 0.7917148
a23 Irvine 0.3676387 0.006727 <0.0001 0.354289 0.3809884
b23 Irvine 0.6365934 0.013302 <0.0001 0.610197 0.6629898
a24 Irvine 0.6111595 0.005233 <0.0001 0.6007753 0.6215436
b24 Irvine 0.3750707 0.012455 <0.0001 0.3503533 0.3997881
a31 Concord 0.2178195 0.054153 0.0001 0.1103556 0.3252834
b31 Concord 0.7662501 0.059585 <0.0001 0.6480046 0.8844955
a32 Concord 0.4683952 0.006963 <0.0001 0.4545781 0.4822122
b32 Concord 0.5280021 0.008753 <0.0001 0.5106317 0.5453725
a33 Concord 0.7032752 0.003769 <0.0001 0.6957962 0.7107542
b33 Concord 0.2892382 0.005362 <0.0001 0.2785979 0.2998785
a41 Point Breeze 0.172284 0.051962 0.0013 0.0691663 0.2754018
b41 Point Breeze 0.8173187 0.05337 <0.0001 0.7114079 0.9232295
a42 Point Breeze 0.6223457 0.003494 <0.0001 0.615411 0.6292803
b42 Point Breeze 0.3702626 0.003788 <0.0001 0.3627463 0.3777789
a43 Point Breeze 0.8837642 0.001389 <0.0001 0.8810072 0.8865211
b43 Point Breeze 0.1116972 0.001614 <0.0001 0.1084947 0.1148997
a5 All grids 0.2456423 0.006088 <0.0001 0.2336991 0.2575855
b5 All grids 0.7823386 0.008998 <0.0001 0.7646876 0.7999895

Appendix C

EIA models of Table 3 and Figure 8 with 20% pervious surface area before and after addition of
variable NPC.
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