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Abstract: Submerged aquatic vegetation (SAV) is an important part of lake ecosystems, and a proper
SAV community structure is the key factor in keeping a clear-water state. Although the response of
SAV to water depth has been widely studied in different aquatic environments, little is known about
the response of the SAV community to changes in water depth of a large lake after an extreme rainfall
event. To examine this question, 780 samples were collected from Lake Taihu, China, between 2013
and 2017 to analyze the variations in SAV and water depth. The water level of the lake ranged from
2.75 to 4.87 m, and the water depth at sampling sites ranged from 1.07 to 3.31 m. The SAV biomass
at the sampling sites ranged from 0 to 17.61 kg/m2. The influence of water depth on SAV biomass
and frequency of occurrence differed by seasons and by species. The adaptation of SAV species to
increasing water depth is a key element for community dynamics, which in turn contributes to water
level regulation. A new method was proposed to identify the optimal water depth for SAV biomass
accumulation based on calculation of the cumulative probability and probability density.

Keywords: submerged aquatic vegetation; water depth; eutrophic lake; vegetation biomass;
Lake Taihu

1. Introduction

Submerged aquatic vegetation (SAV) affects the physical environment (light extinction,
temperature, hydrodynamics, substrate), chemical environment (oxygen, inorganic and organic
carbon, nutrients), and the biota (epiphytes, grazer, detritivores, fishes) of aquatic ecosystems, thereby
playing important roles in their structure and function [1]. Areas with dense SAV in shallow lakes
typically have very clear water and low concentrations of nutrients and phytoplankton [2,3]. However,
a variety of studies have described large fluctuations in SAV biomass and communities due to variable
water depths [4,5], which may have different consequences for ecosystem processes in lakes.

Many studies have addressed how water depth affects the growth and regrowth of SAV individuals
and the community [6–10]. For example, dense SAV is usually found only in water ecosystems of
<2 m depth [11]. Increasing water depth decreased the growth of Potamogeton perfoliatus, Myriophyllum
spicatum, and Chara fragilis in terms of biomass, number of shoot nodes, and shoot length [5]. In a field
experiment conducted under controlled conditions, plant length, root length, root number, and biomass
of Vallisneria natans decreased as water depth increased, and the plant was absent at a water depth of
200 cm regardless of substrate type and wave exposure conditions [12]. The situation was different in a
natural lake ecosystem, where a feedback mechanism was induced with the increase in water depth [13].
Compared with the experiments conducted in a laboratory or pond, macrophyte communities in large
lakes and reservoirs are often diverse because water exchange and plant seed drift are less restricted
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owing to considerable water flow and wave disturbance. Furthermore, the temporal and spatial scaling
is much higher in lake ecosystems than in controlled experiments, and the intra- and interspecific
competition among aquatic plants is continuous in the former. Water level fluctuations in lakes can be
driven by natural fluctuations in rainfall and runoff, as well as by water abstraction and flood control.
Species that respond quickly to changes and have high morphological and physiological plasticity
may suffer more than slow-response or non-plastic species under changing water levels, ultimately
resulting in altered SAV [8,14].

Lake Taihu is a large shallow lake with a surface area of 2338 km2 and mean depth of 1.8 m.
It is dominated by subtropical summer monsoon, with an average annual rainfall about 1177 mm
in its basin [15]. The lake is located in the southern part of the Yangtze River Delta, one of the most
densely populated regions in China. Lake Taihu is known to simultaneously harbor both macrophyte-
and phytoplankton-dominated regions [16–18]. Macrophytes are especially abundant in the eastern
part of the lake, such as Guangfu Bay, Linhu Bay, and Dongtaihu Bay [19–22], and phytoplankton is
mainly dominant in Zhushan Bay, Meiliang Bay, and the western part of the lake [23–25]. However,
the distribution of macrophytes in Lake Taihu has changed dramatically in recent years, according to in
situ investigation and remote sensing research [22,26]. Nutrient enrichment and light limitations were
reported as important factors affecting the distribution of macrophytes in Lake Taihu [27]. Changes
in water depth are another key factor critical for the variation in biomass and community structure
of macrophytes.

A previous study documented a “natural experiment” about the impact of lake drawdown and
severe drought on the SAV community in Lake Okeechobee [4]. The present study investigated a
different “natural experiment” in a large shallow eutrophic lake—a dramatic increase in water level
after a heavy rainfall in the lake basin. This event had a remarkable impact on the SAV community.
There was an ongoing extensive SAV monitoring program already in place prior to the dramatic
changes in water level, which documented seasonal and year-to-year variations in SAV. Therefore,
it was possible to (1) examine submerged plant biomass in relation to changes in water depth across
different seasons; (2) quantify the effects of water depth fluctuations on the development of the
submerged community; and (3) provide suggestions for water depth regulation that will benefit SAV
biomass in large shallow lakes.

2. Methods

2.1. Aquatic Vegetation Biomass and Water Depth Survey

A total of 39 sites that covered the whole macrophyte-dominated area were used to monitor
aquatic plants (Figure 1). Sampling sites were selected with the aim of sampling the aquatic plants
distribution area as evenly as possible. At each site, water depth was measured with a calibrated
plastic rod. Considering that Secchi depth has been reported as a limit factor for SAV species re-growth
and secession [6], Secchi depth transparency was measured with a black and white disk measuring 0.25
m in diameter. The SAV was manually extracted using weighted stainless-steel frames with an area of
0.2 m2 and a nylon mesh bag. The SAV was harvested underwater by breaking the stems just above
the sediment surface and collecting the aboveground materials in the nylon mesh bag. The bag was
rinsed in the lake water to dislodge loosely attached periphyton, and the plant material was identified
to the species level. The biomass of each species was measured as wet weight expressed in kilogram
per square meter (kg/m2).
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Figure 1. Aquatic plants sampling sites.

Aquatic vegetation was sampled in February, May, August, and November from 2013 to 2017.
The daily water level data for the period 2013 to 2017 were collected from Taihu Basin Authority of the
Ministry of Water Resources.

2.2. Calculation of Proper Water Depth for SAV

Increasing the SAV biomass is an important factor in restoration and management of eutrophic
lakes. Therefore, the water depth at which SAV biomass experiences the maximum increasing rate was
determined and the most optimal water depth for SAV biomass accumulation was proposed based on
the calculation of cumulative probability distribution (CPD) and probability density of SAV biomass
for all 780 groups. First, CPD of the SAV biomass with water depth was calculated as:

CPDi =
∑i

i=0

Biomassi
Total Biomass

,

where i is the water depth, CPDi is the CPD of the SAV biomass at water depth i (WD = i), Biomassi is
SAV biomass when WD = i according to the monitoring data, and Total Biomass is the sum of all SAV
samples (780 groups) collected during the study period. CPD was calculated for each water depth at
which monitoring data were sampled. The maximum CPD is 1 when i is the maximum water depth.

Second, the CPD and water depth data were fitted to a curve to examine the relationship between
the independent variable water depth (x) and the response variable CPD (y). The curve fitting equation
was expressed as y = f (x).

Third, the derivative of y was calculated as y′ = f ′(x), where y′ is the probability density of SAV
biomass. The maximum of y′ is the highest probability of SAV biomass at certain water depth and
indicates the proper water depth for SAV.
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2.3. Frequency of Occurrence

To evaluate the range of distribution of certain submerged species in each zone, the frequency of
occurrence of those species was determined and calculated as follows:

Frequency of occurrence=
Number of sites where a species occurred

Total number of sites
×100%

2.4. Statistical Analysis

Biomass of SAV was compared between years using one-way analysis of variance (ANOVA).
Pearson correlation analysis was used to analyze correlations between SAV biomass and water depth.
All the statistical analyses were performed with SPSS version 13.0 software (IBM Corp., Armonk, NY,
USA). Differences or correlations were considered significant at p < 0.05. Relationships of water depth
and Secchi depth transparency with species biomass were analyzed by redundancy analysis (RDA)
using the CANOCO 4.5 program [28].

3. Results

3.1. Variation in Water Levels

Daily water levels (WLs) of Lake Taihu varied from 2.75 m to 4.87 m during the study period
(Figure 2). The WL fluctuations were frequent and did not demonstrate a significant increasing trend
for yearly variation. However, the increase was dramatic in some months, as indicated by monthly
changes in WL between 2013 and 2017 (Figure 3). In 2015, the yearly rainfall in the Lake Taihu basin
was 1540.6 mm, a 30% increase compared with the previous years, ranking third since 1951 after the
rainfall in 1954 and 1999. Heavy rainfall increased the WL. For 11 days starting from 7 April 2015,
the WL was at least 0.3 m higher than that at the same period in 2014. The WL increased again from 16
June; it was at least 0.3 m higher than the levels observed at the same period in 2014, and lasted 43
days until July 28. In 2016, the yearly rainfall in the Lake Taihu basin was 1792.4 mm, reaching its
highest value since 1951. The highest ever recorded daily rainfalls were measured on 3, 7, and 15 July;
the amount of rainfall on 15 July had a 200-year recurrence interval. Consequently, the WLs in June,
July, and November of 2016 were much higher than those in other years. The WL reached 4.87 m on 8
July, 1.40 m higher than at the same period in 2013; this WL was only 0.1 m lower than the highest
recorded WL (reached in 1999) in the lake’s history. In 2017, the rainfall in the Lake Taihu basin and
the WL of the lake were back to normal levels.
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Figure 3. Monthly comparison of daily water levels of Lake Taihu from 2013 to 2017.

3.2. Variation in SAV Biomass

Based on 780 measurements conducted over the five years, the maximum and average biomass
of SAV was 17.61 kg/m2 and 2.61 ± 3.03 kg/m2, respectively. The average biomass values of SAV
in February, May, August, and November were respectively 0.91 ± 1.20 kg/m2, 2.54 ± 2.83 kg/m2,
3.35 ± 3.24 kg/m2, and 3.65 ± 3.53 kg/m2. The range of water depth varied from 0.75 m to 3.31 m,
with an average of 1.85 ± 0.41 m (Figure 4). The Pearson correlation analysis of the biomass and water
depth data for the 780 measurements showed that the biomass decreased with the increase in water
depth at a slope of 0.56, but the correlation was not significant (p = 0.079).Water 2019, 11, x FOR PEER REVIEW 6 of 12 
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Figure 4. The average biomass for each season from 2013 to 2017. Vertical bars indicate
standard deviation.

There was no significant difference in water depth and SAV biomass between 2013 and 2014,
whereas between 2014 and 2015 the difference in water depth was significant due to heavy rainfall
in 2015 (p < 0.01) but the difference in SAV biomass was not significant (Table 1). In 2016, the WL
fluctuated greatly and the extremely high WL led to significant differences in water depth between
2015 and 2016 (p < 0.01) and between 2016 and 2017 (p < 0.01). SAV biomass differed significantly
between 2015 and 2016 (p < 0.01) and between 2016 and 2017 (p = 0.015), indicating that the impact
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of water depth on SAV biomass depended on flood intensity. The average SAV biomass values in
February, May, August, and November of 2016 were reduced by 0.39 kg/m2, 1.63 kg/m2, 2.03 kg/m2,
and 1.68 kg/m2, respectively, compared with the same period in 2015 (Figure 4). In 2017, the average
SAV in the same months increased by 0.32 kg/m2, 0.91 kg/m2, 1.2 kg/m2, and 0.69 kg/m2, respectively.

Table 1. Statistical analysis of the effect of water depth on aquatic vegetation biomass.

Dependent
Variable

Source of
Variation

Between
Groups Within Groups

F Significance

Sum of
Squares

Sum of
Squares

Mean
Squares df

2013 vs. 2014
Biomass 22.323 2443.072 8.226 297 2.714 0.101

Water depth 0.008 23.389 0.077 303 0.107 0.744

2014 vs. 2015
Biomass 6.452 3792.313 12.641 300 0.51 0.476

Water depth 3.136 44.241 0.144 308 21.833 0.000

2015 vs. 2016
Biomass 158.222 3053.607 9.914 308 15.959 0.000

Water depth 5.547 73.418 0.238 309 23.345 0.000

2016 vs. 2017
Biomass 47.362 2424.001 7.87 308 6.018 0.015

Water depth 12.367 52.488 0.172 305 71.862 0.000

3.3. Variation in SAV Occurrence Frequency

The species with the highest frequency of occurrence were Potamogeton malaianus (mean± standard
deviation: 37.3% ± 11.1), Myriophyllum spicatum (25.9% ± 6.5), Potamogeton crispus (21.7 ± 12.7),
Potamogeton maackianus (16.6% ± 4.5), Vallisneria natans (16.3% ± 12.7), and Hydrilla verticillata
(9.6% ± 11.2) (Figure 5). Other species, such as Ceratophyllum demersum, Elodea nuttallii, Charales,
and Najas marina, were observed, but their frequency of occurrence was quite low and, owing to their
high randomness, are not discussed herein. The frequency of occurrence of the dominant P. malaianus
experienced the largest decline (slope =−1.15, p < 0.05), and that of V. natans also decreased significantly
(slope = −1.01, p < 0.05) (Figure 5). In comparison, the frequency of occurrence of M. spicatum increased
slightly with a slope of 0.19.Water 2019, 11, x FOR PEER REVIEW 7 of 12 
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Potamogeton maackianus; P. malaianus, Potamogeton malaianus; P. crispus, Potamogeton crispus; V. natans,
Vallisneria natans.
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4. Discussion

4.1. Effect of Water Depth on SAV Biomass

Flood pulses are a main factor responsible for sustaining high diversity of aquatic macrophytes
in a lake [7,9,29], but they may also reduce SAV or transform the shallow lake status from
vegetation-dominated to phytoplankton-dominated [26,30,31]. In the present study, SAV biomass in
2017 did not reach the levels observed in 2015, although the average water level in 2017 (3.28 m) was
lower than that in 2015 (3.41 m). These results indicated that SAV, after an intense flood, cannot recover
immediately in the following year.

In large shallow lakes, total SAV biomass is negatively correlated with water depth and positively
correlated with Secchi depth transparency [11,30,32]. The effect of water depth on SAV biomass varied
with the growing seasons. Most of the SAV seeds germinate when temperature exceeds 10 ◦C or
more [33–35]. In this stage, light is an important but not limiting factor for seed germination [36].
Correlation analysis revealed a negative, but not significant, relationship (slope = 0.58) between water
depth and SAV biomass in February (Figure 6). In the growing season, SAV species such as P. malaianus,
M. spicatum, P. maackianus, and H. verticillata, while still short in height, tend to develop a mat or
canopy, whereas V. natans produces a basal rosette of leaves near the sediment [6]. Therefore, light
penetration is the strongest limiting factor in the growing season, because the leaf or canopy of SAV
needs to reach the light compensation point for photosynthesis [37–39]. A high submerged plant
coverage is observed when the water level is low throughout the year or during growing season,
whereas high water level in the growing season is fatal for SAV survival or expansion [40]. Water
depth was significantly negatively correlated with SAV biomass in May (p < 0.01). Increased water
depth caused a rapid biomass decline, with a slope of 4.45. Although most individuals of SAV species
reached their maximum height in August, there was a significant negative correlation between water
depth and SAV biomass in the same month (p < 0.01, slope = 1.71). In November, the decrease slope of
SAV biomass was 3.56 (p < 0.01), indicating a significant influence of water depth on reproduction of
SAV individuals, which in turn will affect the recovery of SAV the following growing season.

4.2. Effect of Water Depth on Different SAV Species

Plastic responses of aquatic plants could reduce the stress caused by habitat variations, such
as nutrient level, hydrodynamic forces, and water depth [41]. Some species adapt to the increased
water depth by increasing plant height, others ensure adequate nutrient supply by increasing the
underground biomass, and still others decline as water depth increases [8,42]. Different adaption
strategies in SAV species to water depth may be a key element for community dynamics—fluctuation in
water depth influences the dominance of vegetation communities, while promoting the establishment
of tolerant species [5,10]. RDA statistical results showed that biomass of H. verticillata and V. natans
was negatively correlated with water depth in February, indicating that they are more sensitive to
increasing water depth (Figure 7). Potamogeton maackianus was not sensitive to the changes in water
level. In May, the species sensitive to water depth included V. natans, P. crispus, and M. spicatum;
H. verticillata was less affected by water depth. All the SAV species were negatively correlated with
changes in water depth in August, indicating that the increase in water depth has a significant negative
affect on most dominant species during the biomass accumulation period. This effect lasted until
November, with the exception of P. malaianus and H. verticillata, in which the negative impact of water
depth was diminished slightly relative to that in August.
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As light is an essential factor for the growth of submerged macrophytes, the earlier the plants
attain the light, the more likely they are to avoid inadequate light conditions. Earlier seed germination
promotes their survival under increasing water levels that start in April or early May. Potamogeton
malaianus is the dominant species in Lake Taihu, but its germination rate is lower and commences later
than in M. spicatum [34,36], which may explain the different response of the two species to increasing
water depth. Hydrilla verticillata is characterized by rapid growth and a large number of tillers, qualities
that render this species more competitive in a changing environment [6,7,43]. However, mechanical
resistance of H. verticillata is weak, rendering this species prone to physical damage induced by strong
wind-induced waves present in large shallow lakes [14,44]. In general, our study found that the
biomass, distribution area, and frequncey of occurrence of H. verticillata showed no competitiveness in
SAV. Potamogeton maackianus in the areas where it was dominant formed a dense lawn with the canopy
twined together, covering the bottom of the lake. This species occupied the horizontal space, but did
not expand in the vertical ecological space—its canopy was approximately 1.2 m from the lake bottom
in August, although the plant length was almost equal to the water depth. Within the P. maackianus
lawn, the Secchi depth was particularly high, as the canopy and the black and white disk in the lake
bottom could be clearly observed by the naked eye the whole year. The area with greater P. maackianus
biomass is generally more transparent, indicating a closer relationship between its biomass and Secchi
depth. Furthermore, the increase in water depth does not directly limit the germination and growth of
P. maackianus due to higher Secchi depth. Hence, this species is the least sensitive to changes in water
depth among the studied SAV species.

4.3. A New Method to Determine Proper Water Depth for SAV

Water depth is an important factor affecting SAV individuals and communities, and its control
is therefore considered a suitable method for SAV recovery or biomass management [40,42,45].
The water depth requirements of macrophytes were commonly proposed based on laboratory controlled
experiments or field investigations that considered the historical conditions of the ecosystem and
the life cycle stages [46–49]. The CPD curve of SAV biomass with water depth was expressed by
y = −0.3733x6 + 4.5633x5

− 22.168x4 + 54.124x3
− 69.124x2 + 43.831x − 10.85 (r2 = 0.999) (Figure 8).

According to the curve, at a water depth lower than 1.4 m, the probability density increased slowly
with increasing water depth. At a water depth of 1.4–2.3 m, the probability density of SAV biomass
increased rapidly with the increase in water depth, indicating that aquatic plants tend to inhabit
this water depth range. We further derived the fitted cumulative probability distribution function
and obtained the probability density of SAV biomass function, which showed an increasing trend of
cumulative probability with increasing water depth (Figure 8). The maximum probability density
appears at a water depth of 1.69 m, indicating the highest probability of biomass occurrence. Although
this method is not sufficiently systematic to develop a water level management strategy, it provides a
means to determine the optimal parameter under certain conditions.
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5. Conclusions

SAV and water depth were observed for 5 years in a large shallow lake before and after an extreme
rainfall event. Our findings indicate that increasing water depth results in a significant decrease in SAV
biomass, especially in the growing season. The different adaption of SAV species to water depth may be
a key element for community dynamics. Unlike the dominant species P. malaianus, germination of M.
spicatum occurs earlier and faster; both properties facilitated their survival under increasing water level
conditions that start in April or early May. Although previous research showed that H. verticillata is
more competitive in a varied environment, its biomass, distribution area, and frequency of occurrence
in the present study failed to confirm its competitiveness under conditions of increasing water depth.
P. maackianus, which tends to form a dense lawn covering the bottom of the lake and with the canopy
twined together, was not affected by increasing water depth due to the high transparency of the water
throughout entire year. We conclude that water depth of 1.69 m is the most optimal for SAV biomass
accumulation based on the calculation of cumulative probability and probability density.
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