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Abstract: This study investigates the future long-term variation of the runoff coefficient during
dry and wet seasons in five major basins in South Korea. The variation is estimated from the
Soil and Water Assessment Tool (SWAT) model outputs based on an ensemble of 13 different
Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs) in
representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios. The estimates show a temporal
non-considerable increase rate of the runoff coefficient during the 21st century in both RCPs, in which
the trend and uncertainty of the runoff coefficient in the dry season is projected as higher than
that in the wet season. A sharp contrast between the trends of the two components of the runoff

coefficient is found during the dry and wet seasons. Over the five major basins, a higher increase rate
of runoff coefficient is projected in the northeastern part of the Han River basin and most of the area
of the Nakdong River basin. The spatial variation in the runoff coefficient change also represents a
relationship with the change in the percentage of each land cover/land use type over 109 subbasins,
where the correlation of the wet-season runoff coefficient is calculated as higher than that of the dry
season. This relationship is expected to vary with changes in temperature and precipitation during
both seasons in three future periods.

Keywords: SWAT model; climate change; runoff coefficient; surface runoff; groundwater flow; MME
analysis; water scarcity

1. Introduction

Climate change has been an increasingly popular topic in both scientific and public discourse in
recent years. One of the most obvious manifestations of climate change is its influence on water balance
and hydrological processes across the globe. For example, in the U.S., Chattopadhyay et al. [1,2] noted
the high sensibility of hydrological response to climate variations (i.e., changes in precipitation
and temperature) in the Kentucky River basin and Haw River watershed. Kumar et al. [3]
reported relationships of over-proportional runoff-rainfall and under-proportional percolation-rainfall,
indicating the future enhancement of floods in the Kharun catchment in India. In tropical catchments,
such as Samin on Java, Indonesia, Marhaento et al. [4] found that land use change and climate
change could individually cause changes in water balance components, but the changes are more
pronounced in the case of combined drivers. Various studies claimed that the impact of climate change
on drainage/river basins might contribute to runoff reduction in most dry tropical regions [5] while
increasing runoff volume in the high latitudes and humid tropics [6,7]. Overall, climate change is
considered to be the dominant factor influencing runoff over a long-term span, whereas the variations
in hydrological processes in a short-term span are mainly caused by human interventions [8,9].
These impacts lead to difficulty and complication of solutions adapting to climate change and
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water-related disasters, especially flooding, as it has been known as the most common and damaging
hazards [10,11].

The runoff coefficient, which is influenced by not only climatic effects but also human impacts, is a
fundamental indicator used in flood control, water balance, and water resources management [12,13].
This factor is contributed by two components: the surface runoff coefficient and the groundwater runoff

coefficient. The surface runoff coefficient, which directly represents the ratio between the amount
of surface runoff and the amount of precipitation received in a rainfall event, is a crucial parameter
for flood peak discharge estimates in ungauged drainage basins [14]. The remaining component,
the groundwater runoff coefficient, which can be considered to be the main contribution of the runoff

coefficient, is more related to many long-term processes influenced by hydrogeological conditions [15].
This component is normally applied in determining the joint effect of the regional environmental and
hydro-climatologic factors [16]. However, due to the importance of the runoff coefficient in construction
plans to prevent flooding during periods of heavy rain, this coefficient is frequently considered an
event-based index, focusing only on the surface runoff coefficient in most previous studies [17,18].

In recent years, a few studies have initially analyzed the change in the runoff coefficient along
with studying the variability in precipitation and streamflow in some typical areas in long-term
periods, but these analyses are primarily based on historical in-situ records [19–21]. In addition,
the runoff coefficient normally reflects the characteristics of local topography, soil, land cover/land use,
and aquifers [22]. In the case that such factors do not change, the runoff coefficient is expected to be
more stable in time and space than other climatic or hydrological factors [14,18]. Based on such studies,
a number of constructions regarding flood prevention or water resources management have been
under development for long-term use. However, in the context of climate change, these constructions
potentially become inefficient or costly solutions due to a non-thorough understanding of the runoff

coefficient as a fundamental design parameter.
Meanwhile, higher temperatures are reported to increase rates of hydrologic system losses

to evapotranspiration, resulting in higher annual precipitation and more frequent extreme rainfall
events [23,24]. Along with the increase in the amount, the spatial and temporal distribution of
precipitation is also expected to be more complicated [25]. In South Korea, the substantial difference in
precipitation caused by the impact of the East Asian monsoon separates the climate into two distinct
seasons: dry season (October to March) and wet season (June to September) [26,27]. This seasonal
difference leads to complex variation in the runoff coefficient and its components between these two
seasons, not only in the inner-annual but also in the intra-annual climate.

To overcome these challenges, numerous studies have focused on variations in water balance
components under various climate change scenarios in South Korea. Jung et al. [28] found a difference
in the trend of future precipitation during the dry and wet seasons, in which precipitation in the
wet season increases with a higher rate than that in the dry season. Bae et al. [29,30] applied the
Precipitation Runoff Modeling System (PRMS) model to analyze spatial and temporal variation in runoff

and indicated that the trend of runoff is less pronounced than that of precipitation. Multiple recent
studies have examined hydrological responses to the individual and combined influences of climate
change and human interference. Kim et al. [31] assessed the impacts of climate change and weirs on
future regional-scale runoff in the Geum River Basin and reported that climate change would lead
to an increase in the future runoff ratio, while weirs contribute to an increase in minimum discharge
and a decrease in maximum discharge. Lee et al. [32] indicated a regional difference in the dominant
influence between climate change and human activities in the Soyang Dam upper basin and the Seom
River basin.

In general, the runoff coefficient and its components have only been analyzed along with studying
the behavior of precipitation and runoff in such studies using historical data. Recently, the use of the
general circulation models (GCMs) output data combined with hydrological models has become one
of the most effective methods to project the variation of climatic and hydrological variables. Thus,
the objective of this study is to apply this method to investigate the long-term variation in the runoff
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coefficient and its components in the dry and wet seasons and provide insights into the change in
this coefficient in the future, which is vital for flood prevention design and construction as well as
long-term water resources management to adapt to climate change in South Korea.

2. Study Area

South Korea is located at the eastern end of the Asian continent and occupies the lower half of the
Korean peninsula (99,025 km2). Steep mountain ranges are distributed along the eastern coastline,
while wide alluvial plains spread out to the west and south. Thus, the rivers that flow to the eastern
coast are short and steep, whereas long rivers with gentle slopes discharge to the southern or western
coast. South Korea is divided into five major basins: Han, Nakdong, Geum, Seomjin, and the Yeongsan
River basin (Figure 1). The Han River basin is the largest basin, and the Nakdong River is recognized
as the longest river, with a total length of approximately 525 km. The area of South Korea is mostly
covered by forest (66%) and paddy field (18%) (Table 1). More than 90% of the agricultural land is
located on slopes (>2◦), and 40% of that land is located on slopes of 7◦–15◦.
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Figure 1. Characteristics of the study area: (a) topography of the catchment and locations of 5 major
basins, 6 dam sites, and 60 Automated Surface Observing System (ASOS) stations; (b) land cover/land
use map. (Source: digital elevation map (DEM) and land cover/land use map obtained from WAMIS;
location of dams and ASOS stations obtained from KMA).

Table 1. Information on land cover/land use in the study catchment.

Basin Total Area (km2) Water (%) Urban (%) Forest (%) Paddy (%) Orchard (%) Others (%)

Han 33,808 1.22 4.13 73.44 12.84 3.68 4.68
Nakdong 31,785 0.99 2.15 71.81 15.33 9.21 0.50

Geum 17,537 2.20 5.04 52.05 25.31 9.18 6.22
Seomjin 8311 1.20 3.46 69.97 17.43 4.75 3.18

Yeongsan 7585 3.42 6.60 40.10 38.57 4.10 7.21
Total 99,025 1.49 3.79 66.28 18.21 6.55 3.68
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The aquifer geology of South Korea mainly consists of crystalline rocks (granite and gneiss) and
some sedimentary rocks (limestone and sandstone), which are largely formed in the Precambrian and
Paleozoic eras [33]. The Precambrian metamorphic sedimentary rocks are predominantly distributed in
the northern and central parts of South Korea. The Paleozoic layer is distributed in the eastern part of
the Geum River basin. Relatively, large Mesozoic strata occur in the western part, in the Nakdong River
basin. Quaternary alluvial deposition is narrowly distributed around large rivers or major streams.

The climate system of South Korea is driven by the effects of continental air masses during the
winter and warm, humid air masses from the ocean in the summer. The annual mean temperature
is 14 ◦C along the southern coast and then drops to 11 ◦C and 8 ◦C in the mid and northern zones,
respectively. The annual rainfall distribution is determined by the dry wind from the Siberian High in the
winter and the East Asia monsoon in the summer. The annual rainfall is 1274 mm, with approximately
66% received in the wet season from June to September, 16% in the transition period from April to May,
and the remaining 18% in the six months of the dry season from October to March [34].

3. Materials and Methods

3.1. Hydrologic Simulation

The Soil and Water Assessment Tool (SWAT) model was developed firstly in the early 1990s by
the United States Department of Agriculture, Agricultural Research Service (USDA-ARS). SWAT is a
continuous-time, semi-distributed, and process-based model operating on a daily time step at the basin
scale, and is well-known for its wide-application capabilities in simulating hydrological processes in
large catchments using the subbasin concept under different conditions and scenarios in a long-term
period [35,36]. Each catchment is divided into hydrologic response units (HRUs), integrating unique
land cover/land use, soil type, and slope [37]. The HRUs are then used as the basic elements to simulate
hydrological components, including evapotranspiration, surface runoff, lateral runoff, groundwater
runoff, and soil water volume [35]. In the SWAT model, the simulation of the hydrological cycle is
based on the water balance equation at the daily time step (Equation (1)):

SWt = SW0 +
t∑

i=1

(Pi −Qi − Ei −Wi −Ri) (1)

where SWt (mm) is the final soil water volume, SW0 (mm) is the initial soil water volume on day i, t
(days) is the time, Pi (mm) is the precipitation amount on day i, Qi (mm) is the amount of surface runoff

on day i, Ei (mm) is the evapotranspiration amount on day i, Wi (mm) is the amount of water entering
the unsaturated zone from the soil profile on day i, and Ri (mm) is the amount of return flow on day i.

For groundwater storage, the SWAT model has two main reserves, which are the shallow aquifer
and the deep aquifer [38]. Water that enters the shallow aquifer from the top soil layers can either
contribute to baseflow or percolate to the deep aquifer. Water stored in the shallow aquifer can also
move upward to the overlying unsaturated zone by either evaporation or plant root uptake. Water in
the shallow and deep aquifers can also be removed via groundwater pumping used for irrigation.
The equation used to calculate the storage of groundwater in the shallow aquifer during each time step
is presented in Equation (2):

aqsh,i = aqsh,i−1 + wrchrg,sh −Qgw −wrevap −wpump,sh (2)

where aqsh,i is the amount of water stored in the shallow aquifer on day i (mm), aqsh,i−1 is the amount
of water stored in the shallow aquifer on day i−1 (mm), wrchrg,sh is the amount of recharge entering the
shallow aquifer on day i (mm), Qgw is the amount of baseflow entering the main channel on day i (mm),
wrevap is the amount of revap moving into the soil zone on day i (mm), and wpump,sh is the amount of
water removed from the shallow aquifer for consumption on day i (mm).
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The rapid subsurface flow, which is significant in areas with soils having high hydraulic
conductivities in the surface layers and an impermeable or semipermeable layer at a shallow depth,
is taken into account based on a kinematic storage model (Equation (3)):

Qsub = 0.024 ×
(2× SWly,excess ×Ksat × sin(αhill)

∅d × Lhill

)
(3)

where Qsub (mm) is the water discharged from the hillslope outlet, SWly,excess (mm) is the drainable
volume of water stored in the saturated zone of the hillslope per unit area, Ksat is the saturated hydraulic
conductivity (mm/h), αhill is the slope of the hillslope segment, ∅d is the drainable porosity of the soil
(mm/mm), and Lhill is the hillslope length (m).

Hydrologic simulation in SWAT involves topographic, soil, land use, and meteorological data.
GIS data sets for soil type, vegetation cover, land use, and orography (Digital Elevation Model (DEM))
were obtained from the Water Resources Management Information System (WAMIS) for the current
status of the study catchment and used for watershed delineation and HRU analysis. Based on the
configuration of the SWAT model, the catchment was divided into 109 subbasins, with a total number
of HRUs of 1551. Daily precipitation and air temperature for 60 Automated Surface Observing System
(ASOS) stations (Figure 1) within the study catchment were obtained from the Korea Meteorological
Administration (KMA) to compute mean areal precipitation (MAP) and mean areal temperature (MAT)
for each subbasin using the Thiessen polygon method.

The daily surface runoff, groundwater runoff, and total runoff (supposed as the sum of the surface
runoff and the groundwater runoff) were then accumulated for each dry and wet seasons to calculate
the surface runoff coefficient, groundwater runoff coefficient, and total runoff coefficient by dividing
by the corresponding accumulated precipitation.

3.2. SWAT Model Calibration, Validation, and Evaluation

In the SWAT model, numerous parameters are calibrated and validated for matching simulated
and observed flows at daily time steps. The model performance was evaluated based on the coefficient
of determination (R2), Nash–Sutcliffe model efficiency coefficient (NSE) [39], root mean square
error–observations standard deviation ratio (RSR) [40], and percentage bias (PBIAS) [41]. These indicators
were calculated using Equation (4), Equation (5), Equation (6), and Equation (7), respectively:

R2 =

 n
∑n

i=1 SiOi −
∑n

i=1 Si
∑n

i=1 Oi√
n(

∑n
i=1 S2

i ) − (
∑n

i=1 Si)
2
√

n(
∑n

i=1 O2
i ) − (

∑n
i=1 Oi)

2


2

, (4)

NSE = 1−

∑n
i=1(Oi − Si)

2∑n
i=1

(
Oi −O

)2 , (5)

RSR =

√∑n
i=1(Si −Oi)

2√∑n
i=1

(
Oi −O

)2
, (6)

PBIAS =

∑n
i=1(Oi − Si)∑n

i=1 Oi
× 100 , (7)

where Si and Oi are the simulated and observed discharge values, respectively, Ō is the average
observed discharge value, and n is the number of discharge values. The R2 provides the measure
of how well the model can simulate the output; the NSE shows the goodness of fit of observed and
simulated data; the lower RSR, the better the model simulation performance; the PBIAS analyses the
trend of the observed and simulated data. The model performance is considered to be satisfactory if
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R2 > 0.50, NSE > 0.50, RSR < 0.70, and −25% < PBIAS < +25%. [42]. These criteria were applied to
evaluate the results of the calibration and validation of the SWAT model in this study.

The SWAT model was manually calibrated and validated using observed inflow discharge provided
by the WAMIS at 6 dam sites in 5 major basins of South Korea, including Geosan, Andong, Imha,
Hapcheon, Yongdam, and Seomjin dams (Figure 1). Although there are many flow gauging stations
in the main rivers, they are significantly influenced by upstream dam operation, so those stations
were excluded from this study. Natural streamflow data, which are uncontrolled by anthropogenic
structures, are required for long-term runoff analysis, are only available for selective dam sites. Hence,
these data are appropriate for use in hydrologic model calibration. In addition, these dams are mostly
located in the main stream of 5 major rivers; therefore, they are able to reflect the natural characteristics
of streamflow in such basins.

However, there were several changes in construction planning leading to the variation in river
streamflow, so it was necessary to validate the model in 2 separate periods based on the number of
operational years of each dam (Table 2). After validating the SWAT model for 6 dam sites, the optimal
parameter set was selected for the ungauged watersheds based on the closely related river discharge
regimes using a regionalization method. This method employs a multiple regression equation, based on
the configuration of basin characteristics and river discharges at a drainage basin outlet, to describe the
relationship between basin geographical data and observed discharge data. The model parameters of
ungauged basins were regionalized from this relationship once the correlation between observed river
flows and basin characteristics of the gauged basin was calculated [30].

Table 2. Information on dams and calibration and validation periods.

Dam Site
Location

Calibration Period Validation Period 1 Validation Period 2
Lon (◦E) Lat (◦N)

Guesan 127.84 36.76 1996–2005 1982–1995 2006–2016
Andong 128.77 36.58 1996–2005 1977–1995 2006–2016

Imha 128.88 36.54 1999–2005 1993–1998 2006–2016
Hapcheon 128.03 35.53 1999–2005 1989–1998 2006–2016
Yongdam 127.53 35.95 2003–2005 2001–2002 2006–2016
Seomjin 127.11 35.54 1996–2005 1975–1995 2006–2016

3.3. GCM Downscaled Data Processing

3.3.1. GCM Multi-Model Data

Including other model(s) in the ensemble system is one of the most common approaches to taking
uncertainty into account. The approach, in which a multitude of model simulations are grouped and
compared together, is known as a multi-model ensemble (MME) analysis. This method is widely used
to provide useful insights into uncertainty, where estimates of model projections are represented on
the range of uncertainty. An additional advantage of MME is that each member is subjected to careful
testing to obtain a credible control simulation.

To apply the MME approach in this study, 20 Coupled Model Intercomparison Project Phase 5
(CMIP5) GCM datasets at a daily scale for two representative concentration pathways (RCPs) (RCP 4.5
and RCP 8.5) representing medium and high greenhouse gas emissions, respectively, were obtained for
the periods 1976–2005 (the baseline period), 2010–2039 (2030s—the early century period), 2040–2069
(2060s—the mid-century period), and 2070–2099 (2090s—the late century period). After evaluating the
model performance, the downscaled and bias-corrected outputs from such models were processed
individually to be input into the SWAT model to simulate hydrological processes to estimate the
variation in the runoff coefficient in the future. Finally, the ensemble average of the estimated results
from all the individual runs was considered to be superior to that of any single estimation.
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3.3.2. Statistical Downscaling Method

The essential prerequisite to applying statistical downscaling techniques is a reliable long-term
observed dataset that represents the historical range of climate events in a domain [43]. In South Korea,
therefore, only 60 ASOS stations (Figure 1) providing observational meteorological variables during
the long-term period from 1976 to 2005 were used to apply the statistical downscaling method.

The GCM gridded data (daily precipitation, maximum temperature, and minimum temperature)
were statistically downscaled using the SDQDM method (which is known as the bias-correction/spatial
disaggregation (BCSD) combined with quantile delta mapping (QDM)) for 60 ASOS stations in the
historical period (30 years from 1976 to 2005) and two RCP scenarios (RCP 4.5 and RCP 8.5) from 2006
to 2099. The BCSD method comprises of two main procedures: (1) bias correction (BC) and (2) spatial
disaggregation (SD). Bias-correction methods include the adjustment of mean, variance, and higher
moments of a distribution by parametric [44] and non-parametric techniques [45]. Such studies have
demonstrated that a non-parametric bias-correction technique, so-called quantile mapping (QM),
provides higher skill systematically in reducing biases in climate models. The QDM algorithm is
designed to bias-correct climate projections using QM while simultaneously preserving GCM-projected
long-term changes in quantiles employing the CDF of observed data [46].

QDM is comprised of two steps in sequence: (1) calculating absolute or relative changes in
quantiles between reference and future periods (Equation (8)), and (2) obtaining bias-corrected future
projections by multiplying (adding for temperature) the relative changes to the historical bias-corrected
value (Equation (9)).

∆m(t) =


Pm, f (t)

F−1
m, f

[
F(t)m, f

{
Pm, f (t)

}] f or precipitation

Tm, f (t) − F−1
m, f

[
F(t)

m, f

{
Tm, f (t)

}]
f or temperature

(8)

V̂m, f (t) =

 F−1
o,r

[
Fm,r

{
Pm,p(t)

}]
× ∆m(t) f or precipitation

F−1
o,r

[
Fm,r

{
Tm,p(t)

}]
+ ∆m(t) f or temperature

(9)

3.3.3. GCMs Performance Evaluation

The accuracy of each GCM model was statistically evaluated by comparing meteorological data
generated from the GCM with observations in the baseline period. A total of 24 extreme climate indices
presenting temperature and precipitation were used as evaluation factors based on the Expert Team on
Climate Change Detection and Indices (ETCCDI) [43].

The Taylor diagram technique was used to evaluate the GCM performance. This diagram
graphically summarizes how well the observational data (or reference value) matches the spatial
patterns of the simulated data [47]. Observations and GCM data of 24 meteorological factors were
visualized in the Taylor diagram. The centered root mean square error (CRMSE) and pattern correlation
coefficient (PCC) from the diagram were applied as a statistical evaluation index for performance
evaluation using Equation (10), Equation (11), Equation (12), and Equation (13) as follows:

E′ =

√
1
n

∑n

i=1

[(
fi − f

)
− (ri − r)

]2
, (10)

R =

1
n
∑n

i=1

[(
fi − f

)
− (ri − r)

]
σ fσr

, (11)

E′MME =
1
M

∑M

i=1
E′i , (12)

RMME =
1
M

∑M

i=1
Ri, (13)
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where, E’, E′MME, R, and RMME are the CRMSE and PCC of each GCM, and total model average,

respectively, fi is the GCM value, ri is the observed value, f is the GCM mean areal value, r is the
mean areal value of the observed data, σf is the standard deviation of the GCM data, σr is the standard
deviation of the observed data, n is the total number of data, and M is the total number of GCMs.

The score of each GCM was then calculated based on a comparison between the Taylor diagram
statistics and MME results for each ETCCDI factor. Ranking was determined in descending order of
the total score of 24 factors. The appropriate GCMs were then selected based on the ranking, excluding
GCMs where the score of the precipitation variable is not 1. Among multiple CMIP5 datasets, 13 GCMs
were selected after evaluation, as listed in Table 3. The downscaled data of these models at 60 ASOS
stations were then used to generate input data (MAP and MAT) for the SWAT model using the Thiessen
polygon method.

Table 3. The CMIP5 general circulation model (GCM) downscaled data used in this study.

GCM Resolution (◦)
(Lon × Lat) Institution References

CMCC-CM 0.750 × 0.748 Centro Euro-Mediterraneo sui Cambiamenti Climatici Scoccimarro et al. [48]
CMCC-CMS 1.875 × 1.865 Centro Euro-Mediterraneo sui Cambiamenti Climatici Bellucci et al. [49]
CESM1-BGC 1.250 × 0.942 National Center for Atmospheric Research Lindsay et al. [50]
CNRM-CM5 1.406 × 1.401 Centre National de Recherches Meteorologiques Voldoire et al. [51]

CanESM2 2.813 × 2.791 Canadian Centre for Climate Modelling and Analysis Chylek et al. [52]
GFDL-ESM2G 2.500 × 2.023 Geophysical Fluid Dynamics Laboratory Dunne et al. [53]
HadGEM2-AO 1.875 × 1.250 Met Office Hadley Centre Collins et al. [54]
HadGEM2-ES 1.875 × 1.250 Met Office Hadley Centre Collins et al. [54]

INM-CM4 2.000 × 1.500 Institute for Numerical Mathematics Volodin et al. [55]
IPSL-CM5A-LR 3.750 × 1.895 Institut Pierre-Simon Laplace Dufresne et al. [56]
IPSL-CM5A-MR 2.500 × 1.268 Institut Pierre-Simon Laplace Dufresne et al. [56]

MRI-CGCM3 1.125 × 1.122 Meteorological Research Institute Yukimoto et al. [57]
NorESM1-M 2.500 × 1.895 Norwegian Climate Centre Bentsen et al. [58]

3.4. Trend Analysis

The trends in the runoff coefficient were analyzed using the Mann–Kendall trend test. The test
is a non-parametric test developed for detecting trends in a time series of data. The test is widely
used to analyze the trend of numerous meteorological and hydrological variables such as precipitation
data [28] and streamflow data [59] at different scales. The Mann–Kendall test is not only simple and
effective but also advantageous to deal with missing and below-detection-limit values.

Mann-Kendall’s statistic S is computed using Equation (14) and Equation (15):

S =
∑n−1

i=1

∑n

k=i+1
sgn(xk − xi), (14)

var(S) =
n(n− 1)(2n + 5) −

∑m
i=1 ei(ei − 1)(2ei + 5)

18
, (15)

where, xk and xi are sequential data values; n is the length of the dataset; sgn(θ) is a sign function
extracting the sign of θ, sgn(θ) = 1 if θ > 0, sgn (θ) = 0 if θ = 0, sgn(θ) = −1 if θ < 0; m is the number of
tied groups, and ei is the size of the i-th tied group.

S is expected to have a normal distribution with the null hypothesis H that there is no statistically
significant trend carried out by the time series, and the normal value of the test Z is estimated using
Equation (16):

Z =
S− sgn(S)√

var(S)
(16)

The null hypothesis H is accepted if –Z1−α/2 ≤ Z ≤ +Z1−α/2, in which, ±Z1−α/2 are critical values
and α is the significance level for the test.
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In this study, the Mann–Kendall statistics and 10% and 5% significance level (with α ≤ 0.10 and
α ≤ 0.05, respectively) were estimated for the total, surface, and groundwater runoff coefficients during
the period 2006 to 2099. Noticeably, while the trends in precipitation and runoff can be linked to the
change in climate, the trends in the runoff coefficients cannot be explained completely by the change
in climate variables and, thus, a combination of climate impacts and human influences need to be
considered [20].

4. Results

4.1. Evaluation of Hydrological Model Performance

The sensibility of the parameters was defined as the geometric mean of the flow rate change
with respect to the increase or decrease in such parameters. A sensitivity analysis is taken for model
parameters to identify the impact of each parameter on the performance of streamflow simulation.
The optimal parameters and their sensibility are displayed in Table 4. The fitted value represents the
ranges of the calibrated parameters among all the subbasins. Figure 2 shows a time series of the daily
streamflow simulations in validation period 2 with respect to the Andong dam site on a normal scale
and logarithmic scale. The results of the SWAT model performance evaluated for one calibration and
two validation periods of all the dam sites are shown in Table 5.

Table 4. Sensibility of Soil and Water Assessment Tool (SWAT) model parameters.

Parameter Definition Range Fitted Value Sensibility

CN2 Runoff curve number in condition AMC-II 35–98 36–84 High

ESCO Soil evaporation compensation coefficient
of HRU 0.00–1.00 0.85–1.00 High

SOL_AWC Effective moisture content of soils 0.00–1.00 0.00–0.27 High

GWQMN Critical water content of the aquifer for basal
outflow (mmH2O) 0–5000 0 High

SOL_K Saturated hydraulic conductivity (mm/h) 0–2000 0.9–190 Medium
GW_REVAP Revap factor of aquifers 0.02–0.20 0.02 Medium

REVAPMN Critical water content of aquifers averaged for
revap and deep aquifers (mmH2O) 0–500 1 Medium

ALPHA_BF Groundwater (base-flow) suppression constant 0.00–1.00 0.04–0.05 Medium
GW_DELAY Groundwater delay time (days) 0–500 31–90 Medium
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Figure 2. Comparison of streamflow simulation and observation data in the Andong dam site on a
normal scale (left) and logarithmic scale (right). The green column shows the observed rainfall over
the dam site, the blue dotted line shows the observed inflow discharge at the dam, and the red line
shows the simulated discharge using the SWAT model.
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Table 5. Calibration and validation statistics of the SWAT model for 6 dam sites.

Dam Site
Calibration Results Validation Results 1 Validation Results 2

R2 NSE RSR PBIAS R2 NSE RSR PBIAS R2 NSE RSR PBIAS

Guesan 0.65 0.64 0.60 −0.40 0.69 0.68 0.57 4.00 0.58 0.46 0.74 −11.70
Andong 0.84 0.81 0.43 1.10 0.79 0.79 0.46 4.10 0.74 0.72 0.53 −21.00

Imha 0.76 0.76 0.50 1.40 0.71 0.69 0.56 −6.60 0.64 0.65 0.63 −25.50
Hapcheon 0.85 0.83 0.41 2.20 0.83 0.80 0.44 −5.50 0.87 0.85 0.38 −21.50
Yongdam 0.81 0.77 0.48 −0.10 0.79 0.80 0.45 8.80 0.77 0.68 0.57 −29.10
Seomjin 0.53 0.52 0.69 −10.00 0.39 0.30 0.84 −21.40 0.74 0.70 0.55 −12.10

Overall, the evaluation shows that the performance of the model is relatively satisfactory for
simulating future streamflow. The evaluation demonstrates that the SWAT model is capable of describing
variations in other water balance components, including soil moisture volume and evapotranspiration,
over the watershed. However, as shown in Figure 2, the behavior of the simulations has a good fit with
observations in the case of high flow, while the model has difficulty capturing the characteristics of low
flow in the Andong dam site. The simulation results are similar for the other dam sites.

4.2. Future Climate Predicted from the Downscale GCM Data

Projections from the GCMs show a clear warming trend in temperature in all of the months, with a
significant difference between RCP 4.5 and RCP 8.5, while the change in precipitation is considerably
different between the months during the dry season and during the wet season (Figure 3). The changes
in monthly variables in RCP 4.5 show higher uncertainty than those in RCP 8.5, and the changes in
monthly variables during the dry season show higher uncertainty than those during the wet season.
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Figure 3. Changes of monthly temperature (◦C) and precipitation (%) averaged from the results
of 109 subbasins in 3 future periods (2010–2039, 2040–2069, and 2070–2099) referred to the baseline
(1976–2005) in representative concentration pathway (RCP) 4.5 (upper half) and RCP 8.5 (lower half).
The columns show the range of the change for 13 GCMs, and the black plus signs show the multi-model
ensemble (MME) mean of the estimations.

In the late century, the increases in the average areal of temperature are estimated to be up to
+2.341 ◦C and +4.302 ◦C in the dry season and 2.360 ◦C and 4.418 ◦C in the wet season for RCP 4.5 and
RCP 8.5, respectively. During the dry season, the highest increase is found in the Han River basin,
and the lowest change rate is found in the Yeongsan River basin. The regional difference in temperature
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in the wet season is unnoticeable, although the Nakdong River Basin mostly shows a lower increasing
rate. The change in temperature is not significantly different between the five major basins in both
the dry and wet seasons, and variation in temperature change in each basin during the wet season is
expected to be higher than that during the dry season (Figure 4).
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Figure 4. Spatial distribution of changes in temperature (◦C) and precipitation (%) in 3 future periods
(2010–2039, 2040–2069, and 2070–2099) referred to the baseline (1976–2005) in South Korea during the
dry and wet seasons in RCP 8.5. The values show the MME means of downscaled results averaged for
109 subbasins.



Water 2019, 11, 2411 12 of 26

Precipitation in the dry season is found to always increase in all future periods with no considerable
difference in the regional change in both RCPs based on projected results (Figure 4). During the dry
season, the projected average areal increases in precipitation in the late century are +8.557% in RCP 4.5
and +8.194% in RCP 8.5, while these values are significantly higher during the wet season, with +9.043%
and 21.761% estimated for RCP 4.5 and RCP 8.5, respectively.

4.3. Temporal Trend and Uncertainty of Future Runoff Coefficient

The overall results of the trend analysis for both dry and wet seasons in South Korean basins
in two RCPs are displayed in Figure 5 and Table 6. As shown in Figure 5, the runoff coefficients in
the dry season have not only represented the higher increasing trend compared to that in the wet
season but also expressed the higher uncertainty of simulations. Although the trends of the runoff

coefficient in the dry season and in the wet season have been found to be not significantly different
based on RCP 4.5, with the increasing rate expected to be approximately 0.0002/year in both seasons,
in RCP 8.5, these increasing rates have become higher, and the difference between the trends of the
runoff coefficient in the dry season and in the wet season has become larger, with the values estimated
as 0.00057/year and 0.00039/year, respectively.
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Figure 5. Trend of the runoff coefficients in the dry (left) and the wet (right) seasons in RCP 4.5
(blue) and RCP 8.5 (red). The bold lines show the ensemble averages, and the shaded areas show the
confidence range (10%–90%) of the value of the total runoff coefficient averaged for 109 subbasins for
each year of the period 2006–2009. The black lines show the linear regression, and the dash-dotted
lines show 13 single-model estimations of the total runoff coefficient averaged for 109 subbasins for
each year.

The results of the Mann–Kendall test, including the statistics S, the normal value Z, and the critical
values at two significance levels, are also shown in Table 6. Referring to critical values, the results
indicate that the runoff coefficient has a statistically considerable trend at the significance levels of
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5% and 10% in both RCPs. A sharp contrast between the trends of two components of the runoff

coefficient, as displayed in Tables 6 and 7, was expected.

Table 6. The Mann–Kendall trend test statistics of runoff coefficient and components. The trend rates
are based on the multi-model ensemble mean of 13 results of the value of the change in the runoff

coefficient and its components in 109 subbasins for each year of the period 2006–2009.

Scenario Season Runoff Coefficient
Mann-Kendall Trend Test Statistic

Trend Rate S Z α = 0.05 α = 0.10

RCP 4.5

Dry
Total 0.00021 769 2.352 1.960 1.645

Surface −0.00011 −817 −2.665 1.960 1.645
Groundwater 0.00028 683 2.023 1.960 1.645

Wet
Total 0.00018 791 2.580 1.960 1.645

Surface 0.00021 717 2.332 1.960 1.645
Groundwater −0.00003 −197 −0.640 1.960 1.645

RCP 8.5

Dry
Total 0.00057 693 2.260 1.960 2.576

Surface −0.00004 −445 −1.450 1.960 1.645
Groundwater 0.00076 1447 4.723 1.960 1.645

Wet
Total 0.00039 1469 4.795 1.960 1.645

Surface 0.00063 1709 5.579 1.960 1.645
Groundwater −0.00024 −1583 −5.167 1.960 2.576

Table 7. Variation in the runoff coefficient and components in 3 future periods.

Scenario Season Runoff Coefficient
Change of Runoff Coefficient (%)

2010–2039 2040–2069 2070–2099

RCP 4.5

Dry
Total 3.277 4.194 5.888

Surface 0.326 −0.961 −4.654
Groundwater 5.124 4.298 8.423

Wet
Total 0.250 2.161 2.659

Surface 3.629 7.867 9.189
Groundwater −2.175 −2.027 −1.933

RCP 8.5

Dry
Total 3.993 6.058 9.318

Surface 1.471 −2.875 −3.063
Groundwater 5.129 8.606 13.841

Wet
Total 1.724 3.458 5.239

Surface 5.588 11.417 19.505
Groundwater −1.049 −2.252 −4.995

Table 7 displays the variation in the runoff coefficient and components in three future periods
referred to the baseline (1976–2005). The surface runoff coefficient is estimated as strongly increasing in
the wet season and decreasing in the dry season, except for the early century period, when the impacts
of climate change were not very clear with relatively low increasing rates of both temperature and
precipitation in the dry season in both RCP scenarios. In contrast, groundwater flow always shows
an increasing trend in the dry season, but its trend always represents a negative value in the wet
season in both RCPs. The surface runoff coefficient indicates the direct relationship between surface
runoff and precipitation, which is closely related to the characteristics of the surface layer. When the
precipitation amount and intensity increase more significantly during the wet season due to climate
change, the infiltration capacity of the surface soil layer is expected to reach the final infiltration rate
more rapidly, resulting in a higher surface runoff and a higher surface runoff coefficient in the wet season.
In the dry season, when total runoff is mainly contributed by groundwater flow, this phenomenon does
not play an important role in changing the runoff coefficient. Instead, groundwater-related factors,
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such as the depth and structure of the vadose layer, have a considerable effect on the change in the
runoff coefficient.

Figure 6 more clearly expresses the uncertainty of the simulation. In RCP 8.5, the highest uncertainty
of the runoff coefficient is expected at the end of the 21st century; however, based on RCP 4.5, the highest
uncertainty is expected in the early century, during the dry season, with the widest range defined in
the 2030s. The uncertainty of the estimated runoff coefficient based on 13 GCM outputs is found to be
relatively high, with the higher uncertainty defined during the dry season. This difference is found
due to the dominance of the groundwater component of the runoff coefficient during the dry season,
which considers a number of uncertain processes and variables mainly related to the travel time of
percolating water through the vadose zone and the depth of this zone. Noticeably, the median of
30-year moving average estimations in both dry and wet seasons shows a clear fluctuation, which may
refer to the impact of the interannual to decadal oscillation of climate [60].
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Figure 6. The 30-year moving average runoff coefficient referred to the baseline (1976–2005) during
dry (left) and wet (right) seasons in RCP 4.5 (green) and RCP 8.5 (orange). The boxes show the
interquartile range, the lines within the boxes show the median, and the upper and lower portions
of the whiskers show the maximum and minimum estimations. The average values of the change in
the runoff coefficients in 109 subbasins for each year of the period 2000–2099 are used to compute the
30-year moving average; “2010” represents the 30-year moving average of the period 2000–2019, “2020”
represents the 30-year moving average of the period 2010–2029, and so on.

4.4. Spatial Distribution of Runoff Coefficient in South Korea

The spatial variation of the runoff coefficient in the dry and wet seasons is displayed in Figure 7.
Particularly, in RCP 4.5, during the dry season, in the first periods, there is no significant difference
in the runoff coefficient change rate between the 109 subbasins. In the next period, the northern and
eastern parts of South Korea, including the northeastern part of the Han River basin and almost parts
of the Nakdong River basin, have a higher change rate compared to that in other regions. This higher
change rate region continues to expand and intensify in the next period, almost covering the area in
northern and central South Korea. This spatial difference becomes clearer in RCP 8.5, with most areas
of the Nakdong River basin showing a high increasing rate. The change in the runoff coefficient during
the dry season in three future periods is different, with the highest rate estimated up to +9.318% during
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the late century in RCP 8.5, and the lowest rate is +3.277% in the early century in RCP 4.5. However,
during the wet season, this spatial difference is not noticeable, although the Nakdong River basin also
indicates a higher increase compared to that of the other basins, the estimated average areal increases
in the last period are only +2.659% and +5.239%, based on RCP 4.5 and RCP 8.5, respectively.
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Table 8 represents the magnitude of the runoff coefficient (RC) change in terms of the ratios
of important water balance components, including evapotranspiration/precipitation (ET/P—the
evaporative index), surface runoff/streamflow (S/R), and baseflow/streamflow (G/R) in the dry and wet
seasons in five major basins for two RCPs. This indicates that the increase in the runoff coefficient in
the dry season is mainly due to the increase in groundwater runoff, whereas the increase in the runoff

coefficient in the wet season mostly comes from the decrease in the evaporative index. The change rate
of the total runoff coefficient is positive for three future periods, indicating that the total runoff coefficient
has an increasing trend during the 21st century in both RCPs. The highest increasing rate is found in
the late century based on RCP 8.5 in all basins. For the case of the Han River basin, in the dry season,
the higher increase rate of the runoff coefficient may be related to the high slope of the mountainous
area in the northern part and the increase in precipitation in this region. The relationship between
the runoff coefficient, slope, and rainfall intensity is indicated as multivariate and nonlinear [61].
In the Nakdong River basin, this higher increase rate may be caused by the combination of soil type
and human impacts, as this region is the most important paddy zone in South Korea. The existence
of soil-improvement techniques and land use planning, which were partly considered via model
parameters, have an effect on the water-retention capacity of the soil, in which retention parameter and
saturated hydraulic conductivity are more sensitive than other parameters [62,63], with higher values
of such parameters indicating greater water-retention capacity [64,65]. In addition, these impacts
also contribute to reducing the amount of water used to support cultivation activities over time,
contributing to the increase in the runoff during the 21st century. Streamflow, therefore, increases with
the higher change rate compared to that in other regions, resulting in a higher increase rate of the
runoff coefficient in three future periods.

The variation in the runoff coefficient in each of the five basins compared to the average runoff

coefficient of the 109 subbasins during the dry and wet seasons in RCP 4.5 and RCP 8.5 is shown
in Figure 8. Each column of the panels represents the difference in the average value of change in
the runoff coefficient of the subbasins in five major river basins (Han, Nakdong, Geum, Seomjin,
and Yeongsan) from the average value of the change in the runoff coefficient of the 109 subbasins
referred to the baseline (1976–2005). Based on RCP 4.5, the Han River basin and the Geum River basin
express a negative variation, and the Nakdong River basin exhibits a high positive variation in both
the dry and the wet seasons during the 21st century. The difference in the spatial variations of the
runoff coefficient among the subbasins of the Han River basin is more significant than that of other
basins, followed by the Geum River basin. Based on RCP 8.5, except for the Nakdong River basin,
all of the other basins represent negative variation in both the dry and the wet seasons, where the
largest negative variation is found in the Geum River basin during the dry season in the late century,
followed by the Seomjin River basin in the same period.
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Table 8. Change in the runoff coefficients corresponding to ET/P, S/R, and G/R.

B
as

in

R
C

P

Period

ET/P S/R G/R
RC Change (%)

Ratio Change (%) Ratio Change (%) Ratio Change (%)

Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet
H

an R
C

P
4.

5 2030s 0.49 0.24 2.61 −7.48 0.19 0.38 2.99 6.88 0.81 0.62 −0.69 −3.79 2.73 0.01
2060s 0.50 0.23 3.49 −10.61 0.18 0.39 −4.16 9.18 0.82 0.61 0.97 −5.06 3.42 2.12
2090s 0.49 0.23 1.87 −11.39 0.18 0.39 −3.94 8.78 0.82 0.61 0.91 −4.84 5.45 1.93

R
C

P
8.

5 2030s 0.48 0.24 0.97 −6.40 0.18 0.37 −2.02 5.57 0.82 0.63 0.47 −3.07 3.20 1.85
2060s 0.50 0.23 5.15 −13.09 0.17 0.39 −8.04 10.65 0.83 0.61 1.86 −5.86 5.37 2.98
2090s 0.49 0.21 2.10 −19.95 0.17 0.43 −10.16 19.66 0.83 0.57 2.35 −10.83 8.62 4.52

N
ak

do
ng

R
C

P
4.

5 2030s 0.53 0.24 −2.08 −8.09 0.20 0.46 6.93 5.36 0.80 0.54 −1.58 −4.09 3.70 0.48
2060s 0.52 0.23 −2.81 −11.80 0.19 0.47 2.52 7.65 0.81 0.53 −0.58 −5.83 5.05 2.81
2090s 0.51 0.23 −4.84 −13.52 0.19 0.47 1.95 8.67 0.81 0.53 −0.44 −6.61 6.86 3.39

R
C

P
8.

5 2030s 0.52 0.25 −2.76 −7.50 0.19 0.45 2.02 3.83 0.81 0.55 −0.46 −2.92 5.03 2.18
2060s 0.52 0.23 −4.04 −15.16 0.19 0.47 1.60 8.99 0.81 0.53 −0.36 −6.85 8.10 4.67
2090s 0.50 0.21 −7.07 −21.86 0.22 0.50 −0.15 16.08 0.81 0.50 0.04 −12.25 11.86 6.25

G
eu

m R
C

P
4.

5 2030s 0.46 0.25 1.47 −8.49 0.22 0.47 −0.48 6.32 0.78 0.53 0.14 −4.96 3.20 0.34
2060s 0.47 0.25 2.18 −10.92 0.22 0.47 −4.08 7.20 0.78 0.53 1.19 −5.65 3.25 2.08
2090s 0.46 0.25 0.74 −12.94 0.21 0.48 −8.35 8.28 0.79 0.52 2.43 −6.49 4.99 2.65

R
C

P
8.

5 2030s 0.46 0.26 −0.04 −6.73 0.22 0.46 −1.71 4.51 0.78 0.54 0.50 −3.54 3.66 1.98
2060s 0.48 0.24 6.12 −14.36 0.20 0.48 −11.80 9.40 0.80 0.52 3.42 −7.37 4.99 3.58
2090s 0.47 0.22 3.91 −21.48 0.19 0.51 −17.18 16.23 0.81 0.49 4.98 −12.73 7.37 5.38

Se
om

ji
n

R
C

P
4.

5 2030s 0.43 0.22 −0.44 −8.94 0.23 0.51 0.94 5.83 0.77 0.49 −0.27 −5.52 2.98 0.24
2060s 0.43 0.21 −0.40 −11.15 0.23 0.52 0.60 6.63 0.77 0.48 −0.17 −6.28 4.38 1.66
2090s 0.43 0.21 −0.78 −13.67 0.22 0.53 −3.45 8.37 0.78 0.47 1.00 −7.92 5.45 2.27

R
C

P
8.

5 2030s 0.44 0.22 −0.36 −6.31 0.22 0.50 −0.20 3.11 0.78 0.50 0.05 −2.95 2.92 1.22
2060s 0.44 0.21 1.76 −14.00 0.21 0.52 −6.35 7.81 0.79 0.48 1.84 −7.39 5.03 2.58
2090s 0.53 0.19 1.65 −21.32 0.20 0.55 −9.19 13.98 0.80 0.45 2.66 −13.24 8.08 4.05

Ye
on

gs
an

R
C

P
4.

5 2030s 0.53 0.27 −0.55 −8.35 0.26 0.60 −1.84 4.14 0.74 0.40 0.64 −5.55 3.72 0.49
2060s 0.53 0.26 −1.05 −9.70 0.26 0.60 1.69 4.40 0.74 0.40 −0.60 −5.90 4.73 1.69
2090s 0.53 0.26 −1.13 −12.44 0.25 0.61 −2.67 5.87 0.75 0.39 0.94 -.86 5.95 2.63

R
C

P
8.

5 2030s 0.53 0.28 −0.74 −5.20 0.26 0.58 −1.02 2.24 0.74 0.42 0.36 −3.01 3.25 1.39
2060s 0.54 0.26 1.67 −13.04 0.25 0.61 −4.50 5.84 0.75 0.39 1.57 −7.82 5.13 3.22
2090s 0.54 0.23 0.41 −20.18 0.25 0.63 −2.23 10.30 0.75 0.37 0.78 −13.78 8.87 5.24
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Figure 8. Runoff coefficient variations in 5 major river basins (Han, Nakdong, Geum, Seomjin,
and Yeongsan) referred to the baseline (1976–2005) during the dry and wet seasons in RCP 4.5
(upper half) and RCP 8.5 (lower half). The red dotted lines show the average value of change in the
runoff coefficient of 109 subbasins. The light green boxes show the negative variations (lower than the
average value), and the dark green boxes show the positive variations (higher than the average value).
The blue whiskers show ranges of change rates of subbasins in each major basin.

4.5. Linkage of Land Cover/Land Use and Future Runoff Coefficient Variation

Changes in the total runoff coefficient in each subbasin and the corresponding percentage of
each land cover/land use type for three future periods in two RCPs (4.5 and 8.5) are shown in Table 9.
These data indicate that the impact of land cover/land use on the total runoff coefficient is completely
different in the dry and wet seasons. In particular, during the dry season, the total runoff coefficient
shows a positive relationship with the percentage of orchard land and paddy land and a negative
relationship with the percentage of forest land. In contrast, during the wet season, the total runoff
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coefficient expresses a negative relationship with the percentage of orchard land and paddy land and a
positive relationship with the percentage of forest land. Both seasons present a negative relationship
between the total runoff coefficient and the percentage of urban (residential) land. Although land
cover/land use was supposed to be unchanged during the simulation period, the change in the
relationship between the total runoff coefficient and this spatial change in the land cover/land use,
corresponding to the change in climate in time, should be considered for future water-related plans,
as urbanization and industrialization tend to be criticized. The negative correlation between the total
runoff coefficient and the percentage of urban land in both the wet and the dry seasons may predict a
more serious condition of water scarcity in the future if the rate of urbanization continues to increase
rapidly in South Korea.

Table 9. Correlation coefficient of the total runoff coefficient and percentage of each land use type.

Scenario Season Period Urban Forest Paddy Orchard

RCP 4.5

Dry
2030s −0.068 −0.135 0.098 0.118
2060s −0.084 −0.102 0.069 0.218
2090s −0.097 −0.083 0.045 0.203

Wet
2030s −0.106 0.465 −0.358 −0.387
2060s −0.114 0.478 −0.369 −0.368
2090s −0.117 0.486 −0.384 −0.362

RCP 8.5

Dry
2030s −0.068 −0.131 0.086 0.245
2060s −0.095 −0.097 0.053 0.266
2090s −0.112 −0.057 0.017 0.271

Wet
2030s −0.111 0.481 −0.379 −0.384
2060s −0.116 0.485 −0.381 −0.364
2090s −0.120 0.492 −0.382 −0.352

The correlation coefficient is relatively low in all cases. It is estimated to be up to +0.492, the highest
value in the case of forest land during the wet season in the late century, and the lowest value in the case
of paddy land during the dry season in the same period. Generally, the correlation coefficient between
the total runoff coefficient and the percentage of each land cover/land use type in all the subbasins is
higher during the wet season. These results indicate that the land use type strongly influences the
variation in the surface runoff coefficient, contributing significantly to the variation in the total runoff

during the wet season, whereas during the dry season, the total runoff coefficient is dominated by the
groundwater runoff coefficient, reducing the impact of land cover/land use. However, this influence
still remains, as noted by the difference in correlation of each land use type.

The impact of land cover/land use on the total runoff coefficient is found to change with the
increases in temperature and precipitation in all subbasins during three future periods, as also shown
in Table 9. For the case of urban land, the absolute correlation coefficient increases over the three
future periods during both the dry and the wet seasons. However, there is a contrast found in the
change in the absolute correlation coefficient in the dry season and in the wet season in the case of
the three other land use types. The absolute correlation coefficient increases during the dry season
but decreases during the wet season in the case of orchard land, whereas it decreases during the dry
season but increases during the wet season in the case of forest land and paddy land. To determine the
reason for this difference, the relationship between the total runoff coefficient and other climatic and
hydrologic variables during the 21st century is illustrated in Figure 9 using a Taylor diagram. Variation
in evapotranspiration shows a contrary correlation with the variation in the total runoff coefficient
during the wet and dry seasons, and variation in the soil water volume shows a high correlation with
the variation in the total runoff coefficient. As these two factors are closely related to characteristics of
land cover/land use [66,67], this difference in change of correlation coefficient is expected due to the
water-retention capacity of each land cover/land use type.
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Figure 9. Taylor diagrams between the total runoff coefficient and temperature (T), precipitation (P),
actual evapotranspiration (A) and soil water volume (S) during the dry (left) and wet (right) seasons in
RCP 4.5 (a,b) and RCP 8.5 (c,d).

5. Discussion

Although the SWAT model shows its capacity to simulate surface runoff, groundwater flow,
and total runoff, as well as other water balance components (e.g., soil moisture volume and
evapotranspiration), it is limited in simulating low flow as figured out in Section 4.1. During the
flood (or wet) season, when the total streamflow is relatively high, this limitation insignificantly
affects simulated streamflow; nevertheless, in the dry season, it probably increases the uncertainty
of simulations. This uncertainty is related to the method used for computation of the baseflow,
which is normally associated with the return flow from groundwater [68,69], and to the approach
used for simulation of snow melt, which is directly related to surface runoff estimation in the dry
season. The poor performance impacts the estimations of groundwater runoff and dry season surface
runoff, contributing to the uncertainty of the runoff coefficient in the dry season, as the amount of
rainfall in this season is projected as nonsignificant. Multiple recent studies have tried to improve
baseflow simulation by modifying the SWAT model regarding the aquifer structure and the interaction
between aquifers [70], applying a nonlinear aquifer storage–discharge relation approach instead of the
traditional approach available in the original model [71] or using a multicell aquifer to represent the
regional aquifer [72]. This problem needs to be cautiously considered in further study by applying a
separate baseflow separation program or improving the approach used to simulate baseflow inside the
SWAT model.

The other uncertainty in the SWAT model simulations may come from the concept of HRUs,
where the comprehensive parameters were calibrated and validated for each subbasin using the
observed streamflow, but the parameters for the HRUs in the same subbasin are supposed to be
uniform. One additional uncertainty was identified in the study of Wang et al. [73]. The study states
that the impact of short-duration rainfall on streamflow could not be differentiated using the SWAT
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model, leading to the high uncertainty of the runoff coefficient, but the uncertainty could be reduced
by averaging for long-term periods.

The SDQDM downscaling method used in this study demonstrates its capacity to preserve the
long-term trend of climatic variables, such as precipitation and minimum and maximum temperature.
However, CanESM2 and IPSL-CM5A-MR models show good skills when compared for the entire
Korean peninsula but propose relatively poor results on the regional scale. This may be related to the
spatial resolution of the GCMs; these models could not represent the regional characteristics at each
point in detail, resulting in a decrease in the regional difference of simulation results. Additionally,
as found in the study of Eum and Canon [43], the SDQDM method tends to slightly overestimate
the number of consecutive dry days (daily precipitation < 1 mm), and underestimate the number of
consecutive wet days (daily precipitation ≥ 1 mm), leading to slight underestimates of the increase in
total precipitation and runoff.

The trend of temperature and precipitation in South Korea is projected to be positive during the
21st century. While the increase in temperature in the study area is considered an obvious consequence
of global warming, the increase in precipitation is more related to regional effects, such as the East
Asian monsoon [26,27] or Southern Oscillation [74,75]. Precipitation in the wet season shows a higher
increasing trend compared to precipitation in the dry season in all basins, which is strongly related to
the temporal change in the Changma front, as found in a number of previous studies [76,77]. Based on
the results of the present study, the increase in precipitation due to climate change leads to a significant
increase in streamflow and runoff coefficient. In particular, the increase in the runoff coefficient in the
dry season was mainly due to the increase in groundwater flow, whereas the increase in the runoff

coefficient in the wet season mostly came from the decrease in the evaporative index.
The increase in streamflow in rain-dominant basins results in an increase in flood frequency and

intensity [28]. To develop construction plans to prevent flooding under climate change conditions in
the future, the runoff coefficient is required as a critical parameter for designing. However, currently,
this coefficient is only derived by traditional methods without considering the impact of climate change.
Hence, the present study provides an insightful analysis of the variation in the runoff coefficient in
the future, which needs to be deliberated when developing construction to adapt to climate change.
Furthermore, the increase in the runoff coefficient probably predicts the decrease in the water storage
capacity of the soil, leading to an increase in hydrologic drought conditions in South Korea.

On the one hand, various studies reported an increase in the surface runoff due to the increase in
urban areas [78,79], resulting in the rising frequency of flood occurrences. On the other hand, it has
been stated that the groundwater recharge might be reduced with the urbanization expansion because
of the increase in impervious cover [80]. As a consequence, the negative correlation between the total
runoff coefficient and the percentage of urban land in both the wet and dry seasons in the long-term
span figured out in the present study potentially lead to the high risk of the water scarcity and flooding,
especially the flash and urban floods in the future.

One of the limitations of the present study is that the temporal changes in the future of land
cover/land use and other factors were not considered. However, the variation in the total runoff

coefficient is potentially associated with the spatial change in land cover/land use in South Korea.
Due to the combined impact of a number of soil and vegetation cover features, as well as the change in
climate factors, it is difficult to identify the direct-close-clear relationship between land cover/land use
and the variation in the runoff coefficient. This initial analysis suggests a correlation between spatial
changes in land cover/land use and variations in the runoff coefficient in the future. This relationship
would be clarified using scenarios of land use/land cover and other variable changes in further study.

6. Conclusions

The present study has examined the trend of the runoff coefficient throughout South Korea,
in addition to five major basins during the future period of 2006 to 2099, and its variations in three
future periods referred to the baseline (1976–2005). The results show a slightly increasing trend of the
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total runoff coefficient in both the dry and the wet seasons. Specifically, the change rate of the runoff

coefficient during the dry season is expected to be higher than that during the wet season. A sharp
contrast was found between the trends of the two components of the runoff coefficient. Specifically,
the surface runoff coefficient is projected to decrease in the dry season and strongly increase in the
wet season. In contrast, groundwater runoff always shows an increasing trend in the dry season but a
decreasing trend in the wet season in both RCP scenarios. This is expected due to the impact of the
difference in the amount of water remaining in the surface and vadose layers on the surface runoff

coefficient and groundwater runoff coefficient. A higher uncertainty of the runoff coefficient during the
dry season is found due to the dominance of the groundwater component in the total runoff coefficient,
as it is driven by numerous uncertain processes and variables. The results also reveal a fluctuation of
the runoff coefficient during the 21st century, which is probably related to the influence of planetary
oscillation on the variation in its dominant factors from the interannual to decadal scale.

Among the five major basins, the Nakong River basin is expected to have the highest increase rate
of the runoff coefficient, while the lowest increase rate during the dry season is found in the Geum
River basin, the lowest increasing rate during the wet season is found in the Seomjin River basin in all
future periods. The difference in the spatial distribution of the runoff coefficient is associated with
characteristics of soil, topographic slope, and land cover/land use in each major basin.

The variation in the total runoff coefficient shows a low correlation with the spatial change in land
cover/land use over 109 subbasins; specifically, the correlation of the total runoff coefficient in the wet
season is found to be higher than that in the dry season. The impact of land cover/land use on the total
runoff coefficient is also found to change over time with the increase in temperature and precipitation
during the 21st century. This impact is found to be different, even inconsistent, in the case of forest,
orchard, and paddy land. The difference is expected due to variations in evapotranspiration and soil
water volume jointly with the contribution rate of each component of streamflow.

The variation in the runoff coefficient could be very helpful for regions facing water-related issues,
especially in the context of climate change. As mentioned, to develop a construction plan to prevent
flooding, the runoff coefficient is required as a critical parameter for designing. However, at present,
this coefficient is only derived by traditional methods without considering the impacts of climate
change. Hence, the results provide an insightful analysis of variation in the runoff coefficient in the
future, which needs to be considered carefully when planning or developing a construction project to
adapt to climate change. Furthermore, the increase in the runoff coefficient probably predicts a decrease
in the water storage capacity of the soil, leading to an increase in hydrologic drought conditions in
South Korea. The outcomes of the study are not only of importance in understanding the impacts of
climate change on hydrological processes and water balance for a catchment but also of significance
for water resource management.
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