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Abstract: Extreme climate events frequently exert serious effects on terrestrial vegetation activity.
However, these effects are still uncertain in widely distributed areas with different climate zones.
Transect analysis is important to understand how terrestrial vegetation responds to climate change,
especially extreme climate events, by substituting space for time. In this paper, seven extreme
climate indices and the Normalized Difference Vegetation Index (NDVI) are employed to examine
changes in the extreme climate events and vegetation activity. To reduce the uncertainty of the NDVI,
two satellite-derived NDVI datasets, including the third generation Global Inventory Monitoring
and Modeling System (GIMMS-3g) NDVI dataset and the NDVI from the National Oceanic and
Atmospheric Administration (NOAA) satellites on Star Web Servers (SWS), were employed to capture
changes in vegetation activity. The impacts of climate extremes on vegetation activity were then
assessed over the period of 1982–2012 using the North–South Transect of Eastern China (NSTEC) as a
case. The results show that vegetation activity was overall strengthened from 1982 to 2012 in the
NSTEC. In addition, extreme high temperature events revealed an increased trend of approximately
5.15 days per decade, while a weakened trend (not significant) was found in extreme cold temperature
events. The strengthened vegetation activities could be associated with enhanced extreme high
temperature events and weakened extreme cold temperature events over the past decades in most of
the NSTEC. Despite this, inversed changes were also found locally between vegetation activity and
extreme climate events (e.g., in the Northeast Plain). These phenomena could be associated with
differences in vegetation type, human activity, as well as the combined effects of the frequency and
intensity of extreme climate events. This study highlights the importance of accounting for the vital
roles of extreme climate effects on vegetation activity.

Keywords: vegetation activity; extreme climate events; Normalized Difference Vegetation Index;
North-South Transect of Eastern China

1. Introduction

Past studies showed that the global mean temperature rose by approximately 0.85 ◦C from 1880
to 2012 [1,2]. However, changes in extreme climate events are more uncertain than average climate
conditions. With increasing global climate warming, extreme climate events, including temperature
extremes and precipitation extremes, occur more frequently than ever before. This phenomenon exerts
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serious effects on humans due to probable flooding, droughts, and so on [3–6], and has become a
research focus for the scientific community.

The NDVI (Normalized Difference Vegetation Index) provides a critical historical perspective
on vegetation activities. The consistency of the NDVI derived from various sensors in satellites has
been evaluated with ground-based sensors [7,8]. On these bases, the NDVI is widely employed to
detect vegetation dynamics, as well as responses to climate change at regional and global scales [9–15].
Climate extremes could alter physiological and ecological processes and even ecosystem functions in
the terrestrial ecosystem [16,17]. For instance, Barichivich et al. analyzed the relationships between
multiple climate and vegetation indicators of the growing season of northern ecosystems and their
connection with the carbon cycle using NDVI as the indicator [14]. Tan et al. explored the relationships
between vegetation growth and climate extremes in the Poyang Lake River Basin [18]. They found
that variations in the NDVI are generally determined by temperature but not precipitation extremes.
Sangeeta et al. studied the characterization of vegetation dynamics over South Asia using satellite
time series of different NDVI sources and found that the spatiotemporal vegetation trends derived
from the NDVI-3g are analogous to both the NDVI and EVI from the Moderate-Resolution Imaging
Spectroradiometer (MODIS) for the Earth Observing System (EOS), thereby indicating greening over
semi-arid regions [19]. Zhao et al. studied the change of vegetation growth and its correlation with
extreme climate events in the Loess Plateau. They found that vegetation coverage responded positively
to precipitation and temperature extremes in the region [20]. By using Xinjiang in China as a case
study, Yao et al. showed that climate extremes could have negative effects on vegetation growth in the
arid region of Central Asia [21]. Li et al. estimated the trends of several extreme climate indices and
the NDVI in the Mongolia Plateau. They found positive correlations between most of the extreme
climate indices and the NDVI at monthly and seasonal scales [22]. Despite being widely employed
in past studies, remote sensed data are affected by several disturbances when monitoring vegetation
activities, including systematic errors, accidental errors, and problematic processing methods [23,24].
In addition, past studies were frequently performed by taking topographic units such as plateaus or
basins as the case. Instead, transect analysis is an important and effective approach to understand how
terrestrial ecosystems would respond to global climate change by substituting space for time [25,26].

By using the North–South Transect of Eastern China (NSTEC) as a case, this paper analyzes
the impacts of climate extremes (i.e., temperature extremes and precipitation extremes) on terrestrial
vegetation activity over the period of 1982–2012. The NSTEC is one of the 15 global climate change
transections in the International Geosphere–Biosphere Programme (IGBP) [25]. It encompasses a
large climate gradient spanning from temperate to tropical climates. Specifically, this paper aims
to (1) examine the spatiotemporal variation of vegetation activity in the NSTEC using two different
satellite-derived NDVI datasets; (2) analyze the changes in extreme climate events using seven extreme
climate indices from the Expert Team on Climate Change Detection and Indices (ETCCDI); (3) explore
the relationships between vegetation activity and extreme climate events.

2. Study Area and Data Preprocessing

2.1. Study Area

The North–South Transect of Eastern China (NSTEC), which covers about 2.88 million km2, is
located within 108◦–118◦ E, 18◦10′–40◦ N and 118◦–128◦ E, 40◦–53◦33′ N. The NSTEC lies across
different climate zones from tropical climates to cold temperate climates. Thus, the temperature
in the NSTEC ranges from 38.9 ◦C to −44.6 ◦C, and the annual total precipitation decreases from
2000 mm in the southernmost part of Hainan to about 600 mm in the northern Heilongjiang Province
(Figure 1). Meanwhile, the NSTEC is well known for its diversified landscapes, including Great
Hinggan Mountains (G1), Inner Mongolia Plateau (G2), Northeast Plain (G3), Changbai Mountain
(G4), Loess Plateau (G5), North China Plain (G6), Jianghan-Dongting-Lake Plain (G7), Yangtze River
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Basin (G8), Wuyishan District (G9), and Pearl River Delta (G10) in Figure 1. Terrestrial vegetation
mainly includes cultivated vegetation, coniferous forests, broad-leaved forests, shrubs, and grasslands.
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Information Center in China. Quality control of the data was first conducted via a manual inspection 
of time consistency and extremum validation [29]. We further validated the data by screening and 
eliminating suspicious and missing records to ensure their continuity and consistency. In detail, the 
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accuracy. Finally, 355 meteorological stations were selected for further analysis. To extract the 
corresponding NDVI value around the meteorological stations, the grid value of the site’s location 

Figure 1. The distribution of meteorological stations, ground-based LAI stations, vegetation types, and
geomorphological types in the NSTEC. (Vegetation type, BLF: Broad-Leaved Forest, C1: Coniferous
Broad-Leaved Mixed Forest, C2: Coniferous Forest, C3: Cultivated Vegetation, G: Grassland, M:
Meadow, O: Other Type, S1: Shrub, TGG: Thick Growth of Grass. Geomorphic type, G1: Great Hinggan
Mountains, G2: Inner Mongolia Plateau, G3: Northeast Plain, G4: Changbai Mountain, G5: Loess
Plateau, G6: North China Plain, G7: Jianghan-Dongting-Lake Plain, G8: Yangtze River Basin, G9:
Wuyishan District, and G10: Pearl River Delta).

2.2. Data and Preprocessing

The data sources in this study include satellite-based NDVI data, Leaf Area Index (LAI) data, daily
meteorological data, and some other auxiliary data (e.g., climate zones, vegetation types, and elevation
data). In detail, weekly NDVI data, which cover the period of 1982–2012, were obtained from National
Oceanic and Atmospheric Administration (NOAA) satellites on Star Web Servers (NOAA-SWS) at a
resolution of 4 km. In addition, the GIMMS-3g NDVI dataset, at a resolution of 8 km, was obtained
from the third generation Global Inventory Monitoring and Modeling System (GIMMS) from the
Advanced Very High Resolution Radiometer (AVHRR) sensors. The dataset has been corrected for
sensor degradation, inter-sensor differences, cloud cover, solar zenith angle, viewing angle effects
due to satellite drift, and volcanic aerosols [27]. The NDVI data were then synthesized to monthly
and yearly scales, respectively. In addition, the annual maximum LAI data were obtained from the
long-term ground-based observations of China FLUX and published studies [28] (Figure 1).

For the meteorological data, the daily maximum temperature, daily minimum temperature, and
daily precipitation data were collected over the period of 1982–2012 from the National Meteorological
Information Center in China. Quality control of the data was first conducted via a manual inspection
of time consistency and extremum validation [29]. We further validated the data by screening and
eliminating suspicious and missing records to ensure their continuity and consistency. In detail, the
stations that were newly-built or abandoned later were removed to ensure the data’s consistency
and accuracy. Finally, 355 meteorological stations were selected for further analysis. To extract the
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corresponding NDVI value around the meteorological stations, the grid value of the site’s location was
extracted to participate in subsequent calculations using the Geographic Information System (GIS).

3. Methods

3.1. Monitoring Vegetation Activities by Using the NDVI as an Indicator

At present, more than 30 vegetation indices, including the NDVI, the Enhanced Vegetation Index
(EVI), and the Difference Vegetation Index (DVI), were developed to reflect changes in vegetation
activities [30–33]. Although many new vegetation indices were proposed to account for many factors,
such as soil and atmospheric effects [11], the NDVI is still a good indicator when dealing with large-scale
vegetation coverage and vegetation productivity [34–36]. For instance, Barichivich et al. found that the
GIMMS-3g is highly consistent with MODIS NDVI [14]. In this paper, the NDVI was employed as
an indicator to monitor changes in vegetation activities in the NSTEC. To reduce the uncertainty of
the NDVI datasets at different resolutions, two satellite-based NDVI datasets from GIMMS-3g and
NOAA-SWS were employed due to the dramatic improvement of the GIMMS-3g and NOAA-SWS
datasets [37–39]. In detail, monthly and yearly NDVIs were synthesized from the original weekly data.
A simple linear regression was then conducted to examine the linear trend of the NDVI (Y) [40,41]

Y = at + b (1)

where t is the time period(year), and a and b are regression coefficients. If a is larger (or less) than
zero at a 95% significance level, then there is statistical evidence to support the presence of increased
(or decreased) trends of the NDVI (i.e., vegetation activity). In this paper, linear regression was
performed using the R Software [42] and the trend package [43].

3.2. Characterizing Extreme Climate Events Using Extreme Climate Indices

The climate extreme index (CEI) was first proposed in the United States in 1996. However, the
CEI was found to have some limitations, such as its lack of suitability and effectiveness when applied
to other countries and regions [44]. The European Climate Assessment (ECA) indices were then
developed by accounting for temperature, precipitation, frost, and growth season [45]. Many climate
extreme indices, including most of the ECA indices, were also proposed by the Expert Team on Climate
Change Detection and Indices (ETCCDI) [46]. The ETCCDI has been used in the fourth and fifth
Intergovernmental Panel on Climate Change (IPCC) [47,48], which makes the indices widely used in
extreme climate events [49–51].

In this paper, seven indices from the ETCCDI were selected to reflect the intensity and frequency
of extreme climate events to examine the changes in temperature and precipitation extremes in the
NSTEC (Table 1). In detail, this study includes three extreme cold temperature indices (CSDI, TNN,
and TN10p), three extreme high temperature indices (WSDI, TXX, and TX90p), and one extreme
precipitation index (R95p). TXX and TNN reflect the intensity of extreme temperature events. In
addition, the R95p is employed to characterize the extreme precipitation intensity. The remaining four
indices, TN10p, TX90p, CSDI, and WSDI, represent the frequency of extreme temperature events.

Table 1. Extreme climate indices in this paper.

Name Definitions Units

TN10p Percentage of time when daily min temperature <10th percentile days
TX90p Percentage of time when daily max temperature >90th percentile days
TXX Monthly maximum value of daily max temperature ◦C
TNN Monthly minimum value of daily min temperature ◦C
WSDI Annual count when at least six consecutive days of max temperature >90th percentile days
CSDI Annual count when at least six consecutive days of min temperature <10th percentile days
R95p Annual total precipitation from days >95th percentile mm



Water 2019, 11, 2291 5 of 18

To examine changes in the intensity of extreme climate events, linear regression was also performed
using TXX, TNN, and R95p as indicators. If the slope (a in Equation (1)) is larger (or smaller) than zero,
there is an increased (or decreased) trend in the extreme climate events.

Given the discrete nature of the frequency of extreme climate events, a Poisson regression model
was employed to examine their monotonic trends. If the probability of a random variable N equals k,
then we get the Poisson distribution density function as Equation (2).

p(Ni = k|λi) =
e−λiλk

i
k!

(k = 0, 1, 2 · · · ) (2)

where k represents the frequency of the observed samples at a certain time, and λi is the parameter of
incidence. To evaluate whether the extreme precipitation frequency at each station has an increasing or
decreasing statistical trend, a linear relationship between occurrence rate parameters (λ) and time (t)
is established:

λi = eβ0+β1·ti . (3)

If the regression coefficient β is larger (or smaller) than zero at 5%, statistical evidence is found to
support temporal trends in the occurrence of extreme climate events. In this paper, Poisson regression
was applied in four indices, including TN10p, TX90p, CSDI, and WSDI, respectively. Similarly, all
these algorithms were performed using the R Software [42] and the trend package [43].

3.3. Assessing the Impacts of Extreme Climate Events on Vegetation Activities

The LAI, which is defined as one half of the total green leaf area per unit ground surface area [52],
has been widely used to characterize the structure and function of vegetation [53]. In this paper, the
LAI data from ground observation were used to verify the reliability of the aforementioned two NDVI
datasets. On this basis, we examined the spatiotemporal trends of the vegetation activity over the
period 1982–2012 in the NSTEC using the NDVI as an indicator. The changes in climate extremes,
including extreme temperature events and extreme precipitation events, were analyzed using the
aforementioned seven extreme climate indices from ETCCDI as indicators. Pearson correlation analyses
were then conducted between extreme climate indices, and the corresponding NDVI values were
sampled according to the meteorological stations. The combined effects of the frequency and intensity
of extreme climate events on vegetation activities were also analyzed based on these numerical values.
The effect of extreme climate events on vegetation activity was further analyzed by climatic ecozones
in the NSTEC. Possible causes of vegetation activity changes to extreme climate events were then
discussed from the aspects of vegetation type, human activity, and the combined effects of the frequency
and intensity of extreme climate events.

4. Results and Discussions

4.1. Validation of the NDVI Datasets

In past studies, many NDVI datasets were widely evaluated through sample-based validation
or comparison with existing NDVI products by third-party researchers. For instance, Fensholt and
Proud [54] compared the performances of a time series of GIMMS and MODIS NDVI data to evaluate
long-term vegetation trends at a global scale. In this paper, the accuracy of the aforementioned NDVI
datasets was further evaluated by comparing it to ground-based LAI observations. As seen in Figure 2,
a significant correlation was found between the NOAA-SWS-derived NDVI and the LAI (R = 0.768,
N = 22, P = 0.000). Similarly, a significant correlation was also found between the GIMMS-3g-derived
NDVI (R = 0.769, N = 22, P = 0.000) and the ground-based LAI.
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As shown in Figure 3, the two NDVI datasets linearly fit close to each other. Specifically, both the
satellite-derived observations from the GIMMS-3g and NOAA-SWS NDVI datasets revealed increasing
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NDVI datasets are close).

The spatial heterogeneity in the vegetation activity was further analyzed by examining the annual
mean values and trends of the NDVI from 1982 to 2012. We found that the mean NDVI is relatively
high in broad-leaved forests and coniferous forests in the regions including the Greater Khingan Range
(G1) and the Changbai Mountains (G4) in the northeastern NSTEC, the Qinling Mountains in the
Central parts of the NSTEC, the Wuyi Mountains (G9), and the Hainan Island in the southern NSTEC.
On the contrary, the lowest NDVI was found in grasslands and human land-use areas. Concretely,
the areas with relatively small NDVIs were mainly distributed in the Northeast Plain (G3), the Loess
Plateau (G5), the Yangtze River Basin (G8), and the Pearl River Delta (G10).
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Figure 4 shows the spatial patterns of the trend in NDVI derived from the GIMMS-3g and
NOAA-SWS datasets during the period from 1982 to 2012. Both datasets revealed ascending trends in
most parts of the NSTEC over the past decades. Novertheless, decreased NDVI could also be found
in the Inner Mongolia Plateau (G2), the eastern Great Hinggan Mountains (G1), and the Pearl River
Basin (G10) in Figures 1 and 4. The NDVI trend was further analyzed by vegetation types. The results
showed that all types of vegetation had mainly increased trends in the NSTEC over the past few
decades. Specifically, 73% of tropical rainforests showed an increasing trend, reaching 0.00185·year−1

in Hainan Island. The slowest growth was found in temperate coniferous and broad-leaved mixed
forests at approximately 0.0084 per decade.Water 2019, 11, x FOR PEER REVIEW 8 of 20 
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and TX90p as indicators (Figure 6b–e). For extreme cold temperature events, an overall decreasing 
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4.2.2. Frequency of Extreme Temperature Events

As shown in Figure 5, extreme cold temperature indices, including CSDI and TN10p,
revealed decreased trends at a rate of −0.066 ± 0.112 days·year−1 (R2 = 0.012, P = 0.230) and
−0.230 ± 0.166 days·year−1 (R2 = 0.062, P = 0.177). On the contrary, extreme high temperature indices
showed obvious upward trends, reaching 0.136 ± 0.041 days·year−1 for the WSDI (R2 = 0.278, P = 0.002)
and 0.515 ± 0.088 days·year−1 for the TX90p (R2 = 0.544, P = 0.000).
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We first analyzed the spatial patterns of the mean annual precipitation from 1982 to 2012 in the
NSTEC (Figure 6a). We found that it decreased from southeast to northwest, owing to the combining
influences of southeast monsoons and southwest monsoons [55]. Furthermore, we analyzed the spatial
heterogeneity of the trends in extreme temperature frequencies using CSDI, TN10p, WSDI, and TX90p
as indicators (Figure 6b–e). For extreme cold temperature events, an overall decreasing trend could
be found in the NSTEC based on an analysis of the two extreme cold temperature indices (i.e., CSDI
and TN10p). Concretely, the CSDI showed an ascent in the Greater Hinggan Mountains (G1), the
Northeast Plain (G3), the Changbai Mountains (G4), the southern part of the Loess Plateau (G5), and
parts of the Yangtze River Basin (G8). However, these trends were reversed in some other areas,
including the Hainan Island, the Wuyi Mountain (G9), the East China Plain, and the Yangtze River
Basin (G8). This result is consistent with Du (2015) [56]. The TN10p showed generally weak trends in
the southern parts of the NSTEC. In addition, the trend of TN10p is consistent with that of the CSDI
but different in magnitude. In terms of extreme high temperature indices (i.e., WSDI and TX90p),
similar changes could be found between them (Figure 6d,e). In detail, the WSDI and TX90p showed
increasing trends in most areas of the NSTEC. However, an obvious decrease in the WSDI could be
found in the Northeast Plain.
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4.2.3. Intensity of Extreme Temperature and Precipitation Events

Figures 7 and 8 show the changes of extreme temperature intensity in the NSTEC from 1982 to
2012. In detail, the intensity of extreme cold temperature events (TNN) showed a fluctuation from
1982 to 2012 (0.013 ± 0.024 ◦C·year−1, R2 = 0.001, P = 0.966). However, an enhanced warming trend
could be found in Changbai Mountains and the northern parts of the North China Plain. For extreme
high temperature events (TXX), small increasing trends could be found in the NSTEC over the past
decades (0.036 ± 0.013 ◦C·year−1, R2 = 0.220, P = 0.634).

An overall fluctuation was found for the extreme precipitation index (R95p) in the NSTEC from
1982 to 2012 (4.3 ± 8.4 mm·year−1, R2 = 0.009, P = 0.611). The spatial distribution mainly showed a
decreasing trend in the northern NSTEC. Both increasing and decreasing trends could be found in the
southern NSTEC [57]. Precipitation may affect vegetation types deeply and even the NDVI because
the main potential climatic constraints for plant growth are sunlight in the south, water in the middle,
and temperature in the north of the NSTEC, according to Nemani et al. [58].
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4.3. Correlations between the Indices of Extreme Climate Events and Vegetation Activity

4.3.1. Correlation between the Frequency Indices of Extreme Climate Events and Vegetation Activity

The correlations between frequency indices of extreme temperature events (i.e., CSDI, TN10p,
WSDI, and TX90p) and NDVI were first analyzed over the period 1982–2012 in the NSTEC. Negative
correlations could be found between the CSDI and the SWS-derived NDVI in 78% of the meteorological
stations (R < −0.1; P < 0.05). Similar correlations could also be found in 74% of the meteorological
stations when using GIMMS-3g-derived NDVI as variables (R < −0.1; P < 0.05). The TN10p showed
negative correlations with the SWS-derived NDVI and GIMMS-3g NDVI in 81% and 73% of the
stations, respectively. These results indicate that the frequency of extreme low temperature events,
which are represented by the CSDI and the TN10p, were most negatively correlated with the NDVI
during 1982–2012 in the NSTEC.

In addition, the frequency of extreme high temperature indices was positively correlated with the
NDVI in most stations. According to the analysis of the SWS-derived NDVI and GIMMS-3g NDVI, 65%
and 57% of the stations showed positive correlations between the WSDI and the two NDVI datasets at
a 95% confidence level. Moreover, 70% and 88% of the TX90p stations showed significant positive
correlations between the index and the two NDVI datasets (R > 0.1; P < 0.05).
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Figure 9 shows the spatial distributions of the correlation between the frequency indices of extreme
climate events and the NDVI datasets from the NOAA-SWS and GIMMS-3g. Similar patterns were
found on the correlations between the two NDVI datasets and the frequency indices of extreme climate
events. Concretely, the CSDI and the TN10p were negatively correlated with the NDVI in most stations
in the Northeast Plain (G3) and the Yangtze River Basin (G8) in Figures 8e and 9a. As one of the main
crop production areas, the NDVI for crop plants in the Northeast Plain was higher (or lower) when the
number of consecutive days of cold temperature decreased (or increased) in past decades. These results
could be due in part to the fact that crop plants are subject to suffering cold stress [59,60]. Further, crop
growth may also be affected by irrigation [61] and soil erosion [62].
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Figure 9. Correlations between the NOAA-SWS NDVI and (a) CSDI, (b) TN10p, (c) WSDI,
and (d) TX90p, as well as between the GIMMS-3g NDVI and (e) CSDI, (f) TN10p, (g) WSDI, and
(h) TX90p.

As shown in Figure 9c,g, positive correlations between the WSDI and the NDVI are mainly
distributed in the eastern and southern parts of the NSTEC. This result indicates the possible
enhancement of vegetation activity owing to the frequent occurrence of extreme high temperatures.
In the southern NSTEC with a deciduous broad-leaved forest, concurrences of rain and heat energy
provide favorable conditions for vegetation growth in monsoon climates. Similar phenomena could
also be found in the northernmost part of the NSTEC, including the regions in the Changbai Mountain
(G4) and the northern of Great Hinggan Mountains (G1) [63]. In addition, negative correlations could be
found in the semi-arid areas where water is insufficient, including the Inner Mongolia Plateau (G2) and
the Northeast Plain (G3) [63]. Negative correlations could be due to the fact that the vegetation growth
of grasslands and croplands is inhibited, as extremely high temperatures can accelerate transpiration
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and evapotranspiration and thus threaten vegetation growth [64]. Similar patterns could also be found
between the TX90p and the NDVI (Figure 9d,h).

4.3.2. Correlation between the Intensity Indices of Extreme Climate Events and Vegetation Activity

For extreme high temperature intensities, most stations passed a significance test according to
the correlation analysis between the TXX and the NDVI. Among them, 63% and 50% of the stations
showed positive correlations (R > 0.1; P < 0.05) according to the analysis of the SWS-derived NDVI and
GIMMS-3g NDVI. For the extreme cold temperature intensity (TNN), we found that 53% and 63% of
the stations showed a positive correlation between the TNN and the two NDVI datasets, respectively.

As shown in Figure 10, consistent correlations could be found between the two satellite-derived
NDVI observations and the intensity indices of extreme climate events (i.e., TNN, TXX, and R95p).
That is, the correlation between extreme high temperature and NDVI is mainly positive in the northeast
and south parts of the NSTEC. In addition, the correlation between the NDVI and the TXX is highly
consistent with that of the WSDI and the TX90p (Figure 9c,d,g,h and Figure 10b). However, for extreme
cold temperature intensity, the spatial distribution of the correlation between the NDVI and the TNN
was different from that of the frequency of extreme cold temperature events. In detail, the TNN was
positively correlated with the NDVI in most of the NSTEC.
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For extreme precipitation intensity, negative correlations between the R95p and the NDVI were
widely found in the Yangtze Basin, the Pearl River Basin, and the northernmost of the NSTEC. On the
other hand, the positive correlations between R95p and NDVI were mainly concentrated in the central
region of the NSTEC (Figure 10c,f), such as the Loess Plateau (G5), the Inner Mongolia Plateau (G2),
and the Northeast Plain (G3). This phenomenon could be due to the fact that rainstorms can promote
vegetation growth in the water-limited conditions in semi-arid regions [65].

The effect of extreme climate events on the NDVI were also analyzed by combining the frequency
and intensity of extreme climate events as a whole. For instance, both the frequency and intensity of
extreme high temperature indices (i.e., WSDI, TX90p, and TXX) showed overall increasing trends in
the past decades in the NSTEC (Figures 5 and 7). Accordingly, the NDVI revealed an enhanced trend
during this period. Furthermore, an obvious negative effect of extreme climate events on vegetation
activity could be found in 1984, 1993, 2000, 2005, and 2007 (Table 2). For instance, the frequency and
intensity of extreme cold temperatures (i.e., CSDI, TN10p, and TNN) were relatively severe in 1984.
That is, extreme cold temperature events occurred more frequently and lasted for a longer time than
during any other periods. Consequently, the NDVI showed a lower level than in any other years.
Similar phenomena could also be found in 2005.

Table 2. Changes of the NDVI and the extreme climate indices when severe extreme climate events
occurred (where +/− represents the fact that extreme climate indices are higher/lower than usual).

Year Higher than Usual Lower than Usual NDVI-SWS NDVI-GIMMS

1984 CSDI, TN10p, TNN - -
1993 CSDI, TN10p TNN, WSDI, TX90p, TXX - -
2000 TX90p, TXX R95p - -
2005 CSDI, TN10p, TNN - -
2007 TNN, TX90p CSDI, TN10p + +

In 1993, the frequency of extreme cold temperature events (e.g., CSDI and TN10p) was increased,
while the intensity of the extreme cold temperature events was strengthened (Table 2). As a result, the
NDVI was relatively small due to the frequent occurrence of severe extreme cold temperatures. In 2000,
both the frequency and intensity of extreme high temperatures were found to be enhanced (i.e., a large
TX90p and large TXX). Meanwhile, a weak intensity for extreme precipitation events was found in the
NSTEC (Figure 5). Consequently, the NDVI was relatively small in comparison with that during other
periods. This NDVI reduction could be attributed to the large-scale droughts in the region [66]. In
2007, the frequency and intensity of extreme cold temperature events were relatively weak (i.e., a small
CSDI, small TN10p, and high TNN). Thus, the NDVI was relatively high in that period.

We further explored the combined spatial effects of the frequency and intensity of extreme climate
events on vegetation in the NSTEC. Three typical regions were then analyzed: A1, a water-limited
area; A2, a monsoon climate zone; and A3, an urbanized area (Figure 11). In detail, In the region A1,
extreme precipitation events showed a weakening trend (Figure 11e). Meanwhile, we found concurrent
occurrences of increased frequency, as well as enhanced intensity of extreme high/cold temperatures
(Figure 11b–d,f–h). Consequently, the NDVI showed mainly weakening trends over the past decades.
Nevertheless, the NDVI showed an increasing trend in the northern Greater Hinggan Mountains
(G1). This increase could be associated with the obvious increase in the days of the biological growth
season [67], as well as the wide distribution of forest lands, including coniferous forests and coniferous
mixed forests. In region A2, the NDVI mainly showed an upward trend (e.g., Jianghan-Dongting-Lake
Plain; G7 in Figure 11). This increased NDVI could be associated with the abundant moisture and heat
in a typical monsoon climate. Concretely, the intensity and frequency of extreme high temperatures
increased significantly, while extreme precipitation revealed overall increasing trends. In addition, the
intensity and frequency of extreme cold temperatures showed decreasing trends. Consequently, the
concurrences of rain and heat energy provided a suitable environment for plant growth. A3 is mainly
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located in the Pearl River Delta (G10). In this region, the NDVI decreases significantly. This decrease
could be mainly associated with rapid urban expansion in past decades. Since the 1980s, urbanization
in the Pearl River Delta has increased by more than 60% [68]. Although the frequency and intensity of
extreme high temperatures increased significantly in A3, the increase of urban land use will lead to a
significant reduction in vegetation activity [69].
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4.3.3. Analysis of the Correlation between Different Climatic Ecozones

As shown in Table 3, consistent correlations could be found in most cases from both the NOAA-SWS
and GIMMS-3g datasets. For instances, extreme temperature events mainly showed positive effects
on cold temperate coniferous forests. In addition, temperate grasslands are affected by extreme
cold temperature events. That is, the frequency of extreme cold temperature mainly has negative
relationships with NDVI. That is, more extreme cold temperature events could reduce the NDVI in
temperate grasslands. Extreme high temperature indices (i.e., TXX, WSDI and TX90p) mainly have a
negative effect on grasslands. In addition, extreme precipitation events have a positive influence on
the grassland according to both satellite-derived observations (likely induced by the watering effects
in semi-arid areas).
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Table 3. Correlation between the NDVI and extreme climate indices by ecozones (SWS and GIMMS
represent the NDVI from NOAA-SWS and GIMMS-3g).

Ecozone Data
Source

Correlation

TNN CSDI TN10p TXX WSDI TX90p R95p

Tropical monsoon rainforest SWS 0.220 −0.171 0.249 −0.263 0.199 −0.297 −0.221
GIMMS 0.295 −0.232 −0.294 0.208 0.352 0.412 −0.224

Subtropical evergreen
broad-leaved forest

SWS 0.252 −0.230 −0.281 0.269 0.272 0.342 −0.284
GIMMS 0.260 −0.261 −0.248 0.244 0.251 0.254 −0.257

Warm-temperate deciduous
broad-leaved forest

SWS 0.349 −0.208 −0.245 −0.288 −0.287 −0.291 0.241
GIMMS −0.232 −0.274 −0.281 −0.256 −0.265 −0.223 0.223

Temperate mixed forest SWS 0.334 −0.222 −0.304 0.245 0.282 0.273 −0.315
GIMMS −0.222 −0.217 −0.235 0.231 0.208 −0.241 −0.212

Temperate grassland SWS 0.356 −0.259 −0.255 −0.294 −0.296 0.258 0.259
GIMMS −0.219 0.259 −0.215 −0.235 −0.275 −0.286 0.287

Cold temperate
coniferous forest

SWS −0.203 0.266 0.212 0.383 0.248 0.432 −0.220
GIMMS 0.218 0.200 −0.213 0.349 0.268 −0.268 −0.219

For forest vegetation, including temperate mixed forests and subtropical evergreen broad-leaved
forests, relatively consistent correlations could be found from both the NOAA-SWS and GIMMS-3g
observations. For temperate mixed forests, subtropical evergreen broad-leaved forests, and tropical
monsoon rainforests, both the frequency and intensity of extreme high temperature have positive
effects on vegetation. In addition, extreme precipitation events had negative effects on the vegetation.

On the other hand, the NDVIs are positively correlated with the extreme precipitation index in
warm-temperate deciduous broad-leaved forests. Furthermore, both the intensity and frequency of
extreme high temperature have a negative effect on vegetation growth.

4.4. Possible Causes of the Vegetation Activity Changes to Extreme Climate Events

According to the aforementioned results, the vegetation NDVI reveals an overall increasing trend
in the NSTEC from 1982 to 2012, even though spatial heterogeneity exists. This increase could be
associated with extreme climate characteristics, vegetation types, and human activities. For instance,
the vegetation growth of grasslands and croplands could be inhibited by changes in extreme high
temperature events and extreme precipitation events in the Inner Mongolia Plateau and the Northeast
Plain [32]. Similar results were also found in the case study of European in Baumbach et al. [70].

In addition, human activities, including urban land development, could dramatically affect local
vegetation activity. One of the typical examples is in the Pearl River Delta. Despite favorable climate
conditions, vegetation activity in this region still decreased in past decades. The main reason for this
phenomenon could be attributed to large urban land development.

Furthermore, climate change, especially the combined effects of extreme precipitation events,
as well as the frequency and intensity of extreme temperature events, could be attributed to
changes in vegetation activity. For instance, vegetation activity revealed increasing trends in the
Jianghan-Dongting-Lake Plain, the Yangtze River Basin, and the Wuyishan District due to the
concurrent occurrences of enhanced high temperature extremes, precipitation extremes, and weakened
cold temperature extremes.

5. Conclusions

Transect analysis has obvious advantages on understanding the effects of climate change on
terrestrial vegetation activity by substituting space for time [25,26]. In this paper, the impacts of extreme
climate events on vegetation activity were assessed over the period of 1982–2012 using the North South
Transect of Eastern China (NSTEC) as a case study. Seven extreme climate indices from ETCCDI were
selected to reflect changes of extreme climate events from aspects of frequency and intensity. We
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found that the frequency and the intensity of extreme high temperatures events showed an overall
enhanced trend. However, we also found an enhanced frequency and weakened intensity of extreme
cold temperature events, although they were not significant. Under such conditions, vegetation activity
revealed an overall strengthened trend in the NSTEC over the past decades. Despite this, this trend is
locally uncertain. The possible causes of the vegetation activity changes to extreme climate events
were explored from the perspectives of vegetation type and human activity, as well as the combined
effects of precipitation extremes and the frequency and intensity of temperature extremes.

This paper highlights the necessity to clarify the vital role of climate extremes on vegetation
activity. However, there are also limitations in this study. For instances, vegetation activity was
captured using NDVI as an indicator. Nevertheless, the NDVI still has some limitations. For example,
it is easily saturated in rainforest areas and is susceptible to water vapor, dust aerosol pollution, and
so on [30]. In addition, uncertainties still exist when sampling the NDVI based on meteorological
stations from satellite-derived datasets at a coarse resolution. In addition, extreme climate events
are frequently instantaneous and often exert severe influences on vegetation growth during a certain
period. However, vegetation responses to extreme climate events are often lagged [71–73]. The lag time
period is still uncertain due to the differences in vegetation type, as well as the magnitude, duration,
and frequency of extreme climate events. Consequently, the impacts of extreme climate events on
vegetation activity deserve further investigation by tacking them with different lag time periods in
the future.
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