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Abstract: The aim of this 15-month study was to evaluate and compare two partially saturated
(PS) vertical flow (VF) wetlands for total nitrogen (TN) removal. The PS VF wetlands, evaluated in
duplicate, were added with corncob (CC) in two different heights of the free-drainage zone (FDZ).
The FDZ had a height of 40 cm and the saturated zone (SZ) had a height of 30 cm. The configuration
of the system I (SI) was a 20 cm-corncob bed above the SZ followed by a 20 cm-tezontle bed; in system
II (SII) the order of the beds were inverted. The SZ was added with tezontle with a size of 1−2 cm.
Weekly measurements of water quality parameters including oxygen demand (BOD5), chemical
oxygen demand (COD), color, total suspended solids (TSS), organic nitrogen (Org-N), ammonium
(NH4

+), nitrate (NO3
−) and nitrite (NO2

−), were taken in the influent and effluents, and interfaces
(nitrate and nitrite). Measurements of pH, dissolved oxygen (DO) and oxidation-reduction potential
(ORP) were taken in the SZ. The addition of CC in the FDZ did not interfere with the capacity of the
PS VF wetlands for BOD5, COD, TSS and true color removal, reaching mass removal efficiencies
of 91.9% and 92.2%, 66.6% and 75%, 89.8% and 92%, 63.3% and 66.0%, for SI and SII, respectively;
without significant difference between the systems (p > 0.05). The CC in the FDZ neither interfered
with the PS VF wetlands nitrification capacity. The removal of TN was similar in SI and SII (p > 0.05),
attaining average mass removal efficiencies of 68.2% and 66.0%, respectively. These efficiencies were
not sufficiently high due to the limited denitrification process in the SZ as a result of the absence of
biodegradable carbon, generated and consumed in the FDZ.
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1. Introduction

Nitrogen compounds are responsible for the deterioration of surface waters, resulting in
eutrophication, toxicity for aquatic creatures and risks to human health [1,2]. Nitrification-denitrification
is considered as the most effective pathways to remove total nitrogen (TN) from wastewater with
different wastewater treatment technologies such as treatment wetlands (TWs) [3]. Nitrification is a
two-step process by which autotrophic ammonia-oxidizing bacteria (AOB) and archaea (AOA) oxidize
NH4

+ to NO2
− through the ammonia monooxygenase (AMO) enzyme [4], followed by nitrite-oxidizing

bacteria (NOB) that oxidize NO2
− to NO3

− via the nitrite oxidoreductase (NXR) enzyme [5], under
aerobic conditions [6,7]. Although, recently it was discovered that some bacteria, members of the
genus Nitrospira, are capable to perform a complete nitrification; this kind of bacteria are currently
called COMAMMOX (complete ammonia oxidizer) [8,9]. Additionally, heterotrophic nitrification
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has been reported by a number of bacteria (Thiosphaera pantotropha, Bacillus sp., Pseudomonas sp.,
Rhodococcus sp., Agrobacterium sp., Acinetobacter sp., Zobellella taiwanensis DN, Klebsiella pneumoniae CF-S9,
etc., [10,11]. On the other hand, denitrification is the reduction of NO3

− until nitrous oxide (N2O) or
molecular nitrogen (N2) under anoxic/anaerobic conditions by heterotrophic bacteria; for denitrification,
organic carbon becomes a limiting factor when the wastewater has a low C/N ratio [12,13]. However,
denitrification is also performed by AOB and AOA due to the fact that N2O is generated as by-product
of ammonia oxidation [14]. Moreover, autotrophic denitrification takes place by those groups of bacteria
capable of heterotrophic nitrification [11]. Anaerobic ammonium oxidation (ANAMMOX) is another
TN removal mechanism where NH4

+ is oxidized to N2 using NO2
− as an electron acceptor without

the presence of organic carbon and oxygen. However, ANAMMOX biomass has slow growth in
comparison to heterotrophic denitrifiers; additionally, denitrificant communities can inhibit the growth
of ANAMMOX bacteria [15,16].

The biochemical processes related to nitrogen compound transformations in the TWs depend
mainly on their design and mode of operation. Subsurface vertical flow (VF) wetlands are intermittent
feeding systems with high oxygen transfer, supporting nitrification but not denitrification; while
subsurface horizontal flow (HF) wetlands are flooded systems with anoxic and anaerobic conditions,
which make them more adequate for denitrification but less efficient for nitrification [17]. Thus,
an alternative TW to reach high TN removal is a partially saturated (PS) VF wetland [18,19] which
is an innovative and efficient option due to its combination of a free-drainage zone (FDZ) on the
upper part and a saturated zone (SZ) in the bottom part; thus, the nitrification-denitrification process
can take place in one single stage [17,20–23]. Nevertheless, if biodegradable carbon content in the
influent is low, it is consumed along the FDZ through aerobic respiration [24,25], resulting in a poor
denitrification in the SZ. Then, the addition of an external carbon source could provide the carbon
requirements for heterotrophic denitrification [24] such external sources have generally been added
along the FDZ and SZ in different studies [19,21]. The use of a solid carbon source (SCS) appears more
advantageous when compared to the expensive-soluble carbon sources like ethanol, methanol, glucose,
etc., [26]. SCSs come from renewable resources and are generated as wastes in huge quantities, mainly
in developing countries such as Mexico.

In a previous study we evaluated the use of corncob (CC), an abundant agricultural lignocellulosic
residue in Mexico which was placed in the SZ of PS VF wetlands for the removal of TN and obtained
an average efficiency of 73.0% for seven months (after a stabilization period of three months) that
decreased in 11% for the next seven months [26]. In addition, a high release of biochemical oxygen
demand (BOD5) and chemical oxygen demand (COD) was registered in the effluents during the
first months of operation coinciding with a higher removal of TN. Apparently, one solution to these
performances is the placement of CC in the FDZ that could result in a slower degradation; however,
due to the higher capacity of CC for water retention than the filter medium, this could affect the
aeration capacity of the PS VF wetlands. On the other hand, besides the possible slower degradation,
another advantage of placing CC in the FDZ is an easier replacement after its exhaustion. Therefore,
the aim of this study was to evaluate and compare TN removal in PS VF wetlands with CC as a SCS
placed in two different heights of the FDZ, as well as to evaluate the impact of the presence of corncob
in the removal of other pollutants.

2. Materials and Methods

2.1. Systems and Experiment Description

Two different PS VF wetlands (SI and SII) were evaluated in duplicate for TN removal, in the TW
pilot-plant located in the University of Guadalajara at the campus of Centro Universitario de la Cienega
in Ocotlan, Jalisco, Mexico, under a subtropical climate. Their dimensions were 48 cm length, 48 cm
width and70 cm height and were in operation from March 2017 to June 2018 receiving a portion of the
wastewater generated in the campus. Both systems had a FDZ of 40 cm and a SZ of 30 cm (Figure 1).
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The SZ of both systems were filled with tezontle, an abundant volcanic rock in Mexico and currently in
use as filter medium in TWs in this country [27]. The particle size of tezontle was between 1–2 cm, with
a porosity of 0.53. With respect to the FDZ, its configuration was different in the two PS VF wetlands.
In SI a 20 cm-bed of corncob was placed immediately above the SZ and then, a 20-cm bed of ground
tezontle was added. In SII, these two 20-cm beds were placed in the opposite position with respect to
SI. On the surface of each PS VF wetlands, thicker tezontle was used for the distribution of influent and
one plant of Iris sibirica was planted. Both systems were fed with 4.2 L/3 h (volume flow rate, 34.4 L/d)
of the pretreated wastewater with programmed 18-W pumps. The hydraulic retention time was ~1.1 d.
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Figure 1. Two pilot-scale partially saturated (PS) vertical flow (VF) wetlands for nitrogen removal.

2.2. Water Quality Parameters and Sampling Methods

The systems were fed with the pretreated wastewater since the beginning of March 2017. After three
months of stabilization, water samples were taken weekly for both influent and effluents of the PS VF
wetlands for 48 weeks. Physicochemical parameters for water quality were analyzed immediately in
the Environmental Quality Laboratory of the University campus according to the Standard Methods
for the Examination of Water and Wastewater [28]. These parameters included Org-N, NH4

+, NO3
−,

NO2
−, BOD5, COD, total suspended solids (TSS), pH, electric conductivity (EC), color, and alkalinity.

Measurements of evapotranspiration were also taken in order to calculate pollutant mass removal
efficiencies. In addition, NO2

− and NO3
− were determined at the interfaces to confirm the nitrification

process. BOD5 and COD were also measured at the interfaces during the last 23 weeks of the study,
in order to evaluate the impact of the presence of corncob in the wastewater characteristics after
passing through the FDZ. Furthermore, alkalinity was also analyzed at the interface during the last
18 weeks of the study. Moreover, in order to know the internal conditions of the PS VF wetlands,
oxidation-reduction potential (ORP), dissolved oxygen (DO), pH and EC were measured weekly at the
interface and bottom of the SZs, as well as in the influent and effluents of the systems. This was possible
through a perforated PVC column installed along the entire height of the systems. The parameters
were measured with an HQ40d series portable Hach meter with the respective Intellical sensor for
each analysis.
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2.3. Statistical Analysis

A randomized block design was used to analyze the data of all the sampling campaigns in the
study. Analysis of variance (ANOVA) was applied to determine the significant differences among
the treatments (influent, SI and SII) with the use of the Statgraphics Centurion XV.II software for
windows (StatPoint Technologies, Warrenton, VA, USA). A significance level of p = 0.05 was used for all
statistical tests, and the values reported were the mean values (average ± standard error of the mean).
When a significant difference was observed between treatments in the ANOVA procedure, multiple
comparisons were made using the least significant difference (LSD) test for differences between means.

3. Results and Discussion

The mean physicochemical characteristics of the wastewater along the period of monitoring are
shown in Table 1, with an average hydraulic load (HL) of 145.8 mm/d. Additionally, the organic
loading rates were 9.1 g BOD5/m2.d and 20.4 g COD/m2.d, while the ammonium loading rate was
10.4 g NH4

+-N/m2.d. According to [29], the wastewater fed to the PS VF wetlands could be classified
as a weak domestic wastewater due to its BDO5 and COD concentrations although the ammonium
concentration was higher of that commonly found in domestic wastewater.

Table 1. Wastewater characteristics along the period of study (average ± standard deviation, n = 48).

Parameter Influent

Oxygen demand (BOD5, mg/L) 61 ± 54
Chemical oxygen demand (COD, mg/L) 136 ± 85

TSS (mg/L) 43 ± 33
Org-N (mg/L) 4.5 ± 2.8
NH4

+ (mg/L) 69.7 ± 46.0
NO2

− (mg/L) 0.05 ± 0.1
NO3

− (mg/L) 10.8 ± 11.0
Total nitrogen (TN, mg/L) 85.3 ± 57.2

Color (PtCo unit) 264.8 ± 30.7
Alkalinity (mg/L as CaCO3) 558 ± 226.0

pH 7.8 ± 0.2
Electric conductivity (EC, µS/cm) 1198 ± 587

3.1. Performance of the PS VF Wetlands for the Removal of Pollutants Affected Directly by the Presence
of Corncob

3.1.1. BOD5

Despite the addition of corncob and the increase in the concentration of BOD5 in the influent
during the dry season (November–March), the concentrations in the effluents of the PS VF wetlands
were permanently low and significantly reduced (Figure 2A) (p < 0.05), reaching average concentrations
throughout the study of 4.9 mg/L and 4.7 mg/L in SI and SII, respectively. Additionally, based on the
measurements of BOD5 during the last 23 weeks of the study in the influent, interface and effluents
(Figure 3), it was found that the concentration of BOD5 was reduced mainly in the FDZ and only tended
to lower values when the wastewater drained through the SZ. Interestingly, these results demonstrated
that the placement of corncob in the FDZ prevented that high increase in BOD5 concentrations in the
effluent observed in a previous similar study with the same wastewater during the initial four months
of operation, with corncob in the SZ of PS VF wetlands [26]. Consequently, BOD5 removals were very
high, without statistical difference between the PS VF wetlands (p > 0.05), with 91.9% and 92.2% for
SI and SII, respectively. Such efficiencies are similar to those reported by [30] (higher than 90%) in a
comparative study of PS VF wetlands with four different heights (5, 30, 45 and 60 cm) of the SZ fed with
digested wastewater (resulting in a low BOD5/TN) and four corresponding different heights of FDZ
(75, 50, 35 and 20 cm), without the addition of a SCS and using oyster shell as filter medium. However,
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in that study, the BOD5 concentration in the influent was much higher (230.59 ± 92.57) mg/L than the
value in this research, so future research could be conducted to assess the behavior of our systems with
higher concentration of BOD5. Meanwhile, the results obtained indicate that the presence of corncob
did not interfere with the aeration capacity of the FDZ and that the release or biodegradable carbon
occurred at a slow rate. Moreover, the removal efficiencies of BOD5 were in the range reported in
unsaturated subsurface VF wetlands with inorganic filter media; for example [31] report and average
removal efficiency of 88.1% for an average concentration of 166 mg/L of BOD5 in 37 subsurface VF
wetlands around the world.
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Figure 3. Comparison of BOD5 concentrations at the three points of the PS VF wetlands during the last
23 weeks of the study.

3.1.2. COD

This parameter showed an unstable behavior during the first months of the study, showing higher
concentrations of COD in the effluents with respect to the influent for some sampling campaigns,
mainly in SI (where corncob was directly above the SZ). Nevertheless, after some months, the COD
concentrations registered more stabilized values (Figure 2B), reaching a significant decrease in both
systems (p < 0.05) along the study, without significant differences between them, with efficiencies of
66.6% and 75% in SI and SII, respectively. It is important to note that the aforementioned slight increase
in the COD concentrations was much lower in comparison to the increments observed by [26] in the
effluents of PS VF wetlands with corncob added in the SZ during the first months of experimentation,
treating the same wastewater evaluated in this study. Furthermore, similar to the BOD5, according
to the measurements in the influent, interface and effluents during the last 23 weeks of the study,
no significant reduction of COD was found after the SZ (Figure 4). On the other hand, in twoVF
wetlands added with wheat straw and newspaper (each one) as carbon sources, [19] reported a similar
behavior of COD concentration in the effluents treating synthetic wastewater. This variation could
be attributed to the release of organic compounds (measured as COD) by carbon sources, which are
mainly recalcitrant aromatic polymers with high resistance to biodegradation due to their lignocellulitic
nature [26,32].

Water 2019, 11, x FOR PEER REVIEW 6 of 16 

 

Figure 3. Comparison of BOD5 concentrations at the three points of the PS VF wetlands during the 

last 23 weeks of the study. 

3.1.2. COD 

This parameter showed an unstable behavior during the first months of the study, showing 

higher concentrations of COD in the effluents with respect to the influent for some sampling 

campaigns, mainly in SI (where corncob was directly above the SZ). Nevertheless, after some months, 

the COD concentrations registered more stabilized values (Figure 2B), reaching a significant decrease 

in both systems (p < 0.05) along the study, without significant differences between them, with 

efficiencies of 66.6% and 75% in SI and SII, respectively. It is important to note that the 

aforementioned slight increase in the COD concentrations was much lower in comparison to the 

increments observed by [26] in the effluents of PS VF wetlands with corncob added in the SZ during 

the first months of experimentation, treating the same wastewater evaluated in this study. 

Furthermore, similar to the BOD5, according to the measurements in the influent, interface and 

effluents during the last 23 weeks of the study, no significant reduction of COD was found after the 

SZ (Figure 4). On the other hand, in twoVF wetlands added with wheat straw and newspaper (each 

one) as carbon sources, [19] reported a similar behavior of COD concentration in the effluents treating 

synthetic wastewater. This variation could be attributed to the release of organic compounds 

(measured as COD) by carbon sources, which are mainly recalcitrant aromatic polymers with high 

resistance to biodegradation due to their lignocellulitic nature [26,32].  

 

Figure 4. Behavior of COD at three points of the systems during the last 23 weeks of the study. 

3.1.3. TSS  

Since the beginning of the study, TSS concentrations were reduced in the effluents despite the 

low concentrations in the influent (Figure 2C) due to the presence of precipitations these months. 

Then, along the study, the TSS were significantly removed (p < 0.05) in the effluent of the systems 

achieving removal efficiencies of 89.8% and 92% in SI and SII, respectively. Such efficiencies were 

much higher than the average 62% obtained by [26] in similar PS VF wetlands with the corncob in 

the SZ; and also higher than the 67% obtained by [22] in a PS VF wetlands with a saturation height of 

35 cm planted with Phragmites australis and treating urban wastewater without the addition of an 

external source of carbon. In addition, [5] reported a lower TSS efficiency (74.3%) in comparison to 

that obtained in this study, in a pilot-scale PS VF wetland with a similar height of the SZ (35 cm) and 

without the addition of a solid carbon source. These findings demonstrate that the aerobic conditions 

in the FDZ diminished the release of suspended solids from the corncob, preventing an increase in 

the concentrations of TSS in the effluents. 

3.1.4. True Color  

The behavior of color concentration was similar in the two systems showing higher values in the 

effluents at the beginning of the study due to the recent addition of the corncob (Figure 5). However, 

even in these initial months, the color concentration was lower or similar to the concentrations in the 
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3.1.3. TSS

Since the beginning of the study, TSS concentrations were reduced in the effluents despite the low
concentrations in the influent (Figure 2C) due to the presence of precipitations these months. Then,
along the study, the TSS were significantly removed (p < 0.05) in the effluent of the systems achieving
removal efficiencies of 89.8% and 92% in SI and SII, respectively. Such efficiencies were much higher
than the average 62% obtained by [26] in similar PS VF wetlands with the corncob in the SZ; and also
higher than the 67% obtained by [22] in a PS VF wetlands with a saturation height of 35 cm planted
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with Phragmites australis and treating urban wastewater without the addition of an external source of
carbon. In addition, [5] reported a lower TSS efficiency (74.3%) in comparison to that obtained in this
study, in a pilot-scale PS VF wetland with a similar height of the SZ (35 cm) and without the addition of
a solid carbon source. These findings demonstrate that the aerobic conditions in the FDZ diminished
the release of suspended solids from the corncob, preventing an increase in the concentrations of TSS
in the effluents.

3.1.4. True Color

The behavior of color concentration was similar in the two systems showing higher values in the
effluents at the beginning of the study due to the recent addition of the corncob (Figure 5). However,
even in these initial months, the color concentration was lower or similar to the concentrations in
the influent. Thus, this parameter was significantly decreased (p < 0.05) in the two PS VF wetlands,
with average efficiencies of 63.3% in SI and 66.0% in SII throughout the study. These efficiencies were
higher than the 34.7% achieved in a subsurface VF wetland packed with recycled bricks and the 14% in
another subsurface VF wetland packed with sugarcane bagasse [33]. These results indicate that, the
addition of corncob in the FDZ of the PS VF wetlands did not affect the color of the effluents, which is
a concern when using solid carbon sources to promote denitrification.
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3.2. Internal Conditions of the PS VF Wetlands

3.2.1. Parameter Measured in Situ

The internal conditions that prevailed in the two PS VF wetlands were very similar along the
study (Figure 6). As expected, the ORP presented a significant increase (p < 0.05) once the influent
drained through the FDZ, but from here, the ORP no longer changed statistically in any of the systems
(Figure 6A). The values measured in the SZ were higher than those reported by [26] who used corncob
in the SZ instead of the FDZ, but adequate for denitrification process [33]. On the other hand, similar
to the ORP, the DO concentrations in the wastewater presented a significant increase (p < 0.05) after
passing through the FDZ (Figure 6B), then, the concentrations were reduced due to the consumption
in the SZ and finally, as expected, the concentrations increased in the effluents when being exposed
to the atmosphere. The concentrations of DO in the saturated bottom of the PS VF wetlands were in
the range of optimal values for facultative denitrificants [34]. With regard to the pH, this parameter
exhibited a significant decrease (p < 0.05) from the inlet to the interface of the two systems (Figure 6C)
without difference between them, mainly due to the nitrification process that took place in the FDZ;
such values increased in the effluents after leaving the systems. The values of pH in the saturated zone
of both systems were in the range of those ideals to accomplish denitrification process [33]. Finally,
the EC presented a significant decrease (p < 0.05) from the influent to the interface of the two systems
(Figure 6D), and then stayed around similar values in the effluents. This significant reduction in EC
when the wastewater drained through the FDZ was expected due to the plant uptake of different
dissolved salts and the adsorption by the filter media [35,36].
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3.2.2. Alkalinity

Alkalinity was significantly reduced in both PS VF wetlands (p < 0.05) after the wastewater
drained through the FDZ (Figure 7) and the consumptions were 65.7% and 75.77% in SI and SII,
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respectively. The reduction in alkalinity concentration indicates that the presence of corncob did not
inhibit the nitrification process and it took place efficiently by means of autotrophic bacteria, which
obtain their carbon requirement from inorganic carbon compounds in the form of carbonates and
bicarbonates. Alkalinity was consumed at 7.14 g/g N oxidized during nitrification and generated at
3.57 g/g N reduced during denitrification [37]. Alkalinity consumption was already evaluated in an
unsaturated VF wetland by [38] who found a reduction of 82.4%.
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3.3. Nitrogen Removal

3.3.1. Organic Nitrogen

Around the three first months of operation, in comparison to the following months, a higher
concentration of organic nitrogen was observed in the effluents (Figure 8A), probably due to the release
of the latter from the corncob recently added. Nitrogen content in corncob was close to 0.43% in dry
weight basis [39]. Apparently, the release of Org-N in these months was higher in SI in which the
corncob was added above the SZ. However, when analyzing the whole period of study, the two PS
VF wetlands registered similar reductions of Org-N with respect to the influent (Figure 8B) (p < 0.05),
reaching mass removal efficiencies of 70.0% and 77.7% in SI and SII, respectively. These efficiencies
were low, in comparison to the 84.7% obtained by [26] in two PS VF wetlands with corncob in the
ZS and treating similar wastewater but with a higher average concentration of Org-N (14.2 mg/L vs.
4.6 mg/L in this study).
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3.3.2. Ammonium

The performance of the two systems for NH4
+ removal, presumably through nitrification, was

effective since the beginning of the study (Figure 9A). Hence, the global mass removal efficiencies
were 82.5% and 83.3% for SI and SII respectively, without difference between the systems (Figure 9B)
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(p > 0.05). These percentages could be considered higher than the mean 79% found by [26] when
evaluating the PS VF wetlands without corncob in the FDZ but in the SZ, for the treatment of the
same influent. Therefore, these results indicate that the addition of corncob in both inferior and
superior section of the FDZ did not affect the capacity of the PS VF wetlands for nitrification, that
was the concern of the study due to a higher capacity of corncob for water retention than the filter
medium, that might have decreased the aeration capacity of the PS VF wetlands. Another pathway for
NH4

+ reduction was ANAMMOX, whose occurrence was already demonstrated in the semi-saturated
layer directly above the SZ in PS VF wetlands without a SCS [26,40]. In this case, the slow release of
biodegradable carbon from corncob prevented the inhibition of ANAMMOX bacteria whose growth
can be inhibited with the presence of oxygen and/or high concentration of organic carbon [41].
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3.3.3. Nitrite

In general, throughout the study, NO2
− concentrations were very low in the influent, interfaces

and effluents. The average concentrations are shown in Figure 10, where it can be seen that there was
not an increase in the concentration at the interfaces (p > 0.05), suggesting the complete transformation
of NH4

+ to NO3
− or the consumption of NO2

− by means of ANAMMOX which is responsible for
NH4

+ oxidation to N2 by NO2
− under anoxic/anaerobic conditions. In addition, another pathway

that could explain the almost null concentrations of nitrite at the interfaces and effluents of the PS VF
wetlands is the presence of COMAMMOX [8] that are ubiquitous and have been found in a diversity
of environments, including soil, water and sediments, similar to the distribution of conventional
ammonia-oxidizing bacteria [9].
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3.3.4. Nitrate

With regard to NO3
−, the performance of the two PS VF wetlands was alike, similar to what

was observed with respect to the other nitrogen compounds. As expected, a significant increase was
observed in the concentrations after the wastewater drained through the FDZ (p < 0.05) and then
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stayed around similar values in the effluents (Figure 11). However, in SII, the average concentration
of nitrate in the interface was significantly higher than that in SI (p < 0.05) (Figure 12). These results
suggest that the placement of tezontle under the corncob favored an additional nitrification before the
influent reached the SZ; in contrast to what happened in SI where the placement of corncob under
the tezontle facilitated denitrification/ANAMMOX rather than favoring nitrification. An additional
proof of a higher nitrification rate in SII was the trend to a higher alkalinity consumption (~10%) when
compared to SI (Figure 7).

On the other hand, the limited reduction of NO3
− concentration in the SZ indicates a poor

denitrification owed to the absence of biodegradable organics [21]. This, despite the fact that corncob
was added in the FDZ of the PS VF wetlands. In addition, when analyzing the hypothetical route of
nitrate generation in the systems (Figure 13) by means of the complete nitrification of Org-N (firstly
transformed to ammonium) and ammonium (plus nitrate concentration in the influent), it was found
that the measured concentrations of nitrate at the interfaces were much lower (Figure 13) than the
estimated concentrations. Such results demonstrate, firstly, that the main transformations of nitrogen
took place in the FDZ and secondly, that both nitrification and denitrification occurred as simultaneous
processes. Similar results have been already found by other authors [17,26,40]. It is possible that AOB
played a very important role in the process of denitrification due to the release of N2O as by-product in
the ammonium oxidation via hydroxylamine (NH2OH) in an aerobic environment; AOA also produce
N2O by pathways that are apparently similar [42]. ANAMMOX could be another pathway that lead to
the low measured concentration of nitrate at the interfaces. It is likely that both anoxic denitrification
and ANAMMOX occurred mainly in the lower semi-saturated zone of the FDZ. It is interesting to
note that, apparently, the main function of the SZ is to allow the existence of this semi-saturated
zone. Additionally, due to the vegetable nature of the corncob, moisture retention can promote more
anaerobic zones for the growth of anaerobic and facultative microorganisms [43]. Furthermore, the
removal of nitrate is also possible by means of aerobic denitrification in the FDZ of PS VF wetlands.
Aerobic denitrifiers can reduce NO3

− or NO2
− to N2 under aerobic environment [44]. The authors

of [20] already demonstrated the presence of pseudomonas in PS VF wetlands, (species that belong to
γ-proteobacteria and are heterotrophic nitrifiers/aerobic denitrifiers).
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3.3.5. Total Nitrogen Removal

TN mass removal efficiencies were 68.2% and 66.0% for SI and SII, which correspond to 8.69 g
TN/m2.d and 8.41 g TN/m2.d, respectively, without significant difference between the two systems
(p > 0.05). Such results are high taking into account that the BOD5/N ratio in the influent was 0.7.
Moreover, they are close to the 72% found by [26] in a first seven month-period of study with the
same influent and corncob in the SZ, but higher than the 62% obtained in the second seven month
-period of study when the biodegradable organic matter provided by the corncob diminished. Thus,
these findings corroborate that the release of biodegradable carbon from the corncob placed in the
FDZ occurred at a more moderate rate, allowing a more constant supply for the nitrification process.
Additionally, it is important to mention that the results obtained in this study were higher than the
3.8 g TN/m2.d reported by [45] in a two-stage VF wetland with an influent concentration of 77.9 mg
TN/L and very similar to the removal of 8.25 g TKN/m2.d (influent concentration, 63 mg TKN/L) in a
single-stage French VF wetland with 25 cm of saturation when treating raw domestic for a year [46].
In addition, the removal of TN in the PS VF wetlands were higher than 7.78 g TN/m2.d obtained in a
HF + HF + VF system with a removal of 58.7%, reported by [47] in a survey about nitrogen elimination
rates of different constructed wetland designs; these authors found that in the vast majority of the
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systems with a variety of configurations, TN removal was very low. Furthermore, the obtained mass
removal efficiencies were definitively higher that those reported in PS VF wetlands without an internal
source of carbon, e.g., 58% found by [17] with 0.2 of SZ and 0.5 of FDZ; 52% reported by [22] with
0.35 m of SZ and 0.45 m of FDZ; 45.8% obtained by [30] with 0.3 m of SZ and 0.4 m of FDZ.

4. Conclusions

The findings in this study corroborate the high capacity of PS VF wetlands, with a lignocellulosic
residue as an internal carbon source, for TN removal. According to the results, the removal of nitrogen
took place mainly in the FDZ, which suggests a simultaneous nitrification-denitrification process in
this zone. Some mechanisms that could explain these results are denitrification by AOB and AOA, as
well as anoxic denitrification and ANAMMOX. Apparently the main function of the SZ was to create a
semi-saturated zone in the lower part of the FDZ that probably enabled the occurrence of denitrification
and ANAMMOX; although, the vegetable nature of CC could provoke more water retention and
consequently, allowed the creation of micro zones with low-oxygen environment facilitating the
growth of anoxic denitrifiers and ANAMMOX microorganisms in other parts of the FDZ. On the other
hand, the placement of corncob in both the lower and superior part of the FDZ did not affect the
efficiencies of the systems for the removal of organic matter and the nitrification process. However,
a more efficient nitrification was registered in SII in which corncob was placed in the upper part of
the FDZ. On the other hand, although the internal conditions of the systems were adequate for the
denitrification process in the SZ, this process took place at a very limited rate due to the absence of
biodegradable organics which were generated and removed in the FDZ. Therefore, future research
should be conducted in order to increase the removal of TN by improving denitrification in the SZ.
Additionally, due to the crucial role of microorganisms in the performance of PS VF wetlands, future
works might assess the influence of different factors on the microbiology of the process for TN, such as
organic and nitrogen loading as well as the impact of the presence/absence of plants.
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