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Abstract: Maternal effects may play an important role in life history and offspring performance
of aquatic plants. Performance and response of maternal and offspring aquatic plants can affect
population dynamics and community composition. Understanding maternal effect can help to fill a
gap in the knowledge of aquatic plant life cycles, and provide important insights for species’ responses
to climate change and eutrophication. This study showed that maternal warming and eutrophication
significantly affected the early life stages of curled pondweed, Potamogeton crispus, a submerged
macrophyte. Propagule in warmed condition had higher germination percentages and a shorter
mean germination time than those under ambient conditions. However, propagule germination
in phosphorus addition treatment was inhibited due to the negative effect of eutrophication,
e.g., phytoplankton competition and deteriorated underwater light. Meanwhile, elevated temperature
led to a decrease of total nitrogen concentrations and an increase of carbon: nitrogen ratios in plant
tissues, which may suggest that P. crispus will allocate more nutrients to propagules in order to resist
the adverse effects of high temperature. A subsequent germination experiment in the same ambient
condition showed that maternal warming promoted seedling emergence in contrast to maternal
phosphorus addition. Consequently, global warming could modify population growth via maternal
environmental effects on early life histories, while increased anthropogenic nutrient inputs may result
in a decreased submerged macrophyte. These maternal effects on offspring performance may change
competition and the survival of early life-history stages under climate warming and eutrophication
through changing the ecological stoichiometry of plant tissue.

Keywords: submerged macrophyte; climate warming; eutrophication; germination; maternal
environment

1. Introduction

Submerged macrophytes play an important role in maintaining the ecological function of shallow
lakes by providing food and refuge for organisms living in the water, stabilizing sediments and
also are intimately involved in nutrient cycling [1–3]. Therefore, submerged macrophytes are of
central importance to stabilize the health of shallow lake ecosystems [4]. Under the global warming
envelope [5], submerged macrophytes are considered to be one of the particularly vulnerable
communities in aquatic ecosystems [6,7]. Both field and mesocosms studies indicate that early warming
will lead to a longer life strategy, higher coverage and biomass of submerged macrophytes [8–10].

However, climate warming will not act in isolation [11], but will interact with eutrophication [12].
Eutrophication has become a major water quality issue in the world [13], and numerous studies
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have shown that a high-nutrient loading lake can shift to a turbid state dominated by phytoplankton
from a clear-water state dominated by submerged macrophytes [14–16]. Macrophytes rarely win
in the competition with phytoplankton in warm lakes, even the concentrations of phosphorus and
nitrogen are considerably low [17]. The effect of long-term eutrophication under climate warming on
submerged macrophytes varies among lakes, and the theories are still intensely debated [18–21].

Meanwhile, many pieces of knowledge show that environmental factors (e.g., warming,
eutrophication) have major impacts on submerged macrophytes carbon (C) and nitrogen (N)
stoichiometry. In aquatic and terrestrial plants researches, elevated temperature could either increase
or decrease in the tissue content of a particular element [22–24]. Nutrient addition may lead to a
decrease of submerged macrophytes’ carbon:nutrient ratios due to luxurious uptake of nutrients [25].
Changes in internal stoichiometry in turn can not only reflect biochemical allocations and life history
strategies of submerged macrophytes, but also help to understand the potential effects on offspring
and their evolution. Maternal nutrient transfer to the propagule during the reproduction period may
have remarkable impacts on the early life stages of aquatic plants [26].

Maternal effects refer to the impacts of the mother plant on the offspring performance not only
through genes, but also via effects of maternal environment [27,28]. Previous studies have shown
that maternal environmental factors such as temperature, nutrients and light can affect life stages of
offspring [29,30]. For example, maternal phosphorus addition to R. obtusifolius and Pisum sativum
can positively affect the germination rate of its seeds [31,32]. Maternal warming can result in higher
germination percentages and shorter mean germination time of offspring seeds than those without
warming [33]. Such maternal environmental effects have a profound influence on plant life cycles, niche
construction and ecosystem evolution [27,34,35]. Maternal effects on terrestrial plants are relatively
well studied, however, less is known about the maternal effects on aquatic submerged macrophytes.

Given the importance of submerged macrophytes in maintaining the homeostasis of aquatic
ecosystems, examining how maternal environmental warming and eutrophication will affect
submerged macrophytes emergence could provide us with a significant contribution to make useful
predictions about the future of lake ecosystems. In this study, we used the widespread curled
pondweed, Potamogeton crispus, as a model species. Similar to other aquatic plants, turions are
the major source of reproduction for P. crispus. The turions form on mother plants in the early summer,
and start to sprout as the temperature declines to about 20 ◦C in autumn. Seedlings of P. crispus can
overwinter in most shallow lakes [36]. In addition, due to the mean temperature increase in winter
and spring under global warming, P. crispus may be one of the most vulnerable macrophytes.

Our previous study demonstrated that the emergence and ecological stoichiometry of P. crispus
were significantly sensitive to the warming environment [37]. Here, we further took the combining
effects of warming and eutrophication into account, and focused more on how maternal environment
will affect offspring seedling emergence. To experimentally elucidate the mechanisms, underlying the
potential changes in maternal and offspring performance attributes in response to climate warming
and eutrophication, we used an experimental mesocosm to examine the effect of maternal warming
and eutrophication (i.e. phosphorus enrichment) on maternal generation and its offspring performance.
We hypothesized that (1) warming would promote the emergence of seedlings, however, phosphorus
addition may increase the competition between macrophyte and phytoplankton; (2) warming and
phosphorus would affect ecological stoichiometry of maternal generation; (3) for the same reason,
we expected warming and phosphorus addition to have a stronger opposite effect on early the
emergence of offspring seedlings.

2. Materials and Methods

Two experiments were included in this study. The first was maternal germination conducted in a
field mesocosm system to mimic eutrophication and climate warming, and the second was set up to
detect maternal effect on offspring seedling emergence in the same environment.



Water 2018, 10, 1285 3 of 13

2.1. Warming and Eutrophication Effects on Maternal Generation

This part of the experiment was conducted from 4 February to 11 March in 2014. In this
part, our aims were to figure out the effect of warming and eutrophication on P. crispus emergence
and its tissue stoichiometric properties. Twenty-four insulated cylindrical polyethylene mesocosms
(diameter = 1.5 m, height = 1.4 m) were set up at Huazhong Agriculture University in Wuhan, China
(30◦29′ N; 114◦22′ E). Sediment was collected with a Peterson grab sampler at the top few centimeters
of a pelagic area in Lake Liangzihu (N 30◦11′3”, E 114◦37′59”), where there is a low amount of
nutrients (TN and TP contents were 0.432 and 0.023 mg/L) in lake water and the water is rich with
macrophytes. The sediment was loaded into pre-cleaned containers and immediately transported to
the experimental mesocosms after being sufficiently mixed. All experimental mesocosms were filled
with mixed lake sediments up to 10 cm high and water up to 1 m high. Mesocosms water collected
from Lake Nanhu (12.5%) and tap water (87.5%) (Concentrations of total nitrogen (TN) and total
phosphorus (TP) were 3.250 and 0.198 mg/L in Lake Nanhu) to simulate mesotrophic lake. Prior to
water addition, water collected from Lake Nanhu was flushed through a 20 µm plankton mesh to
remove large fragments of vegetation and to avoid the uncontrolled introduction of zooplankton and
vertebrates such as fish or amphibians.

The four treatments consisted of (C) controls mimicking the concurrent state in Lake Liangzihu
with respect to temperature and nutrient level; (T) an increase in temperature of 4.5 ◦C compared
to the control; (P) addition of 50 µg L−1 phosphate (KH2PO4) every 2 weeks and mimicking the
eutrophication process of Lake Liangzihu; and (T + P) a combination of both factors, which constituted
a future scenario with respect to temperature and phosphorus content. Each of the four treatments
was replicated six times. Four treatments were randomly distributed in a 10 × 20 m (L ×W) area.
Treatments with increased temperature were performed by aquarium heaters (1000 W). A water pump
was used to mix the water body completely. These mesocosms were controlled by a computer system,
which was equipped with sensors at 0.5 m water depth to measure the temperature in both unheated
and heated mesocosms once every second. The control system regulated each temperature-elevated
mesocosm individually based on the mean of the controls at each measurement time. During this
period, evaporation losses from the mesocosms were replaced with tap water when not compensated
for by rainfall.

Maternal germination of P. crispus in mesocosms was recorded every week using a waterproof
camera (Nikon COOLPIX AW100s, Nikon Corp., Tokyo, Japan) in 2014. The camera was fixed in
an equipment with a long rod. Recording in each tank followed a standard procedure according to
Zhang et al. [37]. All videos were analyzed in the computer, to read the number of emerged seedlings
in each mesocosm.

Each mesocosm was sampled once a week using a Plexiglas tube (length = 1 m, diameter = 70 mm)
to get an integrated water sample. Three tubes of samples were taken along the diameter of each
enclosure, and from this pooled sample, water was taken for analysis of TP, dissolved reactive phosphate
(SRP), TN and chlorophyll-a concentrations. Dissolved oxygen (DO), conductivity and pH were
measured electronically at the same time with a HACH HQD Portable Meters (HQ60d, HACH, Loveland,
CO, USA). Macrophyte samples were taken on 11 May 2014 for total nitrogen (TN) and total carbon (TC)
contents determination. After complete drying in the oven at 60 ◦C for 48 h, we collected the leaves and
stems from each shoot and used a vibration grinding machine (MiniBeadbeater-16, Biospec Products,
Bartlesville, OK, USA) to grind the tissues to powder with steel balls vibrating randomly in a freezing
tube. About 2~4 mg dry powder was used to detect the carbon and nitrogen content using the C/N
element analyzer (Flash EA 1112, Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Warming and Eutrophication Effects on Offspring Turion

The purpose of this experiment was to find out whether maternal environment (e.g., warming
and eutrophication) will affect the germination percentage to develop the next generation. Propagule
used in this part experiment were collected in late December 2014 after the first experiment for each
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mesocosm was finished. Three sediment replicates were dug out from each mesocosm with a PVC
pipe (10 cm inner diameter), and washed with a net (pore size 0.25 mm) to remove all the mud as
a propagule sample. The propagule samples were stored in 4 ◦C for germination experiment until
spring 2015. The experiment started on 10 February 2015 and ended on 20 March 2015. Before
starting offspring seedling, the propagule samples were placed in cylindrical polyethylene containers
(height 9.5 cm and inner diameter 10 cm). There were 18 replicates from each treatment in the first
experiment, and 72 containers in total for this experiment. The containers were labeled separately
according to the four treatments in the first experiment, filled with tap water and placed in the same
ambient temperature. The number of emerged seedlings was counted every day in the morning from
the first day of the experiment. To prevent influence from filamentous algae we changed the water
every week.

2.3. Data Analysis

We used a Repeated Measures ANOVA to test the effect of warming and phosphorus addition
on both maternal and offspring seedling emergence during the experiment. The effect of treatments
on water physicochemical characteristics and tissue TC and TN contents was tested with one-way
ANOVA. We used the concentrations of Chl.a and number of emerged seedlings in March 2014 to
analyse the correlation. The analyses were performed in SPSS 22.0 (IBM Corp., Armonk, NY, USA).

3. Results

3.1. Water Temperature in Mesocosms

During our experiment, the average temperature in heated tanks was 4.50 ± 0.03 ◦C higher than
ambient temperature mesocosms. The daily average ambient water temperature varied from 3.71 ◦C
to 12.45 ◦C. The temperature in the heated mesocosms ranged from 8.17 ◦C to 16.9 ◦C during the same
period (Figure 1).
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3.2. Water Chemistry in Mesocosms

Average values for DO, pH, Conductivity, TN, TP, SRP and Chl.a in the mesocosms are shown in
Table 1. Chl.a concentration (p < 0.01) were significantly higher in phosphorus addition treatments.
Conductivity (p < 0.05) were higher in the heated mesocosms than in ambient ones (Table 1). DO in
heated mesocosms was markedly lower than in ambient temperature mesocosms (p < 0.01, Table 1).
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Table 1. Physicochemical characteristics concentrations in water of all the treatments in 2014. Values
are Mean ± standard error (SE). Abbreviations used: control, C; water temperature was increased
4.5 ◦C compared with the control, T; addition of 50 µg L−1 phosphate every 2 weeks, P; addition of
50 µg L−1 phosphate every 2 weeks and temperature increase of 4.5 ◦C, T + P.

Treatment TP (mg·L−1) SRP (mg·L−1) TN (mg·L−1) DO (mg·L−1) pH Conductivity
(µs·cm−1)

Chlorophyll a
(mg·L−1)

C 0.037 ± 0.012 0.012 ± 0.005 2.352 ± 0.305 12.32 ± 0.27 8.56 ± 0.03 227.70 ± 7.43 2.00 ± 0.54
T 0.036 ± 0.010 0.011 ± 0.004 2.234 ± 0.220 10.22 ± 0.29 8.42 ± 0.02 265.67 ± 9.25 2.13 ± 0.66
P 0.079 ± 0.020 0.014 ± 0.006 1.771 ± 0.380 12.53 ± 0.22 8.92 ± 0.12 209.06 ± 8.27 14.03 ± 2.47

T + P 0.056 ± 0.009 0.011 ± 0.004 1.410 ± 0.221 10.48 ± 0.45 8.77 ± 0.12 250.27 ± 9.76 12.28 ± 3.37

3.3. Emerged Number of P. crispus on Maternal Generation

The number of emerged seedlings in mesocosms increased significantly in both T and T + P
treatments (Figure 2; Repeated measures ANOVA: F320 = 21.28, p < 0.001). Maternal warming
significantly enhanced the emerged number of P. crispus (Figure 2; p < 0.001). While phosphorus
addition did not show any effect on the emergence of P. crispus, the combined effect of warming and
phosphorus addition significantly increased the number of emerged seedlings by 357.78% (p = 0.002).
There was a significant negative relationship between the number of emerged seedlings and Chl.a
concentration in heated mesocosms (Figure 3; p = 0.023). However, there was no significant correlate
between emerged seedlings and Chl.a in ambient mesocosms.
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Figure 2. The average number of P. crispus shoots during the experiment in 2014. Abbreviations used:
control, C; water temperature was increased 4.5◦C compared with the control, T; addition of 50 µg
L−1 phosphate every 2 weeks, P; addition of 50 µg L−1 phosphate every 2 weeks and temperature
increase of 4.5 ◦C, T + P. Different letters (a, b, c) indicate significant (p < 0.05) differences. Error bars
indicate ± standard error (SE).
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3.4. TC and TN Contents of P. crispus on Maternal Generation

There was no difference of TC contents in aboveground parts of P. crispus between different
treatments (Figure 4). However, a decrease of TN contents in tissues was found in T and T + P
treatments with increasing temperature (Figure 4; one-way ANOVA: for leaves, F344= 8.54, p < 0.001;
for stems, F344 = 16.57, p < 0.001), for leaves changed from 22.58 mg/g in C treatment to 17.47 mg/g
in T treatment and 17.94 mg/g in T + P treatment, and stems dropped from 39.82 mg/g to 34.30 and
34.14 mg/g in T and T + P treatments, respectively (for leaves, T treatment, p = 0.001, T + P treatment,
p < 0.001; for stems, T treatment, p < 0.001, T + P treatment, p < 0.001). C:N ratios mirrored total
nitrogen, increased with temperature elevated, varying from 9.78 to 11.31 in leaves and from 15.19 to
19.64 in stems in average, while the TC concentrations changed a little with different treatments.
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3.5. Emerged Number of P. crispus on Offsprings

As for the offspring performance, no significant difference was found between treatments during
the whole experiment (Figure 5, F368 = 1.753, p = 0.164). However, we observed a dramatic emergence
of P. crispus in T and T + P treatments from day 1 to day 9, and then the tendency slowed down.
Following day 31, no further emergence was recorded (Figure 5). During day 9 to day 20, it was found
that average emerged number of P. crispus seedlings in T treatments was slightly higher than those in
C treatments (Figure 5; F368 = 2.519, p = 0.083), and average emerged number of P. crispus seedlings in
T treatment were significantly higher than in P treatment (p = 0.02). After day 20, we could only find a
slight difference between P and T treatments (p = 0.055). The germination rate in warming treatments
was obviously higher than ambient ones from day 5 to day 20 (Figure 5). In a comparison of all the
treatments, the germination rate did not differ significantly from day 21 to the end of this experiment.
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4. Discussion

4.1. Warming and Phosphorus Addition Effect on Seedlings Emergence of Maternal Generation

Our study demonstrated that warming significantly accelerated the emergence of P. crispus.
Temperature, among all the factors that may affect the emergence of submerged macrophytes, is
of paramount importance during life cycle of plants. Some earlier studies found that warming can
promote the growth of aquatic plants [8]. However, many studies have found that there is no evidence
for plant phenology advance though significant warming [38,39], which means it might be species
specific [40]. Our results indicated that warming can accelerate the life cycle of P. crispus. In most cases,
seedlings of a certain plant emerge within the optimal temperature range [41]. Seedlings of P. crispus
in this study emerged around 6 ◦C, as earlier found by Zhang et al. [42] that the length of P. crispus
increased from 8 to 12 ◦C, which means higher temperatures may give rise to earlier emergence to
some extent [43]. Our results imply that temperature could be the most important trigger for the
emergence of submerged macrophytes.

Our analyses and understandings of the reason why phosphorus addition reduced the emergence
of seedlings in T + P treatments is due to the enrichment of phosphorus in aquatic ecosystems, which is
also the main reason that causes water body’s eutrophication. The habitat environment of aquatic
macrophyte deteriorated correlated with intensified eutrophication due to an increase in phosphorus
concentrations and deteriorated underwater light environment due to increased water level, total
suspended matter and Chl.a concentration [44]. During our study period, the concentrations of Chl.a
was significantly higher in phosphorus addition treatments. Higher concentration of Chl.a indicated
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a larger phytoplankton biomass in water column, which resulted in a deteriorated underwater
light environment. Moreover, climate warming could increase the availability of phosphorus to
macrophytes [45]. High phosphorus concentration increased the competition between macrophytes
and phytoplankton [46]. Warming led to a shift from a clear, macrophyte-dominated state to a turbid,
phytoplankton-dominated state [17]. Finally, the emergence of P. crispus in phosphorus addition
treatments was inhibited in our study period due to increased eutrophication and a deteriorated
underwater light environment.

4.2. Warming and Phosphorus Addition Effect on P. crispus Stoichiometric Properties

Temperature increase would lead to a depression of tissue nutrient concentrations of aquatic
macrophytes [47]. According to our study, nitrogen content and the C:N ratio varies significantly
between temperature elevated and ambient, but carbon content did not change. Temperature is one of
the major factors affecting individual physiological process. Macrophytes grown in warmer regions,
need less nutrients (e.g., nitrogen, phosphorus) because of the higher efficiency of biochemical reactions
than cold habitats [48]. The negative correlation between temperature and nutrients indicates that
when exposed in low-temperature environment, macrophytes tend to conserve more nutrients to
counteract the negative effects [47]. However, P. crispus generally stops growing at temperature above
24 ◦C, and starts to decompose when temperature surpass 30 ◦C; it thrives better at low temperatures
(10–20 ◦C) [49]. In our experiment, temperature reached 30 ◦C (May) in T and T + P treatments
when P. crispus began to forming turions. We assume that P. crispus will allocate more nutrients
to propagules in order to resist the adverse effects of high temperature, which was consistent with
Wang et al. (unpublished data) [50] that nitrogen content in turions of P. crispus was higher in elevated
treatment than in ambient treatment. Materials reserved by propagule can affect its germination [51],
especially the nitrogen (N) and carbon (C) contents [52]. In most cases, researchers showed that a high
content of nitrogen will enhance the germination of seeds [53,54]. Therefore, turion’s vigor is likely
to be enhanced by the increase of turions nitrogen content, which may be achieved by an adequate
application of a large amount of nitrogen from parent plants. Consequently, it may be possible to
improve and stabilize the establishment of P. crispus by the turions with a high nitrogen content.

4.3. Warming and Phosphorus Addition Effect on Offspring Seedlings Emergence

Our results demonstrated that maternal warming and phosphorus addition had a significant
effect on the early life stage of offspring of P. crispus. Seedlings from warmed maternal plants emerged
faster and more than those from ambient environment, while seedlings from phosphorus addition
maternal plants were inhibited. Studies suggested that asexual reproduction in macrophytes may
contribute to the maintenance of the current population [55]. As for P. crispus, turions are the major
source of propagation. One mature plant can produce dozens of turions, and the turions consist
of at least two buds covered with a hard shell. In this case, the positive response of the offspring
could cause a rapid population growth in next generation as the temperature increases. Maternal
warming significantly affected the number of seedlings emergence on offspring [33]. Previous studies
of terrestrial plants have demonstrated warm maternal environments can cause higher germination of
seeds of Arabidopsis thaliana [56] and Onopordum acanthium [57] than ambient environments. Our results
are in line with those found that maternal warming can accelerate at least the early life stages of
plants. For aquatic plants, water body temperature is an important influence on plant physiology
and reproduction. In higher water temperature where mother plants grow, the species generally
produce bigger seeds or turions than their lower water temperature congeners, possible due to a longer
growing season and increased speed of seed maturation [58]. Climate warming is a global, constant
phenomenon in the next century. Under this background, P. crispus can be benefited especially when
in competition with those plant species which will not be affected by maternal warming, by improving
plant survival rates. Earlier seedling emergence not only improves plant survival, but also expedites
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the life cycle of the species, which may lead to rapid population growth as mean temperature of water
will increase in winter and spring under global warming.

5. Conclusions

Global warming could modify population growth via maternal environmental effects on early
life histories, while increased anthropogenic nutrient inputs and a degraded underwater light
climate surely result in a decrease of submerged macrophytes. These maternal effects on offspring
performance may change competition and survival of early life-history stages under climate warming
and eutrophication. Furthermore, selection forces on life-history traits other than germination
and emergence should also be considered in order to obtain reliable predictions of individual and
population performance under climate change. Thus, we hope that future studies will integrate
maternal environmental effects with aquatic plant life-history traits when assessing submerged
macrophytes under global warming and eutrophication.
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