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Abstract: Various regression models are currently applied to derive functional forms of
operating rules for hydropower reservoirs. It is necessary to analyze and evaluate the model
selecting uncertainty involved in reservoir operating rules for efficient hydropower generation.
Moreover, selecting the optimal input variables from a large number of candidates to characterize an
output variable can lead to a more accurate operation simulation. Therefore, this paper combined
the Grey Relational Analysis (GRA) method and the Bayesian Model Averaging (BMA) method to
select input variables and derive the monthly optimal operating rules for a hydropower reservoir.
The monthly input variables were first filtered according to the relationship between the preselected
output and input variables based on the reservoir optimal deterministic trajectory using GRA.
Three models, Particle Swarm Optimization-Least Squares Support Vector Machine (PSO-LSSVM),
Adaptive Neural Fuzzy Inference System (ANFIS), and Multiple Linear Regression Analysis (MLRA)
model, were further implemented to derive individual monthly operating rules. BMA was applied
to determine the final monthly operating rules by analyzing the uncertainty of selecting individual
models with different weights. A case study of Xinanjiang Reservoir in China shows that the
combination of the two methods can achieve high-efficiency hydropower generation and optimal
utilization of water resources.

Keywords: grey relational analysis; input variables selection; Bayesian Model Averaging method;
monthly optimal operating rules; hydropower generation; model selecting uncertainty

1. Introduction

Hydropower is a clean and renewable energy source and accounts for 20% of electricity generation
worldwide [1]. Considering the economic, technical, and environmental benefits of hydropower, most
countries, especially for developing countries, usually have a tremendous and ever-intensifying
need for electricity, and they also possess the most significant remaining hydropower potential [2].
A hydropower reservoir is one of the efficient ways to explore the electricity generation reliability
and economic benefit [3]. Accordingly, developing hydropower generation by implementing feasible
reservoir operation rules is being recognized as a strategic issue [4]. The conventional hydropower
reservoir operations currently prescribe reservoir releases based on limited criteria such as current
storage level and inflow [5]. Compared with the conventional operation, the deterministic optimization
model [6] of hydropower generation can detect an optimal solution for better utilization of available
resources with the increasing complexity and interdependency of systems in reservoir management [7].
However, the deterministic optimization with perfect inflows or other system inputs is challenging to

Water 2018, 10, 1099; doi:10.3390/w10081099 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://dx.doi.org/10.3390/w10081099
http://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/10/8/1099?type=check_update&version=2


Water 2018, 10, 1099 2 of 20

apply to real operations. Reservoir operation decisions should be made as needed in “real-time” with
the limited foresight of future conditions [8].

There are two commonly considered forms of reservoir operating rules, namely the reservoir
operating function and the operating chart [9]. The reservoir operating function directly derives the
operating rules from a deterministic optimization model that can better inherit the optimization
efficiency in hydropower generation than the operating chart. Various functional forms are
successfully applied to the deduction of reservoir operating rules, including Multiple Linear
Regression Analysis (MLRA) methods [10], artificial neural network (ANN) approaches [11],
adaptive-network-based inference system (ANFIS) techniques [12], support vector machine (SVM)
method [13], etc. Although the above operating rules have been successfully used, except the MLRA
model, the other machine learning models are black box models, and all models will have model
bias. Therefore, it is necessary to analyze and evaluate the model selecting uncertainty involved in
reservoir operating rules. The Bayesian model averaging (BMA) method can overcome this uncertainty
of selecting models by conditioning, not on a single “best” model, but on the entire ensemble of
statistical models first considered [14,15]. The BMA method is widely applied in many fields, such
as hydrological forecasting [15], social and health sciences [16], stroke risk [17], and groundwater
modeling [18,19]. However, rare applications of this technique in the area of deduction of reservoir
operating rules have been recently reported [20].

The reservoir operating rules determining the operation process at which the output variables,
such as the final water level, release, or power output, are performed are based on the currently
available reservoir information referred to as input variables. For a more accurate, parsimonious,
and physically interpretable simulation for the reservoir operation process, selecting the optimal input
factors from a large number of candidates to characterize an output variable is indispensable [21].
Input variables selection approaches are commonly divided into two categories, model-based and
model-free methods [22]. Model-based methods can efficiently figure out the best inputs from
different sets of inputs according to a lot of calibration and validation processes, but which are
considered computationally intensive and time-consuming [23]. Different from the model-based
method, model-free methods work based on the relationship between the input and output variables,
as measured by interclass distance, statistical dependence, or an information-theoretic measure [24,25].
Nevertheless, few studies have concentrated on the selection of input factors using model-free methods
while deriving the reservoir operating rules. Ji et al. [26] firstly implemented the multiple linear
regression algorithms for selecting appropriate time, space, and energy factors to optimize the
hydropower generation operating function for cascaded reservoirs. They [27] then applied the rough
sets theory to remove redundant attributes of the input variable sets deriving the flood operation
rules. Yang et al. [28] proposed a cascade-reservoir input-variables selection method considering
the relations between input variables and decision-making in optimal reservoir operation using the
extra-tree model. In addition, the relationship between the preselected output and input variables is
not constant during the different periods. Thus, the monthly optimal input variables are needed for
efficiently modelling of operating rules.

Grey relational analysis (GRA) proposed by Deng [29] is an impacting measurement method in
grey system theory that analyzes uncertain relations between one main factor and all the other factors
in a given system. It could be used to measure the approximate correlation between sequences with
convenient and small procedures [30]. The GRA method is successfully applied to select the optimal
input variables in many fields [31–33], including agriculture, traffic, industrial engineering, education,
but rare studies focus on reservoir operation problems [34,35]. In this paper, GRA is first applied to
derive the optimal input factors based on the relationship between the preselected output and output
variables in the area of hydropower reservoir operation.

For efficient hydropower generation, the primary purpose of this study is to combine the GRA and
BMA method to derive the monthly optimal operating rules for a hydropower reservoir. An optimal
deterministic operation model of reservoir hydropower generation is first established and solved.
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Then, the optimal monthly input factors are determined based on the correlation between preselected
output and input variables according to the optimal trajectory using GRA. PSO-LSSVM, ANFIS,
and MLRA are further applied to derive individual operating rules. Lastly, BMA is used to determine
the final reservoir operating rules. The flowchart of the study is shown in Figure 1. A case study of
Xinanjiang Reservoir in China is applied to demonstrate the combination of the two methods.
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2. Model Formulation

As this study aims to derive the optimal operating rules for a hydropower reservoir, two objectives
while satisfying all kinds of constraints are considered here: one is to maximize the hydropower
generation [36],

J1 = max(
T
∑

t=1
Nt∆t) Nt = AHtqt∆t (1)

and the other is to maximize the firm output. A maximin model [37] is selected to optimize the firm
power, as shown in Equation (2), which has been proved to be capable of obtaining the same minimal
output as the equal output method with more direct and reliable results.

J2 = max
(

min
t

Nt

)
(2)

The equivalent transformation [37] is to maximize the hydropower generation with a penalty
function for a violation of firm power output (Equation (3)). The reservoir optimization model operates
by determining an optimal release or water level for a reservoir over the whole operation period.
In this study, the monthly reservoir water level is set as the decision variable. The release of the
reservoir is defined with a predefined water level according to the water balance equation: St+1 = St +
(Qt − Ut) × ∆t.

J = max
(

T
∑

t=1
(Nt − µ(min(Nt − N f , 0))2

)
∆t
)

Nt = AHtqt∆t
(3)

where J is the objective (KW·h); A is the power output coefficient of the hydropower station; Ht is the
water head of the hydropower station, Ht = Zt – Zd,t, Zt is the reservoir water level, Zd,t is the tailwater
level, (m); qt is the turbine release of hydropower station at time step t (m3/s); Nt is the power output
of hydropower station at time step t (MW); Nf is the firm power of the hydropower reservoir (MW); ∆t
is the time step (s); and µ is the penalty factor, which is generally regarded as a large number.

The operation model of a reservoir is subject to the following constraints:

a. Water storage constraint:
Smin,t ≤ St ≤ Smax,t (4)

b. Outflow constraint
Umin,t ≤ Ut ≤ Umax,t (5)
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c. Turbine release constraint
qmin,t ≤ qt ≤ qmax,t (6)

d. Power output constraint
Nmin,t ≤ Nt ≤ Nmax,t (7)

where t is the index of time step; Qt and Ut are the inflow and outflow of reservoir at time step t (m3/s),
respectively; St is the storage of reservoir at time step t (m3); and min and max are the lower and upper
boundaries, respectively.

In this study, a Dynamics Programming (DP) method was applied to solve the deterministic
operation model to find the optimal or near-optimal trajectory (the monthly power output and reservoir
water level).

3. Methodology

3.1. Description of the Input and Output Variables

The power output N is selected as the output variable here as this paper aims to generate rules
for hydropower generation. Input variables are distributed into two types, namely time and energy
factors. The time factors representing the state of a reservoir includes the initial water level Z0, inflow
Q, and maximum water level Za, as in Equation (7) [27]:

Zα = φ(V0 + QtT) (8)

where φ is the relation function between the storage and the water level; V0 is the initial reservoir
storage at time step t (m); and T is the time step, T = 2.63 × 106 s.

In this paper, the incoming hydropower Ef (kW·h), the storing hydropower Es (kW·h), and the
interaction between incoming and storing hydropower Efs (kW2·h2) are considered as the energy
factors, represented in Equation (9) [27].

E f = AQt(φ(V0)− ϕ(Qt))T
Es = A(Vt −V0)ϕ(V0+Vt

2 )− Z0

E f s = E f × Es

(9)

where A indicates the output power coefficient a hydropower station; ϕ is the mapping function
between the outflow and tailwater level; Vt is the final reservoir storage when all inflows are
impounded at time t step (m3); and Z0 represents the downstream water level when there is no
outflow from a reservoir (m).

3.2. Grey Relational Analysis (GRA) Selecting the Monthly Impact Factors

The GRA method can investigate the uncertain relationships between one main factor and all the
other factors in a system with five layers [38].

Step 1: Establish the grey relational matrix.

Output matrix : X0 = {N1, N2, · · · , Nt, · · · , NT} (10)

Input matrix : Xi =



Z0,1, Z0,2, · · · , Z0,t, · · · , Z0,T
Q1, Q2, · · · , Qt, · · · , QT

Zα,1, Zα,2, · · · , Zα,t, · · · , Zα,T
E f ,1, E f ,2, · · · , E f ,t, · · · , E f ,T
Es,1, Es,1, · · · , Es,t, · · · , Es,T

E f s,1, E f s,2, · · · , E f s,t, · · · , E f s,T


(11)
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where T is the total number of the outputs, t = 1,2, . . . ,T.

Step 2: Normalize the grey relational matrix.
A linear normalization of the grey relational matrix using Equation (12) is performed in the range

from zero to one.

GRNj,t =
Xj,t −min

t
Xj

max
t

Xj −min
t

Xj
(12)

where Xj = {X0;Xi}, X0 is the output, Xi is the i-th input; GRNj = {GRN0; GRNi}, GRNj,t is the i-th grey
relational normalization, GRNi is the grey relational normalization of the i-th input factor, GRN0 is the
grey relational normalization of output variables; max

t
Xj and min

t
Xj are the maximum and minimum

values of Xj;

Step 3: Calculate the grey relational coefficient.

ηi,t =
min

i
min

t
|GRNi,t − GRN0,t|+ ρmax

i
max

t
|GRNi,t − GRN0,t|

|GRNi,t − GRN0,t|+ ρmax
i

max
t
|GRNi,t − GRN0,t|

(13)

where ηi,t is the grey relational coefficient between GRNi,t and GRN0,t; ρ = 0.5 is taken for proper
stability of outcomes with moderate effects.

Step 4: Calculate the grey relational grade.

ri =
1
T

T

∑
t=1

ηi,t (14)

where ri is the grey relational grade between X(i) and X(0).

Step 5: Grey relational ranking.
The grey relational rank is based on the grey relational grade. The experimental parameters of the

higher ranked input variable are closer to the output variable.

3.3. Individual Regression Models

For individual models, consider a given training set of T data points {xi, fi}T
i=1 with input data x

and output f.

3.3.1. Particle Swarm Optimization-Least Squares Support Vector Machine Model

The LSSVM model is a non-linear regression forecasting method proposed by Suykens and
Vandewalle [39]. In future space, the SVM model takes the form f (x) = ωT ϕ(x) + b, where the nonlinear
mapping ϕ( ) maps the input data in to a higher dimensional feature space, and b is the bias. Note that
the dimension of ω is not specified. In LSSVM, for the function estimation, the following optimization
problem is formulated:

minJ(ω, e) =
1
2

ωTω + γ
1
2

T

∑
i=1

e2
i (15)

subject to the equality constraints:
fi = ωT ϕ(xi) + b + ei (16)

This corresponds to a form of ride regression. The Lagrangian is given b by y with Lagrange
multipliers αk.

L(ω, b, e; α) = J(ω, e)−
T

∑
i=1

αi

{
ωT ϕ(xi) + b + ei − fi

}
(17)
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This finally results in the following LSSVM model for the function estimation:

f (x) =
N

∑
i=1

αiΨ(x, xi) + b (18)

where Ψ(x, xi) is the kernel function. There are four commonly used kernel functions available: linear
kernel, polynomial kernel, radial basis kernel function (RBF), and the sigmoid function [40]. The RBF
is widely used as it not only computationally simpler than other functions, it also maps the training
data to an infinite-dimensional space in a nonlinear manner [41–43]. Thus, this study selects the RBF
as the kernel function. The RBF has two parameters, C and σ, which are calibrated using the particle
swarm optimization (PSO) algorithm. The PSO is an evolutionary algorithm inspired by the feeding
behavior characteristic of a bird flock [44,45].

3.3.2. Adaptive Neural Fuzzy Inference System Model

ANFIS is a combination of ANN and a fuzzy inference system (FIS). To obtain a better modelling
system, ANN can be combined with FIS to improve speed, fault tolerance, and adaptiveness [46].
The network structure is capable of adjusting the shape of the membership functions and the
consequence parameters that form the fuzzy rules by minimizing the difference between the output
and provided targets [47]. To illustrate those two procedures of an ANFIS, for simplicity, two inputs,
x1 and x2, and one output, y, are assumed. For a first-order Sugeno fuzzy model, a typical rule set with
two fuzzy if-then rules can be expressed as:

Rule 1: if x1 is A1 and x2 is B1 then f1 = p1x1 + q1x2 + r1.
Rule 2: if x1 is A2 and x2 is B2 then f2 = p2x1 + q2x2 + r2.

where A and B are the fuzzy sets, and pi,qi, and ri are linear parameters in the “then” part (consequent
part) of the first-order Sugeno fuzzy model. ANFIS is a feed-forward neural network with five layers
(Figure 2), and a brief introduction of the model is as follows:

Layer 1: Every node in this layer is an adaptive node with a node output defined as:

O1,i = µAi (x1) for i = 1, 2
O1,i = µBi−2(x2) for i = 3, 4

(19)

where x1 and x2 are the input nodes, A and B are the linguistic labels, and µ(x1) and µ(x2) are the
membership functions, which are usually adopted a bell shape with maximum equal to 1 and minimum
equal to 0, as follows:

O1,i = µ(x) =
1

1 + ( x−ci
ai )

2bi
(20)

Thus, µAi =
1

1+(
x1−ci

ai )
2bi

and µBi =
1

1+(
x2−ci

ai )
2bi , where αi = {αi,bi,ci} are the premise parameters,

and i is the index of linguistic label of each input variable.
Level 2: Every node in this layer is a fixed node label Π with the node function to be multiplied by

input vectors to serve as an output. The output ω represents the firing strength of a rule. For instance:

O2,i = ωi = µAi (x1)·µBi (x2) for i = 1, 2 (21)

Level 3: Every node in this layer is a fixed node, marked by a circle and label N, with the node
function to normalize the firing strength by calculating the ratio of the ith node firing strength to the
sum of all rules’ firing strength.

O3,i = vi = ωi
∑ ωi

= ωi
ω1+ω2

for i = 1, 2 (22)
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Level 4: The fourth layer is called the implication layer. The consequence of each rule is calculated
as a linear combination of the input variables, as described by Takagi and Sugeno [48], and then
multiplied by its associated normalized firing strength:

O4,i = vi· fi = vi·(pix + qiy + ri) for i = 1, 2 (23)

where vi is the ith node’s output from the previous layer, and {pi, qi, ri} are the consequence
parameters that increase with the number of input variables.

Level 5: In the fifth layer, all the incoming signals are summed to compute the simulated
power output:

O5 =
2

∑
i=1

vi· fi =
ω1

ω1 + ω2
f1 +

ω2

ω1 + ω2
f2 (24)

For the data training, the hybrid learning algorithm of the ANFIS combines the gradient method
with the least squares method to update the parameters [49]. In the forward pass of the learning
algorithm, consequent parameters are identified by the least squares estimate. In the backward pass,
the error signals, which are the derivatives of the squared error with respect to each node output,
propagate backward from the output layer to the input layer. In this backward pass, the premise
parameters are updated by the gradient descent algorithm.
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3.3.3. Multiple Linear Regression Analysis Model

The multiple linear regression analysis model (MLRA) is often used in the prediction being
represented by the relationship between inputs and a set of output variables [50]. The general equation
is as follows:

f = β0 + βx + b (25)

where b is the error vector, which consists of systematic modeling errors and random measurement
errors assumed to have a normal distribution and an expected value E(b) = 0. Estimates of the
parameter values of β0, β are determined by minimizing b. This is simply done using least squares.
In the least-squares model, the best-fitting line for the observed outputs is calculated by minimizing
the sum of the squares of the vertical deviations from each data point to the line (if a point lies on the
fitted line exactly, then its vertical deviation is 0).

3.4. Bayesian Model Averaging

3.4.1. Basic Ideas

To explicate the BMA method, let f = f1, f2, . . . , fk, . . . , fK denote an ensemble of a prediction
obtained from K different models, and ∆ be the quantity of interest. In BMA, each ensemble member
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forecast fk is associated with a condition probability density function (pdf), gk(∆|f k), which can be
interpreted as the condition pdf on ∆ at fk, given that fk is the best forecast in the ensemble. The BMA
predictive model for dynamic ensemble forecasting can then be expressed as the finite mixture model:

p(∆| f1, . . . , fK ) =
K

∑
k=1

wkgk(∆| fk ) (26)

where wk denotes the posterior probability of forecast k being the best. The wk can be viewed as
weights reflecting an individual model’s relative contribution to predictive skill over the training

period,
K
∑

k=1
wk = 1. Assuming gk(∆| fk ) of different ensemble members can be approximated by a

normal distribution centered at a linear function of the origin forecast, ak + bk fk, with standard
deviation σk:

∆| fk ≈ N(ak + bk fk, σ2
k ) (27)

The value for ak and bk are bias-correction terms that are derived by simple linear regression of ∆
on fk for each of the K ensemble members. The BMA predictive mean can be computed as:

E[∆| f1, . . . , fk ] =
K

∑
k=1

wk(ak + bk fk) (28)

This can be viewed as a deterministic forecast whose predictive performance can be compared
with the individual forecasts in the ensemble or with the ensemble mean.

3.4.2. The Expectation-Maximization (EM) Algorithm

Successful implementation of the BMA method described in the previous section requires
estimates of the weights. There are two widely used approaches for computing the BMA weights,
namely the Markov Chain Monte Carlo (MCMC) algorithm and Expectation-Maximization (EM)
algorithm. The EM method exhibits many desirable properties as it is relatively easier to implement
and is computationally more efficient than the MCMC method [51–53]. In this study, the EM algorithm
was used to identify the BMA parameters. To implement the EM algorithm for the BMA method,
the unobserved quantity zkst is adopted, where zkst = 1 if ensemble member k is the best forecast for
verification site S and time t, and zkst = 0 otherwise. For each (s, t), only one of {z1st, . . . , zKst} is equal
to 1; the others are all zero.

The EM algorithm is iterative and alternates between two steps, the expectation (E) step and
maximization (M) step. After initialization of the weights and variances of the individual ensemble
members, the EM algorithm alternates iteratively between the E and M step until the convergence is
achieved. In the E step, the value of zkst are re-estimated given the current values for the parameters:

zj
kst =

wkg(∆st
∣∣ fkst, σj−1 )

∑K
k=1 wkg(∆st

∣∣ fkst, σj−1 )
(29)

where g(∆st
∣∣ fkst, σj−1 ) is the conditional pdf of ensemble member k with mean fkst and standard

deviation σj−1 at ∆st, fkst is the kth forecast in the ensemble for location s and time t, and j represents
the iteration number.

In the M step, the values of wk and σ2 are updated using the current estimates of zj
kst:

wj
k =

1
n

n
∑
s,t

zj
kst

(σ2)
j
= 1

n

n
∑
s,t

K
∑

k=1
zj

kst(∆st − fkst)
2

(30)



Water 2018, 10, 1099 9 of 20

The operated and simulated data were normalized under MATLAB’s box-cox function before
using the EM algorithm.

3.5. Model Performance Metrics

In this study, the Root Relative Mean Square Error (RRSE), Nash-Sutcliffe efficiency coefficient
(NSE), and determination coefficient (R2) are used to evaluate the performance of BMA and its three
dependent regression models (MLRA, PSO-SVM, and ANFIS). RRSE is calculated as the ratio of the
Root Mean Square Error (RMSE) and standard deviation of measured data, is always non-negative,
and values equal to 0.0 indicate a perfect fit [54]. The value of NSE can oscillate within the interval
−∞ ≤ NSE ≤ 1. Values between 0.0 and 1.0 are generally viewed as acceptable levels of performance,
whereas values <0.0 indicates that the mean observed value is a better predictor than the simulated
value, which indicates unacceptable performance [55]. R2 ranges from 0 to 1, with higher-values
indicating less error variance, and typically values greater than 0.5 are considered acceptable [56].
The classification of goodness analysis for NSE and RRME is established in Table 1. The three metrics
are defined follows:

RRSE =
RMSE

STDEVobv
=

√√√√∑T
t=1 (No,t − Ns,t)

2

∑T
t=1 (No,t − No)

2 (31)

NSE = 1− ∑T
t=1 (No,t − Ns,t)

2

∑T
t=1 (No − No,t)

2 (32)

R2 =
∑T

t=1 (Ns,t − No)
2

∑T
t=1 (No,t − No)

2 (33)

where No,t is the observed data set, Ns,t is the simulated data set, T is the number of the data set,
and No is the average value of observed value.

Table 1. Classification of goodness of fit for NSE and RRSE.

Goodness of Fit NSE RRSE

Very good NSE > 0.6 0.00 < RRSE ≤ 0.50
Good 0.40 < NSE ≤ 0.6 0.50 < RRSE ≤ 0.60

Satisfactory 0.20 < NSE ≤ 0.4 0.60 < RRSE ≤ 0.70
Unsatisfactory NSE ≤ 0.20 RRSE > 0.70

4. Case Study

This study takes Xinanjiang Reservoir as a case study. Xinanjiang Reservoir is located in the
upstream of Qiantang River in China, which is the first self-designed and constructed reservoir in
China (presented in Figure 3). The basin upstream from the dam site has an area of 10,442 km2

with a total length of 323 km. Xinanjiang Reservoir is mainly utilized for hydropower generation.
The characteristic parameters of the Xinanjiang Reservoir are listed in Table 2, and the conventional
operating rules for hydropower generation are shown in Figure 4. The monthly streamflow data
collected at the entry of Xinanjiang Reservoir from January 1962 to December 2007 were used as the
inflow to the reservoir.

Table 2. The characteristic parameters of the Xinanjiang hydropower station.

Reservoir
Normal Water Level Flood Limited Water Level Dead Water Level Power Output

Coefficient
Installed Capacity Firm Capacity

m MW

Xinanjiang 108 106.5 86 8.3 810 165
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Figure 4. Conventional operating rules for hydropower generation of Xinanjiang Reservoir.

To derive the monthly optimal operating rules for Xinanjiang Reservoir, a detailed set of
instructions that an operator should follow is described here.

Step 1: Establish an optimal deterministic operation model for Xinanjiang reservoir;
Step 2: Set the water level as the decision variable, then use the DP method to solve the model to

obtain the monthly power output trajectories (output variables) and reservoir information like the initial
water level Z0, inflow Q, maximum water level Za, the incoming hydropower Ef, the storing hydropower
Es, and the interaction between incoming and storing hydropower Efs (preselected input variables);

Step 3: Select the monthly input variables according to their correlation with the power output
using the GRA method from the preselected input variables;

Step 4: Derive the individual monthly operating rules using the PSO-LSSVM, ANFIS, and MLRA
models. Take different periods for calibration and validation to get the mapping function between
input variables and power output as the operating rules with a good regression performance;

Step 5: Compute the different weights of the PSO-LSSVM, ANFIS, and MLRA models using the
BMA method, and the weighted average results is defined as the final operating rules.
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5. Results and Discussion

5.1. Optimal Deterministic Operation for the Hydropower Reservoir

The average water level of 98.4 m was set as the initial operation water level. Figure 5 shows
the long-term power output and water level from January 1962 to December 2007, while Tables 3
and 4 represent the monthly results. In this study, one year could be divided into four periods: the
flood season (March–July), the transition period from the flood to the non-flood season (August),
the non-flood season (September–January), the transition period from the non-flood to the flood
season (February). The optimal reservoir operation produced an average power output of 224.71 MW.
The power output mainly occurred in the flood season (March to July) with a total power output of
1828.81 MW, and a value of 573.22 MW generated during the non-flood season (September to January).
The average water level was 106.69 m, and a maximum water level of 107.31 m first appears in August,
resulting in enough water stored to generate more power output in the dry period. The minimum
water level of 106.14 m in Feb indicated that reservoir could make full use of both natural water
resources and reservoir storage to produce power generation in the non-flood season.
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Figure 5. The hydropower reservoir operation results of the optimal/conventional operation from
January 1962 to December 2007.

Table 3. Average monthly power output of hydropower reservoir simulated using the
optimal/conventional operation, PSO-LSSVM, ANFIS, MLRA, and BMA models.

Month Convention Optimization PSO-LSSVM ANFIS MLRA BMA

January 181.24 111.11 108.86 111.11 116.91 109.91
February 242.16 142.32 138.61 139.70 142.55 138.97

March 199.71 213.22 208.04 218.55 218.16 215.11
April 196.91 365.81 349.84 369.95 365.76 369.43
May 219.00 549.60 559.79 548.47 561.12 552.81
June 276.83 496.42 496.05 497.18 493.25 496.77
July 208.89 203.75 201.52 199.96 201.05 201.07

August 157.36 152.22 152.54 149.89 149.78 150.55
September 151.46 115.85 115.24 114.51 114.10 114.74

October 152.45 117.61 117.96 117.58 116.01 117.78
November 156.47 117.00 116.95 115.10 117.26 116.41
December 169.02 111.65 113.25 111.85 112.97 112.57
Average 192.63 224.71 223.22 224.49 225.74 224.68
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Table 4. Average monthly water level of the hydropower reservoir simulated using the
optimal/conventional operation, PSO-LSSVM, ANFIS, MLRA, and BMA models.

Month Convention Optimization PSO-LSSVM ANFIS MLRA BMA

January 99.26 106.34 106.64 106.97 107.09 106.95
February 98.30 106.14 106.88 106.89 107.01 106.87

March 97.96 106.26 106.93 106.95 107.08 106.92
April 98.90 106.69 107.14 107.11 107.27 107.10
May 100.23 106.82 107.53 107.51 107.57 107.47
June 101.34 105.96 106.5 106.47 106.45 106.50
July 102.63 106.45 106.5 106.50 106.50 106.50

August 102.70 107.31 107.37 107.38 107.43 107.36
September 102.39 107.31 107.39 107.41 107.46 107.38

October 101.77 107.26 107.35 107.42 107.49 107.39
November 100.99 107.00 107.27 107.30 107.38 107.27
December 100.09 106.70 107.03 107.17 107.27 107.14
Average 100.55 106.69 107.04 107.09 107.17 107.07

5.2. Monthly Optimal Input Variables Selection Using GRA

The monthly input variables were defined according to the grey relational grade with the mean
power output N. The detailed analyses were conducted by season. This can be seen in Table 5:

(1) In the flood season (March–July), the monthly average grey relational grade ranged from 0.490 to
0.767 of the input variables of Q, Ef, and Efs, which were much higher with a percent of 71.5%
to 150.1% than those of the other input variables. Thus, the input variables of Q, Ef, and Efs
were selected as the optimal factors with the maximum average inflow of 574.32 m3/s during
this period. The only exception was that all input variables were chosen in May due to both the
high-water level and the large inflow.

(2) During the transition period between the flood and non-flood season (August/February),
the input factors of inflow and reservoir water level had the equivalent influence on the power
output. Therefore, all the initial input variables were taken into account here.

(3) In the non-flood season (September–January), the hydropower generation mainly relied on the
water level and hydropower storage with a decreased average inflow of 107.69 m3/s compared
to that in the flood season. The input variables of Z0, Za, Ef were chosen in this period.

Table 5. The monthly input variables defined based on the optimal trajectory.

Month Z0 Q Za Ef Es Efs Input Variables

January 0.648 0.244 0.651 0.242 0.760 0.237 Z0, Za, Es
February 0.372 0.377 0.373 0.391 0.495 0.551 Z0, Q, Za, Ef, Es, Efs

March 0.233 0.510 0.234 0.521 0.269 0.532 Q, Ef, Efs
April 0.274 0.454 0.275 0.470 0.308 0.545 Q, Ef, Efs
May 0.529 0.606 0.537 0.614 0.595 0.600 Z0, Q, Za, Ef, Es, Efs
June 0.375 0.699 0.380 0.718 0.383 0.884 Q, Ef, Efs
July 0.224 0.561 0.227 0.562 0.223 0.562 Q, Ef, Efs

August 0.441 0.452 0.443 0.454 0.452 0.437 Z0, Q, Za, Ef, Es, Efs
September 0.637 0.321 0.642 0.322 0.624 0.338 Z0, Za, Es
October 0.522 0.336 0.524 0.338 0.596 0.357 Z0, Za, Es

November 0.674 0.288 0.677 0.286 0.685 0.273 Z0, Za, Es
December 0.788 0.415 0.790 0.414 0.841 0.406 Z0, Za, Es
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5.3. Monthly Operating Rules for Hydropower Reservoir

The monthly average power output and average water level operated based on the power output
strategy simulated by the regression models are shown in Tables 3 and 4, respectively. They show
that July to October match better than the other months. Though all the modelled monthly water
levels are a little bit higher than that of the real optimal ones, no value goes beyond the reservoir
upper boundary.

(1) PSO-LSSVM operating rules

To derive the SVM operating rules, the PSO was used to obtain optimal values of C and σ, which
are listed in Table 6. The monthly simulated power output of PSO-LSSVM generated an average power
output of 223.22 MW. The average water level operated by PSO-LSSVM was 107.04 m with an increase
of 0.38% compared with that of the optimal results.

Table 6. The monthly optimal values of C and σ of LSSVM using PSO algorithm.

Month January February March April May June July August September October November December

C 256.00 256.00 0.57 1.00 9.19 16.00 84.45 16.00 3.03 9.19 16.00 5.28
σ 3.03 0.33 84.45 1.00 9.19 1.74 0.33 0.11 1.00 3.03 9.19 5.28

(2) ANFIS operating rules

The ANFIS model produced a second-ranked mean power output of 224.49 MW. The average
water level simulated by ANFIS was 107.07 m with an increase of 0.39% in comparison to that of the
optimal results.

(3) MLRA operating rules

The relationship between the monthly power output and the monthly input variables was
established for the MLRA model. Table 7 lists the monthly regression coefficients calculated with
the “Regression” function in MATLAB. Based on the optimal trajectories, the MLRA generated the
maximum average power output of 225.74 MW and highest water level of 107.17 m.

Table 7. The monthly regression coefficients for the MLRA model.

Month b0 b1 b2 b3 b4 b5 b6

January 104.00 −2466.24 − 775.05 − 1952.58 −
February 400.97 −5673.49 40,376.13 13,879.87 −60,465.40 −3353.37 14,694.49

March 103.70 − 55,751.11 − −65,671.99 − 10,100.79
April 7.90 −15,551.35 18,882.82 −2491.04 − − −
May −16,531.59 5954.03 130,888.83 −44,538.94 −84,458.31 35,340.65 7597.72
June 104.25 − 115,730.56 − −124,949.21 − 10,311.62
July 68.69 − 294,044.83 − −326,879.08 − 33,620.85

August 83.17 −2205.91 −91,474.46 −4154.00 106,061.69 3296.11 −10,014.57
September 183.62 −2200.89 − 148,673.02 − 5313.13 −
October 85.41 −1937.50 − 659.12 − 1531.95 −

November 101.89 −1668.34 − 633.62 − 1250.70 −
December 97.40 −923.81 − 585.18 − 473.34 −

(4) BMA operating rules

Based on the monthly power output trajectories of the three individual reservoir operating rules,
the BMA method computed the weights for the PSO-LSSVM, ANFIS, and MLRA models. The weights
reflect the performance of ensemble models. As can be seen from Table 8, MLRA was the worst
performing among the ensemble models for simulating the operating rules, while the other two models
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showed similar performance. This was a result of the complex operation process rather than a simple
linear relation between the input variables and power output. The average power output and the
water level simulated by BMA were 224.68 MW and 107.07 m, respectively, which were approximate
to that of the optimal one.

Table 8. The monthly weights of three individual operating rules for the BMA model.

Month PSO-LSSVM ANFIS MLRA

January 0.534 0.466 0.000
February 0.752 0.216 0.032

March 0.328 0.672 0.000
April 0.026 0.974 0.000
May 0.297 0.623 0.080
June 0.353 0.622 0.025
July 0.612 0.360 0.028

August 0.247 0.753 0.000
September 0.316 0.684 0.000

October 0.518 0.482 0.000
November 0.695 0.293 0.013
December 0.520 0.480 0.000

5.4. Simulation Verification with the Optimal Trajectory

According to Moriasi et al. [57], NSE and RRSE were used to facilitate model evaluation in terms of
the accuracy of simulated data compared to measured flow and constituent values. NSE values for the
monthly streamflow calibration and validation ranged from 0.66 to 1.00. The RSR values ranged from
0.03 to 0.58 during both calibration and validation. These values indicated that the model performance
for the streamflow residual variation ranged from good to very good. In this study, to evaluate the
simulate accuracy of BMA and its three dependent regression models (MLRA, PSO-SVM, and ANFIS),
the monthly optimal trajectories for the period January 1962 to December 2000 and January 2001 to
December 2007 were taken for calibration and validation, respectively. Table 9 lists the results of
NSE and RRSE for the monthly power output simulated by PSO-LSSVM, ANFIS, MLRA, and BMA
models. None of the three models always showed the best performance during the operating period.
During the calibration period, both PSO-LSSVM and ANFIS had a very good performance (NSE > 0.6,
RRSE > 0.5), while MRLA ranged from unsatisfactory to very good (0.119 ≤ NSE ≤ 0.978, 0.138 ≤
RRSE ≤ 0.675). However, during the validation period, the NSE and RRSE values for all three models
were from 0.17 to 0.991, and 0.093 to 0.986, respectively. The BMA method outperformed all operating
rules as it considered model selecting uncertainty and had the ability to improve reservoir operations.
The NSE of BMA varied from 0.801 to 0.997 during the calibration period, with NSE ranging from
0.633 to 0.986 during the validation period, which is considered a very good simulating performance,
while the RRSE performed very good (RRSE < 0.50) during the calibration and ranged from satisfactory
to very good during the validation (0.70 < RRSE < 0.00).

Yuan et al. [58] reported an R2 value of 0.5 for the event comparison of predicted and observed
sediment yields, and an R2 value of 0.7 for the monthly comparison, which were considered acceptable.
Figure 6 shows the scatter plots of the monthly power output given by PSO-SVM, ANFIS, MLRA,
and BMA under the optimal trajectories. All the models show a satisfactory performance with R2

values larger than 0.5. The BMA method produced the maximum R2 value ranging from 0.848 to
0.996 for all months compared with that of the other three individual models.

The statistical performance criteria, RRSE and NSE of BMA, and its three dependent regression
models for long-term power output from 1962 to 2007 are given in Table 10. All the regression models
were within the very good range (NSE > 0.6, RRSE < 0.5). It was shown that the BMA produced the
maximum NSE (0.975) and minimum RRSE (0.154) during the calibration period and the maximum
NSE (0.962) and minimum RRSE (0.185) during the validation period. The optimal power output
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trajectory provided the targeted water level operating for the PSO-LSSVM, ANFIS, MLRA, and BMA
models. The RRSE and NSE of all simulating models calculated for the long-term water level are
also shown in Table 2. All the regression models were within the very good range (NSE > 0.6, RRSE
< 0.5). The BMA performed a first rank with the maximum NSE of 0.724 and the minimum RRSE
of 0.185 during the calibration period and the maximum NSE of 0.956 and the minimum RRSE of
0.179 during the validation period. Therefore, the BMA model could achieve a relative optimum.

Table 9. The results of NSE and RRSE for the monthly power output simulated by PSO-LSSVM, ANFIS,
MLRA, and BMA models.

Month Model
Calibration Validation

Month Model
Calibration Validation

NSE RRSE NSE RRSE NSE RRSE NSE RRSE

January

BMA 0.945 0.218 0.879 0.681

July

BMA 0.970 0.158 0.633 0.420
PSO-LSSVM 0.931 0.250 0.306 0.849 PSO-LSSVM 0.983 0.130 0.197 0.738

ANFIS 0.944 0.212 0.029 0.914 ANFIS 0.851 0.304 0.349 0.679
MLRA 0.380 0.611 0.863 0.425 MLRA 0.922 0.266 0.438 0.498

February

BMA 0.950 0.214 0.977 0.128

August

BMA 0.995 0.067 0.819 0.291
PSO-LSSVM 0.951 0.323 0.980 0.421 PSO-LSSVM 0.979 0.138 0.959 0.171

ANFIS 0.811 0.261 0.841 0.238 ANFIS 0.995 0.066 0.704 0.346
MLRA 0.925 0.203 0.944 0.139 MLRA 0.980 0.138 0.918 0.240

March

BMA 0.801 0.395 0.822 0.355

September

BMA 0.977 0.147 0.797 0.482
PSO-LSSVM 0.797 0.375 0.649 0.512 PSO-LSSVM 0.945 0.224 0.209 0.704

ANFIS 0.746 0.435 0.833 0.356 ANFIS 0.980 0.136 0.784 0.520
MLRA 0.119 0.675 0.889 0.323 MLRA 0.854 0.352 0.207 0.922

April

BMA 0.992 0.088 0.984 0.111

October

BMA 0.987 0.110 0.819 0.346
PSO-LSSVM 0.765 0.414 0.991 0.086 PSO-LSSVM 0.984 0.125 0.662 0.437

ANFIS 0.992 0.085 0.983 0.114 ANFIS 0.986 0.114 0.807 0.415
MLRA 0.733 0.450 0.958 0.197 MLRA 0.896 0.302 0.093 0.751

May

BMA 0.948 0.211 0.868 0.282

November

BMA 0.987 0.106 0.911 0.214
PSO-LSSVM 0.953 0.202 0.172 0.674 PSO-LSSVM 0.988 0.105 0.589 0.550

ANFIS 0.949 0.217 0.826 0.398 ANFIS 0.970 0.155 0.640 0.638
MLRA 0.391 0.607 0.495 0.531 MLRA 0.654 0.500 0.636 0.499

June

BMA 0.997 0.050 0.986 0.118

December

BMA 0.882 0.301 0.915 0.299
PSO-LSSVM 0.990 0.099 0.991 0.089 PSO-LSSVM 0.887 0.304 0.888 0.366

ANFIS 0.999 0.031 0.976 0.164 ANFIS 0.857 0.320 0.934 0.244
MLRA 0.978 0.145 0.986 0.103 MLRA 0.608 0.524 0.805 0.537

Table 10. The RRSE and NSE of the long-term power output/water level simulated by PSO-LSSVM,
ANFIS, MLRA, and BMA models.

Model

Calibration (January 1962–December 2000) Validation (January 2001–December 2007)

Power Output Water Level Power Output Water Level

NSE RRSE NSE RRSE NSE RRSE NSE RRSE

PSO-LSSVM 0.963 0.185 0.719 0.415 0.902 0.304 0.934 0.223
ANFIS 0.974 0.158 0.611 0.460 0.955 0.204 0.775 0.354
MLRA 0.899 0.301 0.720 0.415 0.924 0.266 0.934 0.221
BMA 0.975 0.154 0.724 0.414 0.962 0.185 0.956 0.179
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June 0.228 0.463 0.231 0.451 0.450 0.445 Q, Ef, Es, Efs 

July 0.419 0.378 0.423 0.437 0.577 0.298 Z0, Q, Za, Ef, Es, Efs 

August 0.648 0.437 0.642 0.438 0.732 0.452 Z0, Q, Za, Ef, Es, Efs 

September 0.636 0.526 0.634 0.580 0.624 0.370 Z0, Q, Za, Ef, Es 

Figure 6. Scatter plots of the monthly power output given by PSO-LSSVM, ANFIS, MLRA, and BMA
under the optimal trajectory.

5.5. Comparison with the Conventional Operating Rules

Similar to the optimal operation procedures, the monthly input variables were determined
according to the grey relational grade with the mean power output under the conventional operation.
Seen from Table 11, the simulating power output was mainly dominated by the water level during the
whole year. There was an exception in July due to its large inflow. The conventional operating rules
produced a reduced mean power output of 192.63 MW compared to the optimal and simulated ones,
the same situation to the average water level of 100.55 m. This states that the optimal operating rules
can make better use of the natural inflow and improve the power generation efficiency compared with
the conventional rules.

Table 11. The monthly input variables defined based on the conventional trajectory.

Month Z0 Q Za Ef Es Efs Input Variables

January 0.838 0.222 0.842 0.237 0.481 0.240 Z0, Za, Es
February 0.337 0.244 0.338 0.282 0.551 0.275 Z0, Q, Za, Ef, Es, Efs

March 0.632 0.356 0.641 0.338 0.464 0.311 Z0, Za, Es
April 0.817 0.562 0.801 0.625 0.558 0.551 Z0, Q, Za, Ef, Es, Efs
May 0.539 0.498 0.532 0.483 0.596 0.373 Z0, Q, Za, Ef, Efs
June 0.228 0.463 0.231 0.451 0.450 0.445 Q, Ef, Es, Efs
July 0.419 0.378 0.423 0.437 0.577 0.298 Z0, Q, Za, Ef, Es, Efs

August 0.648 0.437 0.642 0.438 0.732 0.452 Z0, Q, Za, Ef, Es, Efs
September 0.636 0.526 0.634 0.580 0.624 0.370 Z0, Q, Za, Ef, Es

October 0.821 0.413 0.815 0.415 0.584 0.443 Z0, Q, Za, Ef, Es, Efs
November 0.732 0.377 0.731 0.366 0.441 0.246 Z0, Q, Za, Ef, Es
December 0.919 0.440 0.924 0.445 0.608 0.490 Z0, Za, Es
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6. Conclusions

Various regression models have been applied to the derivation of operating rules. It is necessary
to analyze and evaluate the model selecting uncertainty involved in reservoir operating rules.
Moreover, selecting the optimal input variables from a large number of candidates to characterize
an output variable can lead to a more accurate operation simulation. For efficient hydropower
generation, this study coupled the GRA and BMA methods to derive monthly optimal operating rules
for reservoir power generation. The primary processes were as follows: (1) an optimal deterministic
operation model of reservoir power generation was formulated and solved; (2) based on the monthly
optimal deterministic operation strategies, the monthly input variables were selected according to
their correlation with the power output using the GRA method; (3) PSO-LSSVM, ANFIS, and MLRA
models were used to derive the individual monthly operating rules; and (4) the BMA was applied
to determine the final reservoir operating rules by analyzing the uncertainty of selecting individual
models with different weights. The Xinanjiang Reservoir in China was taken as a case in this study,
which shows:

(1) Inflow, storage, and their formative input variables inconsistently acted in simulating operating
rules as their monthly grey relational grade variously ranged during different periods.

(2) The MLRA model performed worst in simulating the operating rules, while the other two models
showed similar performance because MLRA model generated the lowest weights compared to
the other two models for every month.

(3) The BMA method outperformed among all operating rules as it considered model selecting
uncertainty and had the ability to improve reservoir operations: (a) the average power output
and water level under BMA were approximate to that of the optimal one, and (b) the R2 of the
BMA was greater than that given by any of the individual operating rules, where R2 reflected the
goodness of fit to the optimal trajectory.

(4) The combination of the two methods could achieve larger hydropower generation and make
better use of natural inflows in comparison to the conventional operation as it produced a larger
mean power output than the conventional operating rules.

However, this study only considered one single reservoir; further work will focus on extending
the operating rules of a single reservoir to cascade reservoirs or mixed multi-reservoir systems.
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