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Abstract: Historical extraordinary floods are an important factor in non-stationary flood frequency
analysis and they may occur at any time, regardless of whether the environment is changing or not.
Based on mixed distribution (MD) modeling, this paper proposed an improved mixed distribution
(IMD) model to consider the discontinuity and non-stationarity of flood samples simultaneously,
which adds historical extraordinary floods in both sub-series divided by a change point. As a case
study, the annual maximum peak discharge and volume series of Ankang hydrological station,
located in the upper Hanjiang River Basin of China, were selected to identify non-stationarity by
using the variation diagnosis system. MD and IMD were used to fit the flood characteristic series and
a genetic algorithm was employed to estimate the optimal parameters. Compared with the design
flood values fitted by the stationary Pearson type-III distribution, the results computed by IMD
decreased at low return periods and increased at high return periods, with the difference varying
from −6.67% to 7.19%. The results highlighted that although the design flood values of IMD are
slightly larger than those of MD with different return periods, IMD provided a better result than MD.
IMD provides a new perspective for non-stationary flood frequency analysis.

Keywords: flood frequency analysis; mixed distribution; historical extraordinary flood; change
point; non-stationarity

1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) Fifth assessment report [1],
global warming will be a considerable issue in the future, resulting in subtle changes in the global
water cycle and even the global distribution of water. Furthermore, high intensity human activities
have resulted in substantial changes in the land surface conditions of many river basins [2], thus
affecting the mechanism of runoff generation and convergence in basins. Under the joint influence of
the above aspects, the observed hydrological time series have changed substantially, which makes the
assumption of “stationarity” questionable in traditional hydrological frequency analysis [3].

Liang et al. [4] grouped non-stationarity flood frequency methods into two types: indirect and direct
methods. The indirect methods are mainly based on the rainfall-runoff relation of the basin as well as the
decomposition and composition of time series or the hydrological model to revise the hydrological series to
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eliminate the influence of climate change and human activities and to finally construct stationary time series.
A large amount of literature has carried out studies with the indirect methods [5–8]. However, because
the direct methods do not need to restore the hydrological time series, they have been widely used.
The direct methods can be divided into three methods: the mixed distribution method, time variant
moment method [9–11] and conditional probability distribution method [12].

The mixed distribution (MD) method was employed by Singh and Sinclair for the first time [13].
Although this method was widely used in non-stationary flood frequency analysis, parameter
estimation is a substantial limit in this method. Alila and Mtiraoui found that the MD model provided
a more satisfactory fitting than a traditional single distribution model in the Gila River Basin [14].
Meanwhile, the authors noted that the key to ensuring the accuracy of the MD model lies in two
aspects. One aspect is to analyze the formation mechanism of floods in detail and to rationally
divide the series of hydrological extremes. In some cases, the sub-distributions were divided by
the different causes of floods, such as seasonality [15–17], or the change point of the hydrological
series [18]. The other aspect is to keep the number of sub-distributions to a minimum, mainly because
the increase in sub-distributions will increase the number of parameters and affect the accuracy
of the model parameter estimation. Thus, the determination of the estimated parameter is key to
the MD model. Various parameter estimation methods were used to address this problem, such
as the maximum likelihood method [19], principle of maximum entropy (POME) [20], EM/ECM
algorithm [21] and simulated annealing algorithm (SAA) [22]. These examples illustrate that the
application of an intelligent optimization algorithm is more and more widely used in parameter
estimation and the accuracy of estimation is improved.

Recently, Yan et al. [22] considered the time variability of the parameters in the mixed distribution.
The authors proposed the time-varying two-component mixed distributions (TTMD), which considers
the time variant in both the weighting coefficients of MD and the parameters of individual component
distributions. However, the conventional mixed distributions method often uses the continuous gauged
flood sequence as the study sample, without considering historical extraordinary flood data. The historical
extraordinary floods refer to the rare extraordinary floods that have occurred in history but were not
observed by hydrological stations. The peak discharge of historical extraordinary floods can be attained
through historical flood investigation generally. Schendal et al. [23] and Strupczewski et al. [24] showed
that the historical extraordinary flood event has a large influence on the calculation accuracy of flood
frequency analysis. Taking historical extraordinary flood events into consideration not only increases
the information of the flood samples [25,26] but also effectively reduces the uncertainty of flood
frequency analysis [27,28]. This idea provides an important reference for the design, operation and
management of water conservancy projects. However, due to the addition of historical extraordinary
floods, the hydrological series has become a discontinuous series. Many scientists have exploited
the employment of historical extraordinary flood data in flood frequency analysis for the last few
decades [29,30]. However, the study of considering both historical extraordinary flood events and
non-stationarity of flood series is limited. Machado et al. [31] used the time-varying model based on
Generalized Additive Models for Location, Scale and Shape (GAMLSS) modelling and incorporated
the external covariates to analyze the flood frequency of a 400-year flood record from the Tagus
River in Spain, which obtained a better fitting Zeng et al. [18] used the mixed distribution model to
handle non-stationarity. The authors divided the series by the change point and added the historical
extraordinary flood data into the sub-series before the change point but not in the post-sub-series.
In other words, the authors did not consider the influence of historical extraordinary flood events for
the sub-series after the change point. However, historical extraordinary flood events are likely to occur
at any time, regardless of whether the environment is changing or not.

Therefore, the results of design floods will first be compared in this paper in a variety of cases,
such as with or without historical extraordinary floods. The novelty of this paper is to propose
an improved mixed distribution (IMD) method, which adds historical extraordinary flood events
in both sub-series divided by a change point. As case studies, the proposed IMD method will be
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applied to the Ankang hydrological station in the upper stream of the Hanjiang River Basin, China,
where many extraordinary floods have occurred in history. A genetic algorithm will be employed to
estimate the optimal parameters. The change in the design flood under different return periods will
be compared and analyzed, which will provide a new method for non-stationarity flood frequency
analysis considering historical extraordinary flood events.

2. Materials and Methods

2.1. Variation Diagnosis System

The time series of hydrological variables can reflect the extent of the hydrological variables
affected by climatic conditions and human activities. There are many methods to test the variation
of the hydrological series but there is often a problem in that the results of various methods are not
consistent. The hydrological variation diagnosis system, proposed by Xie et al. [32], can be divided
into three procedures: primary diagnosis, detailed diagnosis and comprehensive diagnosis, which
makes the results more objective and reasonable. A variety of corresponding methods can be used
at each procedure of diagnosis. Finally, the results of comprehensive diagnosis can be obtained by
combining the weight synthesis.

In this study, we use the Hurst exponent [33] as the method of primary diagnosis to test the degree
of variation for each series. According to the calculated Hurst exponent value and the classification of
variation degree shown in Table 1 [32], the variation degree of each series can be determined. For the
detailed diagnosis, we propose the Spearman and Kendall rank correlation coefficient methods [34,35]
to investigate the trends. The Lee-Heghinian method [36], Sequential clustering method [37], Pettitt
test [38], Mann-Kendall test [39,40] and R/S analysis method [33] are used to identify the change
points of the series. Combined with the hydrological survey investigation and detailed diagnosis
results, a final comprehensive diagnosis can be conducted.

Table 1. Classification of variation degree.

3 Correlation Function C(t) Hurst Exponent h Variation Degree

0 ≤ C(t) < rα 0.5 ≤ h < hα No variation or Weak variation
rα ≤ C(t) < 0.6 hα ≤ h < 0.839 Medium variation
0.6 ≤ C(t) < 0.8 0.839 ≤ h < 0.924 Strong variation
0.8 ≤ C(t) ≤ 1.0 0.924 ≤ h ≤ 1.0 Vast variation

where α is significance level, rα denotes the correlation function C(t) corresponding to α significance level,
C(t) = 22h−1 − 1; hα = 1

2 [1 + ln(1 + rα)/ ln 2].

2.2. Mixed Distribution Model

2.2.1. Mixed Distribution

The mixed distribution model was first proposed by Singh and Sinclair and applied to the
non-stationary hydrological frequency analysis [13]. This model can be defined as a probability
distribution composed of multiple sub-series distributions; that is, its cumulative distribution function
can be regarded as a linear distribution of cumulative distribution functions of several sub-series
distributions. The expression is shown in Equation (1).

F(x) = w1F1(x) + w2F2(x) + · · ·+ wkFk(x) (1)

where wi is the weighting coefficient of each sub-series distribution and satisfies the equation of wi > 0

and
k
∑

i=1
wi = 1. The number of sub-series distribution is denoted as k. Fk(x) denotes the cumulative

distribution functions of each sub-series distributions.
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Certainly, the weighted average of cumulative distribution functions is not the only way to cope
with the multiple components series. Strupczewski et al. [41] provided a seasonal approach to flood
frequency analysis. Kochanek et al. [42] applied this approach to the annual peak flow series of
Polish rivers, which are formed from summer and winter flows. The method showed that seasonal
cumulative distribution functions can also provide good results.

The number of sub-series distributions of mixed distribution can often be determined by the
hydrological variation diagnosis results or the physical mechanism of floods. In most cases, to reduce
the complexity of mixed distribution, two-component mixture models were often used. For example,
Waylen and Woo noted that the simple Gumbel distribution does not fit the different flood-generating
processes well [15]; they divided the observed annual flood series data into two subsets (the snowmelt
flood and the rainfall flood) and fitted it by using mixed distribution. Zeng et al. [18] divided the
annual flood series into two components according to the change points based on the variation
diagnosis results.

Thus, we also divide the flood series into two sub-series according to the variation diagnosis
results. In China, Pearson type-III (P3) is recommended for flood frequency analysis according to the
Regulation for Calculating Design Flood of Water Resources and Hydropower Projects [43]. In this
paper, we assume each sub-series distribution is subject to a P3 distribution, denoted as f1(x) and
f2(x), respectively. The whole mixed distribution model is given by

f (x) = w f1(x) + (1− w) f2(x)
f1(x) = β1

α1

Γ(α1)
(x− a01)

α1−1e−β1(x−a01)

f2(x) = β2
α2

Γ(α2)
(x− a02)

α2−1e−β2(x−a02)

(2)

where w is the weighting coefficient of mixed distribution. αi, βi and a0i(i = 1, 2) denote the
shape, scale and location parameter of the probability density function fi(x) of each sub-series
distribution, respectively. In flood frequency analysis, these three parameters can be expressed
by mean EXi, variation coefficient Cvi and skewness coefficient Csi. The formulas are given as follows:
a0i = EXi(1− 2Cvi

Csi
), αi =

4
Csi

2 and βi =
2

EXiCviCsi
. The initial value of the sample mean EX1 and EX2

estimated by the moment method can be considered as the unbiased estimate of the total. Thus, there
are w, Cv1, Cv2, Cs1 and Cs2 up to five parameters to be estimated in mixed distribution f(x).

2.2.2. Parameter Estimation

Zhao et al. [44] proposed a curve fitting method for P3 with discontinuous series considering
historical extraordinary flood data by using the genetic algorithm (GA), illustrating that the genetic
algorithm has good global search ability and can reduce the error of fitting. To fit the empirical
frequency points of historical extraordinary flood data, the theoretical frequency curve should pass
through the center of the point group of the historical extraordinary flood data and the measured
flood data. Hence, we fitted discontinuous series considering historical extraordinary flood data by
weight and estimated the optimal parameters for a mixed distribution by using GA. The weight of the
historical extraordinary flood data is denoted p, the weight of the measured flood data is denoted q
and the formula is shown in Equation (3). Thus, the weighted least square (WLS) method was applied
to construct the objective function with the weight coefficient, which is shown in Equation (4).

p =
n− l
a + n

; q = 1− p =
a + l
a + n

(3)

SWLS(EX, Cv, Cs) = p
a+l

∑
j=1

[
xj − f (Pj, EX, Cv, Cs)

xj
]

2

+ q
n−l

∑
i=1

[
xi − f (Pi, EX, Cv, Cs)

xi
]

2

(4)

where a is the number of historical extraordinarily large floods, n is the number of the measured flood
series and l is the number of extraordinary large floods from the measured flood series.
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During the iterative process, we first estimate the mean value for the two sub-series by the moment
method. Then, the genetic algorithm is employed to optimize the other five parameters for mixed
distributions, that is, w, Cv1, Cv2, Cs1 and Cs2, which can make the objective function attain the minimum
and obtain the best fitted mixed distribution parameters. The main calculation procedures are as follows.

(1) Use real number coding to generate an initialization population with a population size Np of
100. The initial parameter variation range of five parameters for mixed distribution should be
constrained. For example, the weight coefficient w of each sub-series distribution should be between
0~1, the variation range of Cv should be 0~2 according to the information of the Ankang hydrological
station and the variation range of Cs/Cv should be between 2~2.5. This approach effectively avoids
the large deviation between the estimated values of Cv and Cs/Cv as well as the recommended value.

(2) Calculate the fitness of the initial population. The fitness value of the initial population can be
calculated through the objective function shown in Equation (4).

(3) Set the population gap GGAP = 0.7, the crossover probability Pc = 0.6 and the maximum number
of iterations NG = 150; the processes of multiple selection, crossover and mutation are carried
out for the initial population. Each iteration is used to evaluate the fitness of the population to
minimize the objective function value until the optimal parameter is obtained according to the
maximum number of iterations.

2.2.3. Model Evaluation Criterion and Goodness-of-Fit Test

The Kolmogorov-Smirnov (K-S) goodness-of-fit test [45] and the AIC criterion [46] were used to
test the fitting of each series. The K-S test statistic D is given by

D = max
−∞<x<+∞

|Fn(x)− F0(x)| (5)

where Fn(x) denotes the cumulative distribution function of random samples, that is, the empirical
frequency of the series. F0(x) denotes the distribution form to be tested, that is, the theoretical frequency.
n is the sample size and α is the significance level. If the value of statistic D is less than or equal to the
critical value Dn(α), then the original hypothesis is accepted and it is considered that the fitting is good
according to the test. The AIC criterion is also used to evaluate the goodness of fit, which is given by

MSE =
1
n

n

∑
i=1

(Pei − Pi)
2 (6)

AIC = n ln(MSE) + 2m (7)

where Pei and Pi denotes the empirical frequency and theoretical frequency of the series, respectively.
m is the number of frequency distribution parameters. Taking P3 distribution as an example, there are
EX, Cv and Cs up to three parameters in the P3 distribution; thus, m = 3.

2.3. Improved Mixed Distribution Model

We propose the IMD model based on the methods of MD. Because historical extraordinary floods
may occur before and after the change in land surface, we take historical extraordinary floods into both
sub-series, which are divided by the change point. Thus, both sub-series are discontinuous and are formed
with the observed data and historical data. Compared with the MD model, the sub-series before the change
point should use moment estimation of the discontinuous sample mean and the sub-series after the change
point is necessary for using the same method to calculate the mean value. The change in the mean value is
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the key difference between the IMD model and MD. The estimation methods of the other parameters are
the same. The formula of moment estimation of the discontinuous sample mean is given as follows.

EX =
1
N
[

a

∑
i=1

EXi +
N − a
n− l

n

∑
j=l+1

EXj] (8)

where EX represents the mean of the discontinuous sample. N is the recurrence period of the historical
extraordinary flood. a is the number of historical extraordinary floods. l represents the number of
historical extraordinary floods in the observed series.

2.4. Monte Carlo Simulation

In this work, in order to test whether the length of data will affect the results of design flood
values at high return periods, we verify our design flood results via Monte Carlo simulation [47].
According to the moment method, the initial value of sample mean EX, variation coefficient Cv and
skewness coefficient Cs for hydrological series can be obtained. Based on the initial parameters,
we can use the Monte Carlo method to generate synthetic data with a length of 10,000, which obey
the P3 distribution. According to the optimized parameters by GA, theoretical frequency series of
observed data can be calculated. To investigate the variation of the synthetic data and the results of
observed data, normalized mean bias (NMB) [48] and relative root mean square error (RRMSE) [49]
statistical parameters are used for comparison. The formula is given as follows.

NMB =

1
n

n
∑

i=1
(xO − xMC)

1
n

n
∑

i=1
xMC

v (9)

RRMSE =

[
1
n

n

∑
i=1

(
xO − xMC

xMC
)

2
]1/2

(10)

where n is the length of synthetic data, which is 10,000. xO represents the design flood values of the
observed series estimated by GA. xMC represents the design flood values of synthetic data generated
by the Monte Carlo method. Note that lower NMB and RRMSE represent a better performance.

In addition, in order to estimating the uncertainties, nonparametric bootstrap method is used to
determine the confidence intervals for flood frequency curves. Nonparametric bootstrap method is
resampling from the original data to obtain the bootstrapped sample of flood data.

3. Study Area and Data Set

3.1. Study Area

The Hanjiang River is one of the largest tributaries of the Yangtze River in China, with a catchment
area of 159,000 km2 and a length of 1570 km. The basin is bounded by 30◦10′ N to 34◦20′ N latitude and
106◦15′ E to 114◦20′ E longitude. Originating in Hanzhong city of Shaanxi province, the main stream
flows southeast through Shaanxi and Hubei provinces and returns to the Yangtze River in Wuhan city.
The area controlled by the Ankang hydrological station, with a catchment area of 38,700 km2, is the
study area (shown in Figure 1). The annual average discharge is 621 m3/s at the Ankang hydrological
station. The study area has a subtropical continental monsoon climate, which is mild and has four
distinctive seasons. The average annual temperature is 15~17 ◦C and the annual average rainfall
is 800~1000 mm. Floods are mainly caused by rainfall, occurring over 3~10 months but mostly in
summer and autumn. Summer floods mainly occur in July, mostly consisting of a heavy intensity
and short duration rainstorms. Autumn floods often appear in September, generally consisting of
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stable and persistent rainfall. Thus, the floods in autumn often have a long duration and large volume.
The hydrographs of the 1974 typical flood and the 1983 largest flood are shown in Figure 2.

Several reservoirs have been built in this drainage area for the purposes of flood control, irrigation
and electricity generation [50]. The geographical distribution of these reservoirs at the upper reaches
of the Ankang hydrological station is shown in Figure 1. The information for the reservoirs is shown
in Table 2.
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Table 2. Information for the reservoirs in the study area.

Name of Reservoir Drainage Area
(km2)

Annual Average Flow
(m3/s)

Design Flood Flow
(m3/s)

Storage Capacity
(108 m3) Completion Year

Huangjinxia 17,950 259 18,000 0.92 Not built yet
Shiquan 23,400 343 21,500 1.80 1974

Xihe 25,207 361 21,800 0.20 2006
Ankang 35,700 621 36,700 14.72 1992

3.2. Data Set

In this study, the hourly observed flood data during the period of 1968–2013 at the Ankang
hydrological station were available and the series during the annual maximum peak discharge series
(AMPDS), annual maximum 24-h flood volume series (24-h AMFVS) and annual maximum 72-h flood
volume series (72-h AMFVS) between 1968–2013 were selected. Among them, the flood in July of 1983 with
a peak discharge of 31,000 m3/s is the largest flood that has been encountered since the establishment
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(1935) of the Ankang hydrological station. In addition, combined with the historical extraordinary floods
investigation results by Yang [51,52], the historical extraordinary flood data of 36,000 m3/s in 1583,
30,000 m3/s in 1867 and 26,000 m3/s in 1921 were selected. Due to the lack of historical extraordinary
flood volume data, the correlation relationship (shown in Figure 3) between the flood peak and volume
of the Ankang hydrological station was used to calculate the historical maximum 24-h and 72-h flood
volume data corresponding to the historical maximum peak discharge. The three series of flood samples
that consider the discontinuity of historical extraordinary floods are formed.
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4. Results and Discussion

4.1. Results of the Variation Diagnosis System

4.1.1. Primary Diagnosis

The Hurst exponent h values of the flood characteristics series of the Ankang hydrological station
for 1968~2013 were calculated and the variation degree was determined according to the classification
of variation degree shown in Table 1. The results are shown in Table 3. AMPDS, 24-h AMFVS and 72-h
AMFVS all exhibit medium variation, which requires further detailed diagnosis.

Table 3. Calculation results of the Hurst exponent for each flood characteristic series.

Flood Characteristics Series Hurst Exponent C(t) Variation Degree

AMPDS 0.8047 0.5256 Medium variation
24-h AMFVS 0.7352 0.3855 Medium variation
72-h AMFVS 0.8107 0.5384 Medium variation

4.1.2. Detailed Diagnosis

First, we used the Spearman and Kendall rank correlation coefficient methods to investigate the
trends in the three flood characteristics series and then adopted the Lee-Heghinian method, Sequential
clustering method, Pettitt test, Mann-Kendall test and R/S analysis method to identify the change points
in the series. With a 5% significance level, the critical values of the Spearman and Kendall rank correlation
statistics were 2.015 and 1.96, respectively. If the absolute value of the statistics exceeds the critical value,
it illustrates that the trend component is significant. The positive and negative values of the statistics show
that the trends of the series are increasing or decreasing. From the results, as shown in Table 4, we can
learn that the statistics of the two trend analysis methods were negative and the three flood characteristic
series have a significant downward trend at the 0.05 significant level. Furthermore, the change points in
the flood characteristic series occur between the end of the 1980s and the early 1990s.
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Table 4. Detailed diagnosis results.

Variation Component Methods AMPDS 24-h AMFVS 72-h AMFVS

Trends
Spearman rank correlation statistics −2.318 −2.225 −2.384
Kendall rank correlation statistics −2.320 −2.452 −2.566

Change point

Lee-Heghinian method 1987 1987 1985
Sequential clustering method 1987 1987 1985

Pettitt test 1993 1994 1994
Mann-Kendall test 1990 1989 1988

R/S analysis method 1987 1987 1987
Possible change points 1987 1987 1985 and 1987

4.1.3. Comprehensive Diagnosis

Table 4 illustrates that the possible change point of AMPDS and 24-h AMFVS are in 1987 but
the possible change point of 72-h AMFVS appears in 1985 and 1987, which is in accordance with the
results of Xiong et al. [53]. Ankang reservoir construction was started in 1978. It began to store water
in 1989 and was finished in 1992. These authors considered that the change point was closely linked
with the construction of the Ankang reservoir. Zhang et al. [2] compared the catchment runoff change
during 2001–2010 with the previous 40 years (1960–2000) and noted that the decrease in runoff in
the Hanjiang River Basin was mainly due to the significant change in the land surface conditions.
In addition, since there are many dam-break floods that inundated the urban areas of Ankang City,
water conservancy projects such as reservoirs and dams began to be built to control floods in the 1980s.
Especially after the extraordinary floods that occurred in July of 1983, causing serious economic losses,
a ten-mile-long dyke began thorough renovation and was completed in 1987. Therefore, the fact that
the change points of the three flood characteristic series, AMPDS, 24-h AMFVS and 72-h AMFVS,
are all in 1987 is reasonable.

We also used the Kendall rank correlation coefficient method to investigate the trend for the flood
series before the change point (1968–1986) and after the change point (1987–2013). The results are
shown in Table 5. From the results, we can see that both trend component of the flood series before
and after the change point is not significant. In addition, the trend of flood series before the change
point is increasing and the trend of flood series after the change point is decreasing. Thus, the results
also verified that the change point is 1987.

Table 5. Kendall rank correlation statistic values for the flood series before and after the change point.

Flood Characteristics Series
Kendall Rank Correlation Statistic U

1968–1986 1987–2013

AMPDS 1.224 −0.063
24-h AMFVS 0.735 −0.271
72-h AMFVS 0.734 −0.229

U represents the Kendall rank correlation statistic. With a 5% significance level, the critical value of Kendall rank
correlation statistics was 1.96. If the absolute value of the statistic exceeds the critical value, it illustrates that the
trend component is significant. The positive and negative values of the statistics show that the trends of the series
are increasing or decreasing.

Due to the fact that the trends and change point of each flood characteristic series are all significant,
the final variation form is determined by calculating the efficiency coefficient, which is given by

R2 = 1−

n
∑

i=1
(Qobs,i −Qsim,i)

2

n
∑

i=1
(Qobs,i −Qobs)

2
(11)
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where Qobs,i(i = 1, 2, · · · , n) is the observed hydrological series. Qobs denotes the mean value of the
observed hydrological series. For the trend component, Qsim.i(i = 1, 2, · · · , n) is the fitted value of
each point on the trend line. τi denotes the change point of the flood characteristic series and the
formula of Qsim,i is expressed by

Qsim,i =
1
τi

τi

∑
i=1

Qobs,i (i = 1, 2, · · · , τi) (12)

Qsim,i =
1

n− τi

n

∑
i=τi+1

Qobs,i (i = τi + 1, · · · , n) (13)

As Table 6 shows, the efficiency coefficients of the change points of the flood characteristic series
are all larger than those of the trend variation; thus, the final variation forms of all flood characteristic
series are change points and the possible change point is 1987.

Table 6. Calculation results of the efficiency coefficients.

Flood Characteristic Series Trend Variation Efficiency Coefficients Change Point Efficiency Coefficients Final Variation Forms

AMPDS 0.0857 0.2272 Change point
24-h AMFVS 0.1032 0.2346 Change point
72-h AMFVS 0.1051 0.2202 Change point

4.2. Results of Monte Carlo Simulation and Uncertainty Analysis

Taking the observed 1968–2013 flood characteristic series with four historical extraordinary flood
events as an example, we compared the variation between the design flood value results simulated
by Monte Carlo method and estimated by GA. Values of NMB and RRMSE statistical parameters are
shown in Table 7. Figure 4 shows the variation between the design flood values of AMPDS. It illustrates
that there is little deviation between the Monte Carlo simulated design flood values and the estimated
design flood values by observed flood series. The Monte Carlo simulation of AMPDS exhibited the
best results. The statistical parameters of 24-h AMFVS and 72-h AMFVS are slightly larger than
AMPDS. It is mainly because the peak discharge of historical extraordinary floods is obtained through
historical flood investigation. The historical flood volume data were obtained according to the peak
volume relationship of flood, which adds some deviations. However, the statistical parameters are still
within the acceptable range. This indicates that we can use 50-year-long datasets including historical
extraordinary floods to estimate the design flood values at high return periods.

Table 7. Values of statistical parameters for all flood characteristic series.

Statistical Parameters AMPDS 24-h AMFVS 72-h AMFVS

NMB 0.0046 0.0157 0.0208
RRMSE 0.0091 0.0217 0.0281

Lower NMB and RRMSE represent a better performance.

To estimate the uncertainties for flood characteristic series, nonparametric bootstrap method was
used to calculate the 95% confidence interval for flood frequency curve. We obtained a bootstrapped
sample from the original flood data with the length of 2000. Figure 5 shows the 95% confidence interval
for flood characteristic series.
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4.3. Analysis of the Design Flood Results under Changing Environments

Combined with the results of the change point diagnosis, the flood characteristic series can be divided
into two sub-series: the observed series before the change point and the observed series after the change
point. Taking historical extraordinary flood data into consideration, we designed four cases fitting the
P3 distribution to analyze the difference in the design flood under changing environmental conditions,
which are as follows.
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• Case 1: original flood characteristic series (1968–2013) that do not consider the variation but add
the historical extraordinary flood data, denoted as series Ai1.

• Case 2: observed flood characteristic series before the change point (1968–1987) with the addition
of the historical extraordinary flood data, denoted as series Ai2.

• Case 3: observed flood characteristic series after the change point (1987–2013) with the addition
of the historical extraordinary flood data, denoted as series Ai3.

• Case 4: only the observed flood characteristic series after the change point (1987–2013), denoted
as series Ai4.

Where i = 1, 2, 3 represents the AMPDS, 24-h AMFVS and 72-h AMFVS, respectively.
The design floods at different return periods of each flood characteristic series are calculated

separately for the four different cases. The genetic algorithm is also used to estimate the parameters of
the P3 distribution for the flood series. Table 8 shows the results of the estimated parameters for all
flood series. Table 9 illustrates that the results all pass the goodness-of-fit test and the fitting results are
shown in Figure 6. According to the optimized parameters obtained, the design values of each flood
characteristic series are calculated as shown in Table 10.
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Figure 6. Fitting results for each flood characteristic series under four conditions. (a) Fitting results of
the annual maximum peak discharge; (b) Fitting results of the annual maximum 24-h flood volume;
and (c) Fitting results of the annual maximum 72-h flood volume.

Table 8. Results of the estimated parameters for all flood series.

Estimated Parameters
AMPDS (m3/s) 24-h AMFVS (108 m3) 72-h AMFVS (108 m3)

A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33 A34

EX 10,226 13,278 7995 7782 7.35 9.59 5.71 5.57 16.02 20.70 12.60 12.32
Cv 0.59 0.42 0.76 0.77 0.56 0.38 0.72 0.8 0.51 0.37 0.69 0.77

Cs/Cv 2 2 2.15 2.21 2 2 2 2.17 2 2 2.03 2.35

EX denotes the mean value of the series. Cv denotes the variation coefficient. Cs/Cv denotes the ratio of skewness
coefficient Cs and the variation coefficient Cv.
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Table 9. Goodness-of-fit test results for all flood series.

Evaluation Indicators
AMPDS 24-h AMFVS 72-h AMFVS

A11 A12 A13 A14 A21 A22 A23 A24 A31 A32 A33 A34

Dn(α) 0.1940 0.2796 0.2400 0.2640 0.1940 0.2796 0.2400 0.2640 0.1940 0.2796 0.2400 0.2640
D 0.0831 0.1571 0.0912 0.1051 0.0881 0.1375 0.0741 0.0928 0.1035 0.1411 0.0615 0.0708

AIC −313.5 −119.4 −195.2 −156.0 −291.4 −118.2 −200.3 −165.0 −279.4 −126.9 −204.9 −179.6

D denotes the K-S test statistic. Dn(α) is the critical value of K-S test statistic D and D less than Dn(α) means the
distribution passes the goodness-of-fit test at the 5% significant level.

Table 10. Design value of each flood characteristic series.

Flood Characteristic Series
Return Periods in Years

10,000 5000 1000 500 300 200 100 20 5

AMPDS
(m3/s)

1999 design report 48,100 45,500 39,300 36,700 34,600 32,800 30,000 23,000 16,100
A11 48,640 45,802 39,106 36,165 33,971 32,210 29,152 21,730 14,662

Difference (1) (%) 1.1 0.7 −0.5 −1.5 −1.8 −1.8 −2.8 −5.5 −8.9
A12 44,466 42,340 37,270 35,016 33,320 31,950 29,550 23,579 17,604
A13 52,927 49,325 40,912 37,262 34,559 32,405 28,699 19,939 12,066
A14 53,001 49,339 40,794 37,093 34,354 32,173 28,427 19,601 11,733

Difference (2) (%) 19.0 16.5 9.8 6.4 3.7 1.4 −2.9 −15.4 −31.5
Difference (3) (%) 0.1 0.0 −0.3 −0.5 −0.6 −0.7 −0.9 −1.7 −2.8

24-h
AMFVS
(108 m3)

A21 32.98 31.11 26.69 24.75 23.29 22.13 20.10 15.15 10.40
A22 30.00 28.63 25.36 23.90 22.80 21.91 20.35 16.45 12.52
A23 35.47 33.14 27.69 25.32 23.55 22.15 19.72 13.93 8.63
A24 39.80 37.01 30.50 27.69 25.61 23.95 21.10 14.42 8.49

Difference (2) (%) 18.2 15.8 9.2 5.9 3.3 1.1 −3.1 −15.3 −31.0
Difference (3) (%) 12.2 11.7 10.2 9.4 8.7 8.1 7.0 3.5 −1.7

72-h
AMFVS
(108 m3)

A31 65.07 61.57 53.28 49.62 46.88 44.67 40.82 31.39 22.19
A32 61.79 59.07 52.55 49.64 47.44 45.66 42.54 34.70 26.72
A33 72.32 67.71 56.91 52.20 48.69 45.89 41.05 29.46 18.73
A34 86.21 80.13 65.97 59.86 55.33 51.74 45.57 31.13 18.41

Difference (2) (%) 17.0 14.6 8.3 5.2 2.6 0.5 −3.5 −15.1 −29.9
Difference (3) (%) 19.2 18.3 15.9 14.7 13.6 12.7 11.0 5.7 −1.7

Difference (1) represents the difference percentage in Ai1 compared with 1999 design report results, difference (2)
represents the difference percentage in Ai3 compared with Ai2 and difference (3) represents the difference percentage
in Ai4 compared with Ai3.

As shown in Table 10, we learn that the design flood results of A11, which considered historical
extraordinary flood data but not non-stationary data, are larger than the 1999 design flood results
of the Ankang hydrological station at 10,000-year and 5000-year return periods. However, the A11

design flood results are smaller at other return periods and the difference is between −8.9% and 1.1%.
Compared with the design AMPDS results of the 1999 design report, the design flood of Ai1, which
does not consider the non-stationarity of the series, tends to be larger at a high return period and
smaller at a low return period, which may be caused by the increase of the sample size. Mainly because
of the decreasing trend of the mean value for the flood characteristic series, the addition of data
increases the CV of the computed series, resulting in the increase in the upper tail of the frequency
curve and the decrease in the lower tail.

In the same way, it can be clearly seen that the design values after the change point of the three
flood characteristic series Ai3, considering the historical extraordinary flood data, are smaller than
the design values of Ai2 at 100-year, 20-year and 5-year return periods. For the other return periods,
the design values are larger. The difference range of AMPDS is −31.5% to 19.0%, the difference of 24-h
AMFVS ranges from −31.0% to 18.2% and the difference of 72-h AMFVS is 29.9% to 17.0%. It can be
seen from Fig. 6 that the design flood value, without considering the variation of flood series, is almost
between the design values before and after the variation series.

Comparing the design flood results between case 3 and case 4 shows that the Ai4 design values of
24-h AMFVS and 72-h AMFVS are larger than the Ai3 designed flood values, except the 5-year return
level. The ranges of difference are−1.7%~12.2% and−1.7%~19.2%. For AMPDS, the Ai4 design values
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are larger than the Ai3 design values at 10,000-year and 5000-year return periods and are smaller for
the rest of the return periods. The range of difference is −2.8%~0.1%.

The design flood of Ai3 compared with Ai1 results in the same trends, with an increase in the upper
tail of the frequency curve and a decrease in the lower tail. Although the mean value decreases after the
environment changes, the increase in CV for the flood characteristic series illustrated the change in land
surface of the Ankang hydrology station, which reflects the necessity of considering non-stationarity.
The results indicate that the current regulation of reservoirs in the upper stream of the Hanjiang River
may not satisfy the requirements of flood control. Furthermore, the comparison between Ai3 and Ai4
exhibits the importance of adding historical extraordinary flood data. Taking historical extraordinary
flood data into consideration revised the design flood value and improved the accuracy of flood
frequency analysis.

4.4. Analysis of the Design Flood Results Based on IMD in Consideration of Historical Extraordinary Floods

The flood characteristic series from the Ankang hydrological station are investigated to illustrate
the superiority of the improved mixed distribution (IMD) method proposed in Section 2.3 compared
with conventional mixed distribution (MD) methods. According to Section 2.2.2, parameter estimations
for the two mixed distribution methods by GA are given in Table 11. We also use P3 to calculate design
floods for different return periods for each flood characteristic series. The goodness-of-fit values of
these three methods are shown in Table 12.

The D values for AMPDS, 24-h AMFVS and 72-h AMFVS are all less than the critical value
Dn(α), which is equal to 0.194 at the 5% significance level. This result means that the P3, MD and
IMD methods provide a satisfactory fit. The results show that P3 provides the best fit of the three
methods. However, regarding the mechanism, the use of P3 distribution fitting is based on satisfying
the stationarity hypothesis; in fact, the observed data of the Ankang hydrological station are consistent
with the non-stationarity phenomenon. Thus, it is not reasonable to use the P3 distribution after
environmental change. Meanwhile, it can also be seen that the AIC criterion values of the IMD method
for the three flood characteristic series are all less than the corresponding criterion values of the MD
method, which indicates that the IMD method is better. This result proved that our method improved
the mechanism of mixed distribution and that our work is meaningful. The fitting results of the MD
and IMD methods are given in Figure 7.

Table 11. Parameter estimation results for the mixed distribution (MD) and improved mixed
distribution (IMD) methods.

Flood Characteristic Series Method α EX1 Cv1 Cs1 EX2 Cv2 Cs2

AMPDS (m3/s)
MD 0.346 13278 0.643 1.287 7782 0.649 1.299
IMD 0.319 13278 0.643 1.287 7995 0.650 1.300

24-h AMFVS (108 m3)
MD 0.262 9.59 0.647 1.295 5.57 0.648 1.296
IMD 0.236 9.59 0.652 1.303 5.71 0.646 1.291

72-h AMFVS (108 m3)
MD 0.254 20.70 0.588 1.175 12.32 0.603 1.206
IMD 0.229 20.70 0.595 1.190 12.60 0.599 1.198

EX1 and EX2 represent the mean values of the two sub-series divided by the change point; Cv1 and Cv2 represent the
variation coefficient of the two sub-series; and Cs1 and Cs2 represent the skewness coefficient of the two sub-series.
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Table 12. Goodness-of-fit test results for the MD and IMD methods.

Flood Characteristic Series
D AIC

P3 MD IMD P3 MD IMD

AMPDS 0.0831 0.1082 0.1052 −313.5 −272.6 −274.5
24-h AMFVS 0.0881 0.1511 0.1497 −291.4 −240.7 −242.6
72-h AMFVS 0.1035 0.1174 0.1177 −279.4 −254.3 −255.0

D denotes the K-S test statistic. AIC denotes the evaluation value of the AIC criterion.
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Figure 7. Fitting results of the MD and IMD methods. (a1) MD fitting results of AMPDS; (a2) IMD fitting
results of AMPDS; (b1) MD fitting results of annual maximum 24-h flood volume series (24-h AMFVS);
(b2) IMD fitting results of 24-h AMFVS; (c1) MD fitting results of 72-h AMFVS; and (c2) IMD fitting
results of 72-h AMFVS.
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As is shown in Table 13, for AMPDS, the differences in the design flood values between the best
fitness MD methods and the 1999 design flood results are larger at high return periods and smaller
at low return periods, with a difference of −11.88%~6.39%. The design flood value between the
best fitness MD methods and the P3 results, without considering the non-stationarity data, has the
same changing trends. The differences of AMPDS, 24-h AMFVS and 72-h AMFVS are −3.24%~5.21%,
−6.67%~6.29% and −6.34%~7.19%, respectively. From Table 13, we can also see that the design value
calculated by the IMD method of the flood series is slightly increased compared with the MD method.
However, the IMD method may cause larger changes in the design flood values in other basins.

Table 13. Design flood results of each flood characteristic series with the MD and IMD methods.

Flood Characteristic Series
Return Periods in Years

10,000 5000 1000 500 300 200 100 20 5

AMPDS
(m3/s)

1999 design report 48,100 45,500 39,300 36,700 34,600 32,800 30,000 23,000 16,100
P3 48,640 45,802 39,106 36,165 33,971 32,210 29,152 21,730 14,662

MD 51,161 48,026 40,652 37,425 35,022 33,097 29,764 21,730 14,193
IMD * 51,174 48,037 40,659 37,430 35,025 33,099 29,764 21,726 14,187

Difference (1) (%) 6.39 5.58 3.46 1.99 1.23 0.91 −0.79 −5.54 −11.88
Difference (2) (%) 5.21 4.88 3.97 3.50 3.10 2.76 2.10 −0.02 −3.24
Difference (3) (%) 0.026 0.023 0.016 0.012 0.009 0.006 0.000 −0.018 −0.047

24-h
AMFVS
(108 m3)

P3 32.978 31.108 26.689 24.745 23.293 22.125 20.096 15.151 10.402
MD 35.005 32.858 27.809 25.599 23.954 22.636 20.353 14.854 9.696

IMD * 35.051 32.902 27.845 25.633 23.985 22.665 20.380 14.873 9.709
Difference (2) (%) 6.29 5.77 4.33 3.59 2.97 2.44 1.41 −1.84 −6.67
Difference (3) (%) 0.1310 0.1310 0.1309 0.1309 0.1308 0.1308 0.1308 0.1306 0.1306

72-h
AMFVS
(108 m3)

P3 65.067 61.568 53.278 49.617 46.876 44.669 40.824 31.385 22.191
MD 69.726 65.629 55.969 51.729 48.565 46.027 41.622 30.939 20.786

IMD * 69.743 65.645 55.981 51.739 48.574 46.035 41.629 30.942 20.785
Difference (2) (%) 7.19 6.62 5.07 4.28 3.62 3.06 1.97 −1.41 −6.34
Difference (3) (%) 0.024 0.023 0.021 0.020 0.019 0.018 0.016 0.009 −0.001

* represents the best fitness MD methods. Difference (1) represents the difference percentage in the best fitness MD
methods compared with 1999 design report results, difference (2) represents the difference percentage in the best
fitness MD methods compared with P3 and difference (3) represents the difference percentage in IMD compared
with MD.

Tang et al. [54] developed the historical extraordinary flood-concerned mixed-distribution method
(HFCMM) to overcome the shortcomings of the traditional methods without considering historical
extraordinary flood events. However, their study focused on comparing the modelling results of
different probability distribution function tail types rather than the difference in the design flood values.

Zeng et al. [18] used MD to estimate the design flood values of the Xidayang reservoir, which is
located in the Daqinghe River Basin, in the northern part of China. All the design values decreased by
0.03%–20.24% with different return periods compared with the P3 distribution. However, both design
flood values estimated by MD or IMD in our study increased for high return periods but decreased
for small return periods. The cause of this phenomenon may be that our study area and the study
area of Zeng are located in different river basins and different parts of China. Different factors such
as different changes in land use cause different mechanisms of runoff generation and convergence in
different basins. Thus, the design flood results we obtained are also reasonable. Yan et al. [22] noted
that the time-varying two-component mixture distribution (TTMD) models exhibited better fitting
results than and outperformed the stationary models in both the Huanxian and Xianyang stations of
the Weihe River Basin. We can also develop the time-varying improved mixed distribution to consider
the time variations of the parameters in future work.

5. Conclusions

Taking the Ankang hydrological station in the upper reaches of the Hanjiang River Basin as
the research area, the trend and change point of the flood characteristic series were studied by
the hydrological variation diagnosis system. The difference in the design flood values under four
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conditions showed the large significance of the non-stationary flood frequency analysis and the
historical extraordinary flood data. The proposed IMD method was based on a mixed distribution and
the calculation principle of discontinuous samples. The genetic algorithm was employed to estimate
the parameters. The main conclusions of this paper were drawn as follows.

(1) Hydrological series diagnosis was performed by using a variant diagnostic system. The trends
of AMPDS, 24-h AMFVS and 72-h AMFVS at the Ankang hydrological station all decreased
significantly at the 5% significance level. However, the final variant form was the change point,
which illustrated that the change points of all flood characteristic series were in the year of 1987.
This result was mainly related to the construction of the Ankang reservoir.

(2) Based on the principle of MD, we proposed the methods of IMD, for which the genetic algorithm
was applied, to estimate the parameters and the information of historical extraordinary floods
was supplemented in the series after the change point. Meanwhile, the superiority of IMD was
demonstrated by the consideration of both environment changes and historical extraordinary
floods. Although the design flood of IMD was slightly larger than MD at the Ankang hydrological
station, adding historical extraordinary flood data into both sub-series divided by the change
point improved the theoretical mechanism of the mixed distribution. The new design flood
based on IMD provides the basis for the regulation of reservoir floods in the upper reaches of the
Hanjiang River.

Compared with other research of mixed distribution, the greatest advantage of this study is that
the discontinuity and non-stationarity of flood samples are solved simultaneously. Taking historical
extraordinary floods into sub-series both before and after the change point improved the physical
mechanism of mixed distribution under a changing environment.
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