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Abstract: Water scientists often find themselves interacting with decision-makers with varying levels
of technical background. The sustainable management of water resources is complex by nature,
and future conditions are highly uncertain, requiring modeling approaches capable of accommodating
a variety of parameters and scenarios. Technical findings from these analyses need to be positioned
and conducted within the governance institutions to ensure decision-makers utilize them. This paper
examines the water resource challenges for a large basin in northern Patagonia, Argentina and utilizes
the Robust Decision Support (RDS) framework to evaluate trade-offs and strategies in a participatory
process that included researchers and decision-makers. Integrated water resources models using
simulation modeling and decision space visualization show significant climate change impacts,
which are augmented with irrigated agriculture expansion and increasing hydropower production.

Keywords: water governance; climate change; modelling tools; visualization; decision-making support

1. Introduction

In the realm of water planning, the complexity of watershed management is characterized by the
interaction of natural, human, and economic components in a system. These various components have
competing water demands and operate at different scales. Places with thriving economic development,
such as the Patagonia region of Argentina, require sophisticated tools and informed processes to ensure
the sustainable management of water resources in a changing climate.

Addressing the natural complexity of watersheds requires modeling tools that represent the
relevant physical processes of the hydrological cycle within a watershed. A robust simulation model
for water resources planning can adequately describe the complexity of the different activities within
a basin [1–7]. This type of simulation model can capture interacting subsystems such as agriculture,
urban areas, and politically-imposed environmental constraints (such as instream flow requirements
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and the hydrological implications of conservation areas). Multi-component simulation models can
represent the non-linearity of key variable changes in a system and the non-separable spatial and
temporal dependencies [8,9]. The Water Evaluation and Planning (WEAP) system simulation model [3]
has been used to capture the aforementioned aspects in different watersheds around the world [10–14].

This study uses the WEAP system to capture the complexity of Argentina’s Patagonia basin
and evaluate how various strategies could mitigate climate impacts on agriculture, canal capacity
and environmental flows. It finds that agricultural expansion in the region could increase the
severity of climate impacts and identifies broad strategies to help meet both development and
environmental goals.

It also demonstrates the use of the Robust Decision Support framework to inform policy-making
in a decentralized system, with multiple jurisdictions and decision-making bodies. RDS uses a
participatory process for the identification of plausible futures [15,16], the evaluation of trade-offs
between multiple scenarios, the identification of robust strategies, and an iterative analysis of
vulnerability adaptation. The RDS framework requires the development of new and sophisticated
tools to effectively transform complex ensemble data into key scientific insights and effectively analyze
and communicate the information to policymakers [17–21].

Scientists need to respond to policymakers’ challenges within their institutional framework to
effectively link scientific information and policy-making mechanisms [22–26]. The deep uncertainty
of future conditions adds to modeling and decision-making complexities. Stakeholders and water
managers are facing new challenges as environmental conditions shift under climate change, as water
requirements increase for cities, and as irrigated agriculture intensifies [12,19,22–24]. Deep uncertainty
is defined as situations “where analysts do not know, or the parties to a decision cannot agree on,
(1) the appropriate conceptual models that describe the relationships among the key driving forces that
will shape the long-term future, (2) the probability distributions used to represent uncertainty about
key variables and parameters in the mathematical representations of these conceptual models, and/or
(3) how to value the desirability of alternative outcomes.” Therefore, the decision-making process
requires a shift from a deterministic future to robust adaptation decisions that could be evaluated
within a wide range of plausible options about future conditions [27].

Visualization tools for the communication of multifaceted simulation modeling output under
a participatory setting provide a common frame and facilitate the discussion of potential actions
(Forni et al., 2016). The development of comprehensive institutional frameworks that support
integrated robust decision-making processes must accompany advances in scientific modeling and
large output data visualizations [28–32].

The purpose of this study was to work with local and regional agencies to understand climate
change impacts in the region, as well as help formulate integrated water resources options for long-term
planning in the Limay, Neuquén, and Negro River basins in northern Patagonia, Argentina. Watershed
management modeling is technically complex and must account for future uncertainties and changing
environmental conditions. The RDS framework supported this process and helped develop complex
technical results concerning water governance in the region.

2. Materials and Methods

This section provides an overview of the Limay, Neuquén, and Negro River basins and the
government-evaluated water management strategies adopted in the region. A discussion of the
methodologies chosen for this research follows.

2.1. General Description of the Basin

The Limay, Neuquén, and Negro River basins are in the northern section of the Argentinian
Patagonia, covering an area of 140,000 km2 that is primarily the territory of the Province of Neuquén.
The river basins extend into both the Provinces of Río Negro, and Buenos Aires (Figure 1). The Neuquén
River, with an average flow of 280 m3/s, drains an area of 30,000 km2. The Limay River has an average
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flow of 650 m3/s and drains an area of 56,000 km2. Both form the Negro River that drains a basin of
116,000 km2, with an average flow of 930 m3/s.
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Figure 1. The Limay, Neuquén and Negro River basins.

The runoff regime of the Limay and Neuquén Rivers is pluvio-nival, with floods in winter from
rainfall and floods in the spring and summer from snowmelt. Most of the precipitation, or 3500 mm
annually, occurs in the eastern foothills of the Andes, but decreases drastically to less than 200 mm
annually, on the eastern side. The vegetation cover of the Neuquén basin is sparse, with no relevant
natural forest areas, and with scattered shrubland and low-lying pastures. In contrast, the Limay
River basin is characterized by dense forests in the western sector with decreasing vegetation towards
the east due to the reduction in rainfall. The Negro River moves through arid plateaus with a valley
of variable width where the vegetation is of a shrub type, and where there is little development
characteristic of semi-arid regions.

Along these rivers are located several hydroelectric plants, five on the Limay River and one on
the Neuquén River. The hydroelectric system totals approximately 5000 MW of installed capacity,
representing 15% of the national electricity supply. Fruit and vegetable farming covers more than
10 million hectares of irrigated valleys and is one of the pillars of the region s economy. The Neuquén
hydrocarbon basin has the highest proven oil reserves in Argentina, currently contributing 55% of the
country’s production of oil and 42.5% of its production of natural gas. The area also holds 40% of the
country’s untapped natural gas.

In the last 20 years, there has been a marked negative trend in river flows, with a mean annual
flow reduction of up to 30%. Recently developed climatic scenarios point to a potential future increase
in water stress in the Comahue region and a substantial change in the pluvio-nival regime.

2.2. Water Resources Governance in the Comahue Region, Argentina

Each provincial state in Argentina is responsible for the planning and management of its own
water resources; it must coordinate management with other jurisdictions for shared water resources.
In the Comahue region, this function is exercised by the Interjurisdictional Authority of the Limay,
Neuquén and Negro River basins (AIC), in which representatives of the provinces of Neuquén,
Río Negro, Buenos Aires and the national state participate. In the Comahue region, municipalities
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and water users are encouraged to participate in decision-making. AIC seeks to promote the effective
participation of the water community and society in general in defining the objectives of water planning
and management control.

2.3. Description of Robust Decision Support Framework

In the Comahue region, an adapted version of the RDS process was employed as shown in the
shaded areas of Table 1, where only the shaded boxes were implemented covering Steps 3–7 of the
RDS methodology. The duration of the project lasted four years (2012–2016) and included WEAP
training and a series of participatory workshops. It started with a WEAP training attended by more
than 30 people from water governance institutions, universities and various agencies. After the
training these group of stakeholders participated to a problem formulation workshop. Data input and
model validation tasks were consulted with a subset of those local institutions that conformed the
focus group: Autoridad Interjurisdiccional de Cuencas de los ríos Limay, Neuquén y Negro (AIC);
Departamento Provincial de Aguas de Río Negro (DPA); and Subsecretaría Provincial de Recursos
Hídricos de Neuquén (SPRH).
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Table 1. Standard Robust Decision Support (RDS) methodology. Source adapted from [15]. The shaded area represents the steps implemented in this project.

Phase Preparation and Formulation Evaluation and Implementation
Modules 1. Define decision space 2. Map of kay actors 3. Problem formulation 4. Tool construction 5. Scenario definition 6. Options analysis 7. Results exploration 8. decision support
Level of participation Consultation Information extraction Participative research Co-learning Cooperation Cooperation Co-learning Co-learning
Capacity building focus Literature review Survey Participative workshop Training in tools use Regular meetings Manual for tools use Visualization training Participative workshop
Decision making
products

Decision space
definition Actor interaction Key system elements

identified Model for discussion Key scenarios identified Performance metrics Meetings with decision
makers

Summary to identify
financing

Results
Adaptation and
development
connections

Participative spaces
identified

Intersectoral
perspective shared

Climate and adaptation
evaluation

Shared vision of the
future Estimated tradeoffs Decision makers

informed
Adaptation actions
financed
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Specifically, the methodology included: (1) the formulation of the problem by periodically
connecting with decision-makers (Section 2.4); (2) simulation of the different components of the
system (hydrology, hydropower, other uses, demand priorities, restrictions, etc.) using the WEAP
model on a monthly basis (Section 2.5); and (3) the construction of a decision space visualization for
presenting, communicating and facilitating a discussion of model ensemble output (Section 2.6).

2.4. Problem Formulation with XLRM

A problem formulation framework, called the XLRM [33] which abbreviation is derived from the
components described below, divides a decision challenge into four components. The first component
of XLRM relates to the eXogenous factors (X), or uncertainties, that are outside the control of the
decision-makers but could greatly impact the system’s performance outcomes. One example of
uncertainty about future conditions are the impacts of climate change on the hydrology. The second
component relates to the management Levers (L), or strategies that decision-makers can adopt in
pursuing their management objectives. An example is the construction of reservoirs for hydropower
production and canals to improve the distribution of water. The third component comprises the
analytical tools used to represent the often-complex Relationships (R) between uncertainties and
strategies (X and L); in this case, the WEAP model was used to simulate responses within a hydrological
water management system. The final component of the XLRM is Management outcomes (M), used to
measure the success of decision-makers’ policy options or investments.

2.5. Water Resources Systems Planning Using WEAP

The WEAP modeling platform provides an integrated approach to water resources planning
by linking hydrologic processes, system operations and end-use representations within a single
analytical platform [3]. It includes the multiple dimensions critical to water resources management,
such as surface water and groundwater hydrology, water quality, stream-aquifer and stream-floodplain
interactions, as well as ecosystem function. WEAP can be executed at various time steps including
monthly and annually, making WEAP a suitable choice for use in the case study.

2.6. Decision Space Visualization

Effectively communicated model output is critical to effective decision-making. WEAP model
outputs correspond to the performance metrics (M) from the XLRM framework. Stakeholders can
explore and interact with the visualization in three progressive steps that transform the model output
to meaningful information. Forni et al. (2016) describes three steps for Decision Space Visualizations
(DSVs) that account for knowledge exchange and help construct a shared mental model of a region’s
water resources system regarding its current state, future challenges, and opportunities. The three
steps as shown in Figure 2 are: (1) analysis of modeling output time series; (2) data fusion to a single
value form; and (3) decision space visualization. In the case study, this visualization methodology was
implemented to present ensemble model output results in a participatory and interactive process.
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3. Results

WEAP Model

The WEAP model was used to simulate the Limay–Neuquén–Negro system. The construction
of the model had two components: (1) a supply component represented by the WEAP hydrological
module to estimate the runoff as a function of precipitation and other hydrological processes that
occur in the upper-river basin; and (2) a requirement component representing agricultural and
urban water demands, as well as artificial reservoirs/hydropower plants located downstream and
operated under system restrictions. The supply component uses a set of algorithms to represent
rainfall–runoff processes with the objective of simulating the observed river flows at a satisfactory level
of approximation. The requirement component is also modeled in WEAP and considers agricultural,
industrial, urban, and other uses. Sub-basin delineation was made based on contributions to the
main river flows and based on the data availability of hydro meteorological stations supporting an
adequate calibration of the model. This resulted in nine sub-basins with a total area of 53,236 km2

(Table 2). Each of the sub-basins was discretized into 400-meter elevation bands constituting
the hydrological units—or catchments—in which the WEAP two-layer soil moisture method was
applied [3]. This method is based on empirical functions that describe the processes of snow
accumulation/melt, infiltration, evapotranspiration, surface and subsurface runoff, deep percolation,
and base flow runoff.

Table 2. Sub-basin discretization.

Basin Sub-Basin Area (km2)

Neuquén Andacollo 3579
Neuquén Rahueco 4566
Neuquén Bajada del Agrio 7366
Neuquén Paso de los Indios 16,020

Collon Cura Rahue 3457
Collon Cura Huechahue 5480
Collon Cura Collon outlet 7154
Alto Traful Alto Traful 1420

Limay Limay 4194
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The simulation was performed on a monthly scale covering the period between January 2000
and December 2010. Input data provided by the AIC corresponded to precipitation, temperature,
relative humidity, wind velocity (available for 27 meteorological stations), snow accumulation,
and albedo. Vegetation coverage data were also available for evapotranspiration estimation purposes
within the model (forest and meadow/steppe). The model included five hydropower dams located
in the Limay River, of which two have seasonal regulation capacity (Piedra del Aguila and Chocón);
the model also included the Cerros Colorados Complex, a facility in the Neuquén River that consists of
two reservoirs and a hydroelectric power station. The model simulated the demands of urban centers,
agricultural areas under irrigation, exploitation of conventional and non-conventional hydrocarbons,
transfers, and hydroelectric generation up to the mouth of the Negro River as shown in Figure 3.
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Seasonal reservoirs were geometrically represented by a water level–volume curve, and model
parameters were related to their capacity of energy generation. The simulation of the reservoir
operation assumed the current norms of operation and orders of priority for water storage and
hydropower generation. Non-seasonal reservoirs were simply represented as passing power plants
with no storage capacity. The goodness of fit of the calibrated model for the 2000–2010 period was
evaluated using statistical standards. The comparison of simulated and observed flows ensures the
goodness of fit at different control points in the watershed (Table 3).

Table 3. Calibration performance for monthly flow discharges at the outlets of the watersheds for the
period 2000–2010 (supply component).

Watershed NSE * %-Bias Gaging Stations

Limay-Alto Traful 0.75 0–7 La Cantera
Limay 0.75 −7 Villa LLanquin

Collon Cura 0.88 1.4 Collon Outlet
Neuquén 0.85 9 Paso de los Indios

* Nash-Sutcliffe Efficiency (NSE).

Once the WEAP model application of the Comahue region was calibrated to accurately represent
the basin, a series of scenarios were developed and implemented. These scenarios were identified by
local stakeholders in a Problem Formulation activity using the XLRM framework.
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Participants included the provincial Water Department of the Rio Negro Province (DPA),
the Under Secretary of Water Resources of Neuquén province (SSRH), the AIC, research team members
from the local university, and local project partners.

One of the key sources of uncertainty in the system was climate. Working with the Centro
de Investigaciones del Mar y la Atmósfera (CIMA), a set of climate projections were developed to
represent the likely climate impacts to the system from 2016 to 2050 in WEAP (Figure 4). The selection
of the climate model was based on climate similarities with the Comahue region. A second uncertainty
was the potential expansion of the agricultural region and the introduction of higher value crops.
This was a concern for water managers in charge of supplying irrigation water during the summer
months. Table 4 contains a list of the considered uncertainties and the various projections developed
for each of those uncertainties.

Table 4. List of Uncertainties (Xs) identified for the study area, corroborated by the local institutions
focus group.

Uncertainties Representation in WEAP Model

Future Climate Development of 5 climate projections: Ciclo histórico, GFDL * 4.5, GFDL
8.5, MIROC ** 4.5, MIROC 8.5, ESM2 *** 4.5, ESM2 8.5

Potential Expansion of agricultural area Development of 2 projections of agricultural land under production: (1)
Reference scenario with current tendencies; (2) Potential land expansion

Changes in cropping patterns to higher value crops Evaluation of 2 potential cropping patterns tendencies: (1) Traditional
use of agricultural land; (2) Higher value crops

* Geophysical Fluid Dynamics Laboratory (GFDL). ** Model for Interdisciplinary Research on Climate (MIROC).
*** Earth System Models Part II (ESM2).

Strategies were identified as potential actions that decision-makers could take. Because of the
increasing agricultural irrigation requirements, these included the reduction in water losses in the canal
system, the incorporation of new technologies related to irrigation efficiency, and the development
of irrigation canals. While agriculture was considered a large consumptive user, urban conservation
strategies were encouraged because of the large losses in the urban water infrastructure system.
Multi-purpose reservoir development was considered for increasing water storage, as well as for
increasing the production of hydropower. Table 5 contains a list of the strategies evaluated in the study
and a brief description each strategy.Water 2018, 10, x FOR PEER  10 of 18 
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Table 5. List of Strategies (L) identified for the study area and corroborated by the local institutions.

Strategies Management Goal and Description

Base Current management

Reduction in Losses Slow reduction trend of agricultural water distribution losses up to 50% of the
current modeled value

Irrigation Efficiency Slow increase in irrigation efficiency for gravity irrigation (35–40%) and technical
irrigation (65–80%)

Rational water use in cities Progressive reduction in urban water demands up to 50% of the current
modeled value

Reservoir operation Change in the operating rules for Piedra del Aguila Reservoir (increase in the
maximum level of normal operation of the reservoir in determined months

Infrastructure development of hydropower
plants (high feasibility)

High feasibility of development of the following hydropower plants: Chihuido I
(2025), Michihuao (2027), Pantanitos (2035).

Infrastructure development of hydropower
plants (low feasibility)

Low feasibility of construction of the following hydropower plants: Collón Cura
(2030), La invernada (2027), Pini Mahuida (2027), Cerro Rayoso (2027), Huitrin
(2027), Chihuido II (2027), Integral Río Negro (2035).

Irrigation Canal 1 Guardia Mitre-Patagones irrigation canal (operating in 2025 with 50 cfs capacity)

Irrigation Canal 2 Chelforo-Rio Colorado (operating in 2025 with 50 cfs capacity)

Combined
Reduction in Losses + Irrigation efficiency + Rational use of urban water +
Changes in reservoir operation rules + High and Low feasibility hydropower
plants + canal Guardia Mitre Patagones

The outcomes of the various management actions were evaluated through performance metrics.
These metrics were utilized to assess the impacts of the uncertainties and evaluate the effectiveness of
the proposed strategies based on decision-making management objectives. Table 6 contains a list of
performance metrics and their corresponding management objectives.

Table 6. List of Performance Metrics (M) identified for the study area and corroborated by the
local institutions.

Objective Performance Metrics Desired Levels of Performance

Ecological (flows)

1. Neuquén River:ortezuelo Grande 100 m3/s (min.)
2. Neuquén River: San Patricio del Chañar 7 m3/s (min.)
3. Neuquén River: before Dique Ballester 115 m3/s (min.)

4. Negro River: Confluencia 400 m3/s (min.)
5. Negro River: before Canal Norte 450/500 m3/s (min.)

6. Negro River, before bocatoma Beltran 300 m3/s (min.)
7. Negro River: Desembocadura 250 m3/s (min.)

Coverage of agricultural
Irrigation Requirements

Water Demand coverages in all Irrigation
Districts (Associaciones de Riego—AR)

85% (min.) for all
8. Anelo

9. Campo Grande
10. Cinco Saltos
11. Los Barreales

Water Supply and Energy
Production (reservoir volumes)

12. Mari Menuco Storage level 411.5 h m3 (min.)
13. Cerros Colorados 38,000 h m3 (Top of Buffer)

14. Chocón 13,000 h m3 (Top of Buffer)
15. Piedra del Aguila 7739.9 h m3 (Top of Buffer)

Water Supply (max flows in
canals)

16. Principal Alto Valle Canal 80 m3/s (max.)
17. Centenario Canal 7 m3/s (max.)

18. Arroyito Canal 15 m3/s (max.)
19. Margen Norte Valle Medio Canal 6 m3/s (max.)

20. Conesa Canal 28 m3/s (max.)
21. Valle Inferior Canal 39 m3/s (max.)

Coverage of urban water
requirements Coverages in all Urban Centers 100% (min.)
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All scenario ensemble results can be accessed via a link to an interactive Tableau Public
visualization platform, included in the captions for Figures 6 and 7. Figure 5 shows the main impacts
of the uncertainties under the current management, i.e., if no strategy is considered in the short-term.
Figure 6 show those impacts in the long-term. The impacts of the recognized future uncertainties on
the performance metrics are represented as the frequency of failure of each of the performance metrics
based on the thresholds described in Table 6. The frequency of failure is estimated by calculating
the percentage of times that specific metric results are below (or above, depending on the metric)
the established threshold. This failure is shown as a value in percentage terms and also by the color
dimension in the graphic. The cut-off point between red and green was not set arbitrarily; it was
set based on a discussion with stakeholders of what they would consider an undesired percentage
value of failures. The visualization is structured to look at the long-term impacts by selecting the
data corresponding to specific decades of the time horizon of the results (e.g., 2011–2020, 2021–2030,
2031–2040, and 2041–2050). In addition, users can select the month of the year to analyze impacts in
specific times of the year (e.g., summer months vs. winter months).
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Under the current management, environmental flows (Metrics 1–7) are below acceptable levels
during the summer months (November, December, January, February, and March). These impacts
are more evident in the Neuquén River reach at San Patricio del Chañar, Confluencia, Canal Margen
Norte and Desembocadura (Metrics 2, 4, 5, and 7). Figure 5 shows the short-term impacts and Figure 6
the long terms impacts. Long-term impacts of climate change are more significant on the ecological
flows, primarily in the scenarios that examine the potential expansion of agricultural areas and climate
model ESM2. In the long term, all environmental flows are negatively impacted under ESM2 climate
projection. Changes in cropping patterns (shown as High Profitability) show no difference from current
trends in the impacts on ecological flows.

The ESM2 climate projections for the long-term show that during the irrigation season (summer),
water demand for agricultural areas (performance metrics 8 through 11) is not met, specifically in areas
that depend on the Neuquén River between Portezuelo Grande and El Chañar. While in the short-term
the agricultural expansion seems feasible, the failures are greatly magnified in the long-term. However,
there is little difference in the water demand satisfaction between the High Profitability crop scenario
and the Current Trend scenario. For the other climate projections, GFDL and MIROC, negative impacts
only show up for the potential expansion of agricultural areas for Anelo, Cinco Saltos and Los Barreales
in the long-term.

Under the ESM2 climate projections for the long-term, the Mari Menuco and Cerros Colorados
reservoirs fail to have the minimum levels required for normal operations. In the scenarios of
agricultural expansion, the failures increase slightly. Cropping pattern changes do not affect reservoir
storages. Short-term results show no failures for all scenarios except ESM2 climate projections.

For the Canal metrics, the failures of performance are based on reaching the total capacity of the
canals because of the higher water demands. The capacity of irrigation canals in Canal Margen Norte
Valle Medio, Canal Conesa and Canal Principal Valley Inferior reached their maximum capacity in all
scenarios in the short- and long-term.

Figure 7 contains an image of the visualization dashboard showing the changes in the frequency
of failure when various strategies are implemented. As expected, the strategy that contemplates the
combination of all strategies is the one that provides the greater magnitude of impacts. The combination
of all strategies includes changes that are more integrated and reduces the failures in all metrics,
although in small proportions for some metrics and minimally for Canal Matriz and Canal Valle
Inferior. A series of strategies improved the outcome of the region when they were integrated (not
evaluated in isolation). Reducing agricultural water losses and implementing irrigation efficiency
strategies seem to reduce the negative impacts on environmental flow metrics in the Neuquén River
and some of the canal flows, primarily in the scenarios where agricultural production is expanded.

Urban water demand is not shown in the visualization dashboard because it had the highest
priority and, therefore, it was always met. Further detail on urban water demands and coverage is
needed to assess the extent to which the current system is, and will be, able to meet water demands for
domestic use.
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4. Discussion

This paper evaluated strategies for climate change adaptation in the northern Patagonia region of
Argentina, as a case study to illustrate the use of modeling-based integrated decision support tools.

Connecting with decision-makers and stakeholders is critical to understanding watershed
problems in the basin and linking environmental policies to research. Conceptualizing
decision-makers’ knowledge of the system builds trust and engages decision-makers in technical
and research-based projects.

A key finding of the case study is that the impacts of climate change in the basin will be
significant in the long-term, affecting reservoir operations and raising the risk that rivers will not meet
environmental flow targets for the protection of the ecology of the basin. The expansion of irrigated
agriculture in the region could amplify climate change impacts in the long-term.

This case study presents an interesting analysis of the intersectionality of climate change
impacts, sustainable water management, agricultural development, and renewable energy production.
The Patagonia region has a thriving agricultural sector and its production of renewable helps cover
Argentina’s frequent energy shortages during the summer months. However, the results of this study
show that changes in climate could mean trade-offs between preserving natural flows, developing
agriculture and supporting renewable energy production. The results also indicate that the capacity of
the canals may need to be evaluated; under most climate scenarios, canals reached maximum capacity
in the short and long-term. The WEAP model can be a useful tool for water managers to explore
strategies related to that.

The strategy that provides the greatest impacts and meets most of the metrics is the combined
strategy, i.e. all of them. This is a challenge for decision-makers since that could be very costly.
After the combined option, the strategies that perform well are the reduction in agricultural losses
and the implementation of irrigation efficiency, mainly for environmental flows and canal flows.
Reducing urban water use has no impact at the metrics evaluated, although they could show impacts
if the model had a more refined representation of urban water nodes. In addition, urban nodes have
the higher priority, and therefore never fail. Changing the reservoir operations strategy shows very
little impacts and only on environmental flows. The incorporation of new hydropower plants shows
improvements overall. There results can be seen following the Tableau Public link located in the
caption of the figures.

Further analysis is needed to evaluate which combination of these strategies could provide optimal
levels of performance. Regional water managers are currently receiving capacity-building sessions to
use the WEAP model developed; once trained, they will explore potential water management options
that were not evaluated in the project.

5. Conclusions

Climate change impacts could be significant in Argentina’s Patagonia basin, especially in
the approaching half-century. These impacts could be more severe if agricultural areas expand,
and addressing these impacts is essential in meeting reservoir level goals and environmental flow
requirements. The project in Argentina ensured the continued use of modeling tools in a decentralized
system. The sharing of modeling platforms enabled regional water management institutions to be
able to use the WEAP model to evaluate local strategies. A full implementation of the RDS workshop
with further innovation in the WEAP model is needed to support scientists and stakeholders navigate
the physical and the governance complexity of the Comahue system facilitating the permeation of
integrated regional policies.
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