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Abstract: Many complex urban drainage quality models are computationally expensive. Complexity
and computing times may become prohibitive when these models are used in a Monte Carlo (MC)
uncertainty analysis of long time series, in particular for practitioners. Computationally scalable
and fast “surrogate” models may reduce the overall computation time for practical applications in
which often large data sets would be needed otherwise. We developed a simplified semi-distributed
urban water quality model, EmiStatR, which brings uncertainty and sensitivity analyses of urban
drainage water quality models within reach of practitioners. Its lower demand in input data and
its scalability allow for simulating water volume and pollution loads in combined sewer overflows
in several catchments fast and efficiently. The scalable code implemented in EmiStatR reduced the
computation time significantly (by a factor of around 24 when using 32 cores). EmiStatR can be
applied efficiently to test hypotheses by using MC uncertainty studies or long-term simulations.

Keywords: urban water modelling; fast surrogate model; parallel computing

1. Introduction

Urban stormwater models are primary components of the monitoring system for real-time water
flow and water quality simulation and prediction. In the literature, many urban hydrology models
are well-established. However, there are few studies that attempt to model both flow and water
quality taking into account the whole complexity of the physical, chemical, and biological processes
involved [1,2]. Moreover, urban water quality studies need to combine hydrological modelling of
natural surfaces with the performance of urban man-made structures and impervious areas in a
comprehensive hydrological modelling approach. The importance of access to and preservation
of clean water is emphasised by the United Nations Sustainable Development Goals to “ensure
availability and sustainable management of water and sanitation for all” (Goal 6) and to “conserve
and sustainably use the oceans, seas and marine resources for sustainable development” (Goal 14) [3].

Zoppou [4] presents a review of eight urban stormwater models specifically designed for
simulating water quantity and quality: among others, Quantity–Quality Simulation (QQS) [5]; Storm
Water Management Model (SWMM) [6]; and MIKE-SWMM, a combination of MIKE 11 [7] and SWMM.
Although QQS can simulate chemical oxygen demand (COD) and total nitrogen, it does not provide
the capability to simulate ammonium (NH4). Similarly, the reviewed SWMM version does not provide
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a routine for simulating COD or NH4. Additionally, although MIKE-SWMM simulates several water
quality variables, it does not provide for specific simulation of COD.

Mitchell et al. [8] present a state-of-art review of integrated urban drainage models, in which
a detailed review of seven models was conducted: Aquacyle [9], Hydro Planner [10], Krakatoa [11],
UrbanCycle [12], Mike Urban [13], UVQ [14], and WaterCress [15]. Mitchell et al. [8] concluded
that these models are weak in terms of handling temporal and spatial scales, input data uncertainty,
and representation of urban infrastructure dynamics over time within a 10 to 100 year horizon.

Bach et al. [16] present a critical review of integrated urban drainage modelling (UDM) and
compared 20 different software tools used for integrated modelling: among others, integrated urban
drainage models (IUDMs) such as InfoWorks CS [17], Simulation of Biological Wastewater Systems
(SIMBA) [18], SWMM [19], and WEST [20]; integrated urban water cycle models (IUWCMs) such as
City Drain 3 [21], Model for Urban Stormwater Improvement Conceptualisation (MUSIC) [22], MIKE
URBAN [23], UrbanCycle [12], and UrbanDeveloper [24]; and integrated urban water system models
(IUWSMs) such as Dynamic Adaptation for eNabling City Evolution for Water (DAnCE4Water) [25].
In their comparison, they evaluated nine different urban drainage processes, five urban drainage
components, and eight types of model applications. As a future outlook of integrated urban water
models, they highlight that improvements are required for representing spatial and temporal processes
in these models [8], with special attention required to address long-time-series simulation [1,26].
Additionally, they recognise that integrated urban water modelling must explore parallel computing
with efforts to improve the performance of existing software [21,27] and encouraged researchers to
be adaptive to the emerging computational technology. The review above suggests that there is still
room to improve urban water models, specifically in the case of urban drainage models. One of the
problems is that most models are very complex and require a large amount of data for calibration
and to simulate processes accurately. Following [28], these complex mechanistic models describe
the flow routing in pipes by the de Saint-Venant equations, which are based on the conservation
of mass and momentum. These partial differential equations are solved by numerical algorithms
that are often computationally demanding. Therefore, this approach is impractical for long-term
simulation or optimisation tasks. As an alternative, surrogate models are frequently mentioned in
the literature [28–32]. These models are faster and represent an approximate substitute of the “real
process”, that is, the complex mechanistic model that better represents reality. Meirlaen et al. [28]
distinguish between two types of possible simplifications, the empirical (black box) and the mechanistic
(white box) approaches, and present a framework for developing a mechanistic surrogate model from
a complex mechanistic model (CMM), reducing the computational time by a factor of 3.

Jin [33] presents a comprehensive survey of fitness approximation in evolutionary computation,
whereby polynomials, the kriging model, neural networks, and support vector machines are described
as the most often used methods of surrogate modelling to improve computational efficiency. However,
these methods are of the black box type, which implies that the physical description and meaning of
the processes that are simulated are lost.

From a different perspective, efforts have been made to simplify CMMs [34–39], but these approaches
remain complex. Complex urban drainage models can be even more troublesome when Monte Carlo
(MC) based uncertainty propagation analysis is required, because this analysis requires formidable
computation times. Therefore, it becomes increasingly important to address scalability issues [27].
By scalability, we refer to the capability to deploy adaptive algorithms and run models efficiently in
different hardware configurations (i.e., the number of threads) in distributed computing environments.
Parallel computation is a key component in hydrological modelling for expediting computations.

To the best knowledge of the authors, in the realm of urban drainage modelling, there are
only a few examples of scalable implementations for solving intensive computational tasks in
watershed-distributed or semi-distributed modelling. Some examples of parallel computing are
found in other fields, such as in the application of watershed-distributed eco-hydrological models [40]
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and in large-scale integrated hydrological modelling [41,42], but examples in the urban drainage
domain are very scarce [27,43,44].

The above indicates that urban drainage modelling still requires simplified or surrogate
models and implementations of parallel computing, specifically scalable frameworks, that are, in
addition, easily accessible. In this paper, we address this need by developing and presenting
EmiStatR, “Emissions and Statistics in R for Wastewater and Pollutants in Combined Sewer Systems”,
a mechanistic simplified urban water model for the simulation of Combined sewer overflow (CSO)
emissions. Specifically, we contribute with a tool for performing short- and long-term simulations,
developed in a parallel computing framework and allowing fast calculations while preserving the
physical description and meaning of the processes simulated.

We also demonstrate that it is possible to obtain similar accuracy for water quantity and
quality with this simplified and scalable model, compared to results of a complex mechanistic full
hydrodynamic model. We focus on COD and NH4 as water quality measures. COD is a standard
for dimensioning CSO structures. NH4 represents a diluted substance that can have a significant
impact on surface water quality because of possible transformation to ammonia (NH3). Additionally,
COD and NH4 are key variables for evaluation of the performance of wastewater treatment plants
(WwTPs) and the quality status of receiving water bodies. A detailed outlook regarding the relevance of
transformation and nutrient removal from the water column is presented by Bell and co-workers [45].

This paper has three main objectives: (1) The development of a simplified mechanistic urban
water model, EmiStatR, which represents the overall dynamic behaviour of the CSO spill volume,
load, and concentration of COD and NH4. (2) The presentation of an implementation of the model
in R with parallel computation capabilities, allowing fast and scalable calculations, particularly for
scenarios with long simulation periods and in MC uncertainty propagation mode. (3) The calibration
and application of EmiStatR to a Luxembourg case study and validation by comparing the performance
against a CMM that uses the de Saint-Venant partial differential equations to describe the flow routing
in the pipes of the sewer network.

2. Methods

EmiStatR targets the simulation of CSO emissions of pollutants to the receiving water body, in
terms of indicator variables, such as COD and NH4. In this section, we describe the conceptual and
mathematical model and its implementation in R.

2.1. Conceptual Model

The EmiStatR model includes six main components to simulate combined sewage discharges of a
catchment (Figure 1):

1. Dry weather flow (DWF): EmiStatR assumes a constant DWF resulting from specific water
consumption per population equivalent (PE) and a specific discharge of infiltration inflow per
hectare of contributing impervious area to combined sewage flow (CSF).

2. Pollution of DWF: This is the specific load contribution per PE and day of COD and NH4.
No pollutant contribution of infiltration inflow is taken into account.

3. Rain weather flow (RWF): This is the total run-off of rainfall on the impervious catchment area
contributing to CSF. The RWF is discharged in a specific flow time (tfS) to the sewer outlet or CSO
structures downstream from the catchment; that is, the flow time in the sub-catchment (tfS) is a
parameter of calibration.

4. Pollution of RWF: Constant surface run-off concentrations of COD and NH4 are assumed.
EmiStatR further assumes the complete mixing of pollutants in simultaneously flowing volume
components and CSO chamber (CSOC) structures.

5. CSF and pollution: These are the sum of the DWF and RWF for the CSF and the consequent
pollution load.
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6. CSO volume and pollution: These are the volume diverted towards the receiving water body
that is produced when the overflow or spill weir level in the CSOC is exceeded and the pollution
measured as COD and NH4 loads.

As shown in Figure 1, the sewer system under investigation includes a CSOC structure to store
first-flush pollutant peaks. After filling of the storage capacity, the excess volume and pollutant inflows
are discharged through a combined sewage spill structure. The excess flow and pollutant load are not
conveyed to the WwTP but are diverted directly to the receiving water (i.e., the environment).

Throttled outflow
to WWTP

Water quality 

Water level

Flow

CSOCIF

DWF 

RWF 

CSF 

CSO 

Monitoring

Component

Figure 1. Main components of the EmiStatR model: (1) Dry weather flow (DWF) including infiltration
flow (IF), (2) pollution of DWF, (3) rain weather flow (RWF), (4) pollution of RWF, (5) combined sewage
flow (CSF) and pollution, and (6) combined sewer overflow (CSO) and pollution. CSOC—CSO chamber
(background adapted from Sanitary District [46]).

In EmiStatR a simple volume balance taking into account inflow volume, present storage capacity,
and outflow to the WwTP is implemented to simulate the CSOC structure. In case of a spill, the
pollutant concentrations in the CSO are equivalent to the combined sewage inflow concentrations of
the structure.

At the CSOC structure, a simple volume balancing takes place: (1) Substance and volume flows
are stored and discharged to the WwTP if the storage volume is not completely filled up. (2) If the
storage volume is completely filled up, the proportion of the volume inflow that is not discharged to
the WwTP goes to the CSO.

2.2. Governing Equations

2.2.1. Dry Weather Flow

The DWF, Qs24 (L · s−1), is the product of the residential wastewater flow per PE, qs, and the PEs
connected to the CSO structure, pei. The time series qs may follow a daily pattern given by a technical
association for wastewater and water management but may also be a user-defined daily or weekly
pattern, thus allowing different parts of the week to be differentiated between, for example, weekdays
and weekends. Moreover, seasonal patterns can be defined to account for differences between months
or seasons. The time series of PEs pei can also vary over time to account for differences between
weekdays and weekends or for seasonal effects, such as because of tourism. The time series qs and pei
are of lengths equal to that of the rainfall time series, P1 (see Section 2.2.3). The DWF is calculated as



Water 2018, 10, 782 5 of 24

Qs24i =
1

86, 400
· pei · qsi, (1)

where
i is the ith term of the time series (−),
pe are the PEs of the connected CSO structure at time i (PE),
PE is the units for PEs (unit per capita loading), and
qs is the individual water consumption at time i (residential) (L · PE−1 · day−1).
We note that pe refers to the time series of PEs with units PE. The number 86,400 is a factor for

unit conversion (from days to seconds). The infiltration flow, Q f (L · s−1), is computed as

Q f i = Aimp · qf i, (2)

where
Aimp is the impervious area of the catchment (ha), and
qf is the specific infiltration water inflow at time i (L · s−1 · ha−1).
Consequently, the total DWF, Qt24i (L · s

−1), is calculated as

Qt24i = Qs24i + Q f i. (3)

The contribution of DWF to the combined sewage volume during a time interval ∆t (min) is
called the “dry weather volume” (amount of dry weather water in CSF), Vdw (m3):

Vdwi = 0.06 · ∆t ·Qt24i. (4)

The number 0.06 is a factor for unit conversion (from minutes to seconds and from litres to
cubic metres).

2.2.2. DWF Pollutants

The time series of two dry weather pollutant concentrations are calculated: the COD concentration,
CCOD (mg · L−1), and the NH4 concentration, CNH4 (mg · L−1). These are time series with length equal
to P1 and that make use of CCOD,S and CNH4,S, which are assumed to be constant:

CCODi =
103 · pei · CCOD,S

qsi · pei + 86, 400 ·Aimp · qfi
, (5)

CNH4i =
103 · pei · CNH4,S

qsi · pei + 86, 400 ·Aimp · qfi
, (6)

where
CCOD,S is the COD sewage pollution per capita (PE) load per day (g · PE−1 · day−1), and
CNH4,S is the NH4 sewage pollution per capita (PE) load per day (g · PE−1 · day−1).

2.2.3. Rain Run-Off Volume and Rain Weather Flow

The contribution of rainwater to the combined sewage volume is called the “rainwater volume”,
Vr (m3). This is a vector whose length is equal to that of P1. P1 is delayed by tfS time steps that
represent a delay in time response related to flow time in the sewer system. The parameter tfS may be
calibrated with observed data. The rainwater volume accumulated during a time interval ∆t(min) is
computed as

Vri = 10 · P1i−tfS · [Cimp · Aimp + Cper(Atotal − Aimp)], (7)

where
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P1 is the rainfall depth per time step (∆t) at time i (mm),
Aimp is the impervious area of the catchment (ha),
Atotal is the total area of the catchment (ha),
Cimp is the run-off coefficient for impervious areas (−), and
Cper is the run-off coefficient for pervious areas (−).

2.2.4. Combined Sewage Flow

The calculation of the CSF is done by introducing the concept of the “combined sewage mixing
ratio”, csmr (–). This is the ratio between Vdw and Vr:

csmri =

 0, if Vri ≤ ε,
Vdwi
Vr i

, if Vri > ε,
(8)

where
ε is the precision term equal to 10−5 (–).

2.2.5. CSO Volume

The calculation of the CSO volume is based on the excess volume stored in the Combined sewer
overflow chamber (CSOC). The volume in the CSOC is calculated from the curve water level versus
water volume. This requires that an initial water level in the CSOC, Levini (m), is provided by the user.
The throttled outflow or pass-forward flow of the CSOC, Qd, conveyed towards the WwTP is defined
by the discharge of the CSOC by an orifice:

Qdi =

{
103 · Cd · Ad (2 · g · Levini)

0.5 if i = 1,

103 · Cd · Ad (2 · g · Levi)
0.5 if i > 1,

(9)

where
Qd is the throttled outflow to the WwTP (L · s−1);
Cd is the orifice coefficient of discharge (−);
Ad is the orifice area (π · D2

d/4) (m2);
g is the gravitational acceleration, 9.81 m·s−2; and
Lev is the water level in the CSOC (m).
After computation of Qd, it is checked whether the value obtained is below the maximum throttled

outflow, Qd,max (L · s−1), defined by the user:

Qdi =

{
Qdi if Qdi < Qd,max,

Qd,max if Qdi ≥ Qd,max.
(10)

Four stages of the CSOC for calculation of the CSO volume are defined: (1) Filling up, characterised
by the CSOC filling up volume, VChamber, of the CSOC; (2) CSO, characterised by the completely filled
CSOC volume, VChamber, being equal to the volume of the CSOC; (3) stagnation: Characterised by the
CSOC filling up volume, VChamber, of the CSOC being equal to zero; (4) emptying: Characterised by the
CSOC filling up volume, VChamber, of the CSOC. A status variable is defined to determine when the
CSOC is filling up:

ocfyni =

{
1 if

(
Vri + Vdwi

)
> Vdi,

0 if
(
Vri + Vdwi

)
≤ Vdi,

(11)

with

Vdi
= 0.06 · ∆t ·Qdi

, (12)
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and where
ocfyn is the status variable for the CSOC filling up or spilling out (1—filling up; 0—spilling out) (−),
Vd is the volume of throttled outflow to the WwTP at time i (m3), and
Qd is the throttled outflow to the WwTP at time i (L · s−1).
After checking whether the CSOC is filling up or not, the volume VChamber (m3) is calculated:

VChamberi =



0 if i = 1,

VChamberi−1 + ∆Vi if
(

ocfyn = 1
)
∧
[
VChamberi−1 < (V − ∆Vi)

]
︸ ︷︷ ︸

filling up

,

V if
(

ocfyn = 1
)
∧
[
VChamberi−1 ≥ (V − ∆Vi)

]
︸ ︷︷ ︸

spill

,

0 if
(

ocfyn = 0
)
∧
[(

VChamberi−1 + ∆Vi
)
≤ ε

]
︸ ︷︷ ︸

stagnation

,

VChamberi−1 + ∆Vi if
(

ocfyn = 0
)
∧
[(

VChamberi−1 + ∆Vi
)
> ε

]
︸ ︷︷ ︸

emptying

,

(13)

with

∆Vi = Vri + Vdwi −Vdi
, (14)

and where
V is the volume of the CSOC (m3).
Upon calculation of the filling up volume, the CSO spill volume, VSv (m3), is calculated as

VSvi =


∆Vi if VChamberi = V,

VChamberi −V if VChamberi > V,

ε if VChamberi < V.

(15)

2.2.6. CSO Pollutants

The spill emissions of COD and NH4 are calculated in two steps: (1) Calculation of the COD
and NH4 spill loads, BCOD,Sv and BNH4,Sv, respectively; and (2) Calculation of the COD and NH4 spill
concentrations, CCOD,Sv and CNH4,Sv, respectively.

BCOD,Svi =

{ VSvi·csmri
csmri+1 CCODi +

VSvi
csmri+1 CODri if VSvi > ε,

ε if VSvi ≤ ε.
(16)

BNH4,Svi =

{ VSvi·csmri
csmri+1 CNH4i +

VSvi
csmri+1 NH4r if VSvi > ε,

ε if VSvi ≤ ε.
(17)

Here,
BCOD,Sv is the COD load in the spill volume (g),
CODr is the rainwater pollution − COD concentration (mg · L−1),
BNH4,Sv is the NH4 load in the spill volume (g), and
NH4r is the rainwater pollution − NH4 concentration (mg · L−1).
CODr can be a time series of length equal to P1 or a unique value constant in time. The emissions

in terms of the concentrations of COD and NH4 are calculated and make use of CCOD,Sv (mg · L−1),
which is defined as the ratio of BCOD,Sv and VSv. Similarly, CNH4,Sv (mg · L−1) is the ratio of BNH4,Sv
and VSv.
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2.3. Model Implementation in R

EmiStatR is available for download from the Comprehensive R Archive Network (CRAN)
(https://cran.r-project.org/web/packages/EmiStatR/). This includes a user manual with several
examples that can be run in R. The entire work flow for EmiStatR is illustrated in Figure 2.

2.3.1. Input Data Definition

EmiStatR is implemented in R [47] by defining a specific input() class (Figure 2). The model input
data are set up in the class input() and can be grouped into three main categories (Table 1, columns 1
and 2):

1. Wastewater production data, that is, water consumption in PE and characterisation of the
pollution load of wastewater in terms of COD and NH4 concentrations in PE.

2. Run-off and specific pollutant load contribution per PE and day (COD and NH4 concentrations)
of infiltration water.

3. Precipitation data, that is, time series of rainfall and rainfall run-off pollution in terms of
concentrations of COD and NH4.

Table 1. General and combined sewer overflow (CSO) structure input data of EmiStatR.

General Input Units CSO Input Units

1. Wastewater 1. Identification
Water consumption, qs L · PE−1 · day−1 a ID of the structure –
Water consumption, factors b – Name of the structure –
Pollution COD c, CCOD,S g · PE−1 · day−1

Pollution NH4
d, CNH4,S g · PE−1 · day−1 2. Catchment data

Name of the municipality –
2. Infiltration water Name of the catchment –
Inflow, qf L· s−1 · ha−1 Number of the catchment –
Pollution COD, CODf g · PE−1 · day−1 Land use –
Pollution NH4, NH4f g · PE−1 · day−1 Total area, Atotal ha

Impervious area, Aimp ha
3. Rainwater Run-off coefficient for impervious area, Cimp –
Precipitation time series, P1 mm Run-off coefficient for pervious area, Cper –
Pollution COD, CODr mg · L−1 Flow time structure, tfS time step
Pollution NH4, NH4r mg · L−1 Population equivalents, pei PE

Population equivalents, factors b –
3. CSO structure data
Volume, V m3

Curve level–volume, lev2vol m, m3

Initial water level, Levini m
Maximum throttled outflow, Qd,max L· s−1

Orifice diameter, Dd m
Orifice coefficient of discharge, Cd –

a Population equivalent (PE). b Factors for daily, weekly, and monthly patterns. c Chemical oxygen demand
(COD). d Ammonium (NH4).

The general input variables of the CSO structure are grouped into three main components (Table 1,
columns 3 and 4):

1. Identification, that is, ID and name of structure.
2. Catchment data, that is, name of the municipality, name and number of the catchment, land use

(residential, commercial, and industrial), total area of the catchment, impervious area, and PEs
connected to the sewer system.

3. CSO structure data, that is, data regarding the throttled outflow diverted to the WwTP and the
total storage volume of the CSOC.

https://cran.r-project.org/web/packages/EmiStatR/
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slot(x, "zero")

Class: input( )

slot(x, "folder")

slot(x, "cores")

slot(x, "ww")
- qs
- C

COD,s

- C
NH4,s

slot(x, "inf")
- qf
- CODf
- NH4f

slot(x, "rw")
- CODr
- NH4r

slot(x, "P1")

CSO input

- slot(x, "st")

E1
- Identification
- Catchment
- CSO structure

E2
- Identification
- Catchment
- CSO structure

E3
- Identification
- Catchment
- CSO structure

slot(x, "pe.ts.file")

slot(x, "pe.daily.file")

slot(x, "pe.weekly")

slot(x, "pe.seasonal")

slot(x, "qs.ts.file")

slot(x, "qs.daily.file")

slot(x, "qs.weekly")

slot(x, "qs.seasonal")
slot(x, "export")

General input Time series factors

E(n)
- Identification
- Catchment
- CSO structure

...

function

Cinp2TS( )
time series definition

Read input

Method: EmiStatR( )

qs time series

pe time series

Dry Weather Flow 
(DWF)

DWF pollutants

Rain Weather Flow 
(RWF)

RWF pollutants

CSO volume CSO pollutants
CSOC level 
and volume

Combined unique 
result set per catchment

Summary statistics Visualisation: plots

Combined results

Parallelised (level 1)

Parallelised (level 2)

slot(x, "spatial")

Figure 2. Workflow for EmiStatR and the parallelised approach. Parallelisation is set in the input()
class, slot(x, “cores”). Level 1: Parallel computing is done inside EmiStatR. Level 2: Parallel computing
is done outside of EmiStatR, e.g., Monte Carlo simulation or optimisation.
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The main goal of EmiStatR is to simulate emissions of spill volume in individual CSO structures.
If calibration data are available, EmiStatR parameters may be calibrated prior to simulation using
the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm [48]. The DREAM algorithm
is integrated through the R package dream [49]. If calibration is not feasible, the model can also be
run using parameter values taken from reference literature and guidelines. Table 2 provides reference
values and calibration ranges for the most important EmiStatR parameters.

Table 2. Default values for input data of EmiStatR.

Input Units Reference Literature Range
Value Source (This Study)

Wastewater
Water consumption, qs L · PE−1 · day−1 a 150 b [50] [130, 170]
Pollution COD c, CCOD,S g · PE−1 · day−1 120 [51] [90, 150]
Pollution TKN d g · PE−1 · day−1 11 [51] [7, 15]
Pollution NH4

e g · PE−1 · day−1 4.7 This study [1, 8]

Infiltration water
Inflow, qf L· s−1 · ha−1 0.05 [52] [0, 2]

Catchment data
Run-off coefficient for impervious area, Cimp – See [53] [53] [0.20, 095]
Run-off coefficient for pervious area, Cper – See [53] [53] [0.05, 0.50]
Flow time structure, tfS time step 2 This study [0, 12]

CSO structure data
Initial water level, Levini m Lmax

f/2 This study [0, Lmax]
Orifice coefficient of discharge, Cd – 1.25 This study [0.01, 2]

a PE: Population equivalent units; b mean value for European countries; c COD: Chemical oxygen demand;
d TKN: Total Kjeldahl nitrogen; e NH4: Ammonium; f Lmax : Maximum water level in the combined sewer
overflow chamber (CSOC).

2.3.2. Implementation of a Scalable Approach

Because MC analysis and long-term simulations of a large number of catchments EmiStatR may be
slow, we made the code more scalable through parallel computation. This was done via the R package
doParallel [54], which provides a parallel back-end for the functions of the foreach package [55].
It depends on the R packages foreach, iterators [56], and parallel [47] and provides functionality for
creating parallel loops through the foreach package. The doParallel package is an interface between
the foreach and parallel packages of R 2.14.0 and later parallel wraps functions of the multicore [57]
and snow packages [58].

The parallel package evaluates larger chunks of code in parallel. In order to complete a
computational task in parallel, these chunks should be evaluated independently, should take the
same length of time, and should not communicate with each other. The typical parallel computational
model is the following [47]:

1. Start up M “worker” processes, and do any initialisation needed for the workers.
2. Send any data required for each task to the workers.
3. Split the task into M roughly equally sized chunks, and send the chunks (including the R code

needed) to the workers.
4. Wait for all workers to complete their tasks, and collect results.
5. Repeat steps 1 to 4 for any further tasks.
6. Stop and close the worker processes.

In our specific case study, each of the M workers is related to a MC simulation. EmiStatR can also
be parallelised for each sub-catchment to address scalability. An example is given in the EmiStatR
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package documentation. How the parallelisation is integrated into the entire workflow is illustrated
in Figure 2, where parallelisation is set in the input() class, slot(x, “cores”). Level 1 indicates the
parallel computation done inside EmiStatR. Level 2 indicates the parallel computation done outside of
EmiStatR, for example, MC simulations or optimisation, in other R packages such as dream [49] or
stUPscales ([59]; under review, to be published in this issue) packages.

3. Case Study

3.1. Study Area

A test case was created to evaluate the use and performance of EmiStatR. A sub-catchment of the
Haute-Sûre catchment in the northwest of Luxembourg was chosen. The combined sewer system of
the sub-catchment drains the three villages Goesdorf, Kaundorf, and Nocher-Route. In the local sewer
system downstream from the villages, three CSOCs are located to store pollutant peaks in the first
flush of CSFs. Figure 3 depicts their locations and the delineation of the catchment. The topography of
the area is characterised by a hilly landscape. The elevations around Goesdorf are between 390 and
490 m, around Kaundorf are between 370 and 464 m, and in the area of Nocher-Route vary between
400 and 485 m. The main land use types in the villages are residential, smaller industries, and farms.
Outside of the villages, forest as well as agricultural areas and grassland are the dominating land uses.
The receiving water bodies at CSO structures in Goesdorf, Kaundorf, and Nocher-Route are tributaries
of the river Sûre (Sauer, in German) (Figure 3).

Figure 3. The Haute-Sûre sub-catchment. Combined sewer overflow (CSO) structures are located in
Goesdorf (GOE), Kaundorf (KAU), and Nocher-Route (NOR).

3.2. Model Calibration

Measured precipitation time series at the Goesdorf CSOC served as input for the model calibration
for water quantity output variables. This time series was recorded from May 15, 2011 to June 3, 2011 at
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1 min resolution. Seven water quantity parameters were selected for calibration: (1) Water consumption,
qs; (2) infiltration flow, q f ; (3) time flow, t f S; (4) run-off coefficient for impervious area, Cimp; (5) run-off
coefficient for pervious area, Cper; (6) orifice coefficient of discharge, Cd; and (7) initial level of water in
the CSOC, Levini.

For calibration, we used the DREAM algorithm [48]. DREAM has the capability of running and
evaluating multiple different chains simultaneously for global exploration. The algorithm tunes the
proposal distribution in randomised subspaces during the search. DREAM enhances the applicability
of Markov chain Monte Carlo (MCMC) sampling approaches in complex problems [48]. The main
building block of the DREAM algorithm is the Differential Evolution Markov Chain (DE-MC) method
presented by ter Braak [60]. In DE-MC, different Markov chains are run simultaneously in parallel.
At the current time, they form a population. Jumps in each chain are generated by taking a fixed
multiple of the difference of two random chains without replacement. To accept or reject candidate
points, the Metropolis ratio is used [60].

The DREAM algorithm is implemented in R in the R package dream [49]. Observations of water
level in the Goesdorf storage CSOC served as reference for optimising the model parameters. The
water level was recorded from April 19, 2011 to July 15, 2011 at 30 s time steps. The precipitation and
water level observations were aggregated to 10 min intervals to assure that the model simulations and
observations had the same temporal support before comparison. The observations were divided into
two sets, one for calibration and one for validation. The calibration set comprised the initial section
of the measurements from May 15 to June 3, 2011, a total of 2698 records at 10 min time steps. The
validation set comprised the measurements from June 3 to July 7, 2011, a total of 4901 records at 10 min
time steps.

DREAM optimises by minimising the root-mean-squared error (RMSE). As accuracy measures,
the calibration results were evaluated by the mean error (ME), RMSE, and the Nash–Sutcliffle model
efficiency coefficient (NSE) [61]:

RMSE =

√√√√ 1
N

N

∑
i=1

(Si −Oi)2, (18)

ME =
1
N

N

∑
i=1

(Si −Oi), (19)

NSE = 1− ∑N
i=1(Si −Oi)

2

∑N
i=1(Oi − Ō)2

, (20)

where
Oi is the ith observation,
Si is the ith simulation,
Ō is the mean of the observations, and
N is the number of observations (and simulations).
For Kaundorf and Nocher-Route, sufficient calibration data were not available. We therefore used

the reference values (Table 2).
Regarding the water quality module of EmiStatR, six parameters are required to define pollution

in terms of the following: (1) COD load per PE per day in the wastewater, CCOD,S; (2) NH4 load per PE
per day in the wastewater, CNH4,S; (3) COD load per PE per day in the infiltration water, COD f ; (4) NH4

load per PE per day in the infiltration water, NH4 f ; (5) COD concentration in the run-off, CODr; and
(6) NH4 concentration in the run-off, NH4r. If these parameters are not measured directly, then they
can be calibrated when observations of COD or NH4 (concentrations or loads) in the output of the
CSO spill volume are available. In this case study, we did not need to calibrate CCOD,S and CNH4,S for
Goesdorf, Kaundorf, or Nocher-Route, because 91 observations in total under DWF conditions were
available. The measured CCOD,S had a mean value of 104 g · PE−1 · day−1 with a standard deviation of
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87.5 g · PE−1 · day−1. The measured CNH4,S had a mean value of 4.7 g · PE−1 · day−1 with a standard
deviation of 1.92 g · PE−1 · day−1. The temporal support of these observations was 120 minutes. The
other input parameters of the water quality module (COD f , NH4 f , CODr, and NH4r) were set to zero,
because the concentrations in rainfall and infiltration water were judged negligible compared to that
of household sewage. We chose periods from 2010 and 2011 for both calibration and validation.

3.2.1. Calibration Results of the Water Quantity Model

Table 3 and Figure 4a present the final calibration results of the hydraulic model implementing the
DREAM algorithm. The calibration required 980 function evaluations. The optimised set of parameters
produced a ME of −1.35 m3, RMSE of 6.85 m3, and NSE of 0.95. In this case, Qd,max was set to 5 L·s−1

and V was set to 190 m3 (actual conditions for 2011). Figure 4a shows the precipitation input time
series for the calibration dataset (upper inset) and the comparison of observed and simulated time
series of the CSOC volume (bottom inset). For the events presented in Figure 4, the values of ME
and RMSE are in cubic metres, whereas the NSE is dimensionless. From Figure 4a, it is possible to
infer that after model calibration, the model could adequately simulate (NSE = 0.95) the volume in
the CSOC. The model simulation was slightly under model observations specifically for low-rainfall
conditions. Additionally, an over-prediction of the peak volume was presented in the simulation of the
CSOC volume.

Table 3. Calibration and validation results of the hydraulic model in EmiStatR as calibrated with the
DREAM algorithm (Goesdorf 2011, 10 min time step).

Parameter Units Range of Sampling Calibrated Value

Water consumption, qs L · PE−1 · day−1 [130, 170] 152
Infiltration flow, q f L·s−1·ha−1 [0, 0.2] 0.116
Time flow, t f S time step [0, 12] 1
Run-off coefficient for impervious area, Cimp – [0.20, 0.95] 0.28
Run-off coefficient for pervious area, Cper – [0.05, 0.50] 0.07
Orifice coefficient of discharge, Cd – [0, 2] 0.67
Initial water level, levini m [0.1, 3.5] 0.57
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Figure 4. Rainfall and combined sewer overflow chamber (CSOC) volume at Goesdorf. (a) Time series
of May to June 2011 calibrated with DREAM; (b) June to July 2011 simulated time series for validation
with observations and the CMM.

3.3. Validation of Model Predictions

Besides the calibration set, another set of measurements was used as independent observations
to assess the accuracy of the model predictions for validation of the water quantity model. Input
precipitation was recorded from June 3 to July 7, 2011 at a temporal resolution of 1 min, aggregated to
10 min. The observations of water level in the storage CSOC correspond to this period.

Figure 4b shows the results of the hydraulic model validation. It shows the precipitation input
time series (upper inset), the comparison of observed and simulated time series of the CSOC volume
(middle inset), and the comparison with the output of a CMM (bottom inset).

The CMM was implemented in the software InfoWorks ICM 7.5 (Innovyze Ltd, Wallingford,
Oxfordshire, United Kingdom), and it served as a benchmark to calibrate and validate EmiStatR for
water quantity and quality variables. The CMM was a full hydrodynamic flow and pollution load
model, which implementd the de Saint Venant partial differential equations and was built initially in
the software InfoWorks CS (Innovyze) R© [62]. This model was used to simulate surface run-off and
discharge characteristics in local sewer systems and the behaviour of CSO structures in the Goesdorf
sub-catchment and future sewer systems linked to weather periods. Besides the catchment data and
structural data of sewer sections planned and in operation, the simulations were based on local rain
data for local calibration and on regional long-term rain data to simulate the long-term performance
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of the system. In the framework of a coarse calibration and validation process, it was proved that
the model reproduced discharge characteristics in local sewer systems of selected villages sufficiently.
The resulting parameterisation to model surface run-off characteristics from impervious areas in the
villages, such as initial losses, was applied to further catchments showing similar characteristics [62].
The calibrated model of the catchment and drainage network of the case study, implemented in
InfoWorks CS and upgraded to InfoWorks ICM 7.5, was used to validate the performance of EmiStatR.
We followed a similar procedure as presented by Meirlaen et al. [28] for developing a mechanistic
surrogate model from a CMM.

In general, validation of a good agreement between simulation and observations was observed
(NSE of 0.78). The model simulation results were slightly under the observations of the CSOC volume,
and as a consequence, the peaks simulated were lower than those of observations, which agreed also
with the behaviour shown in Figure 4a.

Regarding the water quality module of EmiStatR, we performed a validation on the basis of
a 1 year simulation with the CMM. We ran the validation at 10 min time steps and aggregated
the results to 120 min to eliminate short-time variability. Our interest was in the average load of
pollutants over several hours, which corresponded well with the usual time for taking water samples
for further laboratory analysis. The input values of the two main parameters were 104 g · PE−1 · day−1

for CCOD,S and 4.7 g · PE−1 · day−1 for CNH4,S. These values corresponded to wastewater quality
(WwQ) measurements. The total COD and NH4 were monitored in the CSOC under DWF conditions.
Figure 4b (bottom inset) shows how the model simulation agreed with observations (NSE of 0.79). The
model simulation was also systematically below the observations of CSOC volume.

Additionally, to perform a more extensive validation of the water quality model, we compared its
output with simulations obtained with the CMM for a 1 year time series at 10 min time steps. Table 4
and Figure 5 summarise the results of this validation. The results suggest that EmiStatR performed
with good accuracy (NSE ≈ 0.80) when compared with the CMM.

Table 4. Comparison results for the complex mechanistic model (CMM) and EmiStatR (Esch-sur-Sure
rain gauge 2 h averages over 1 year period).

Combined Sewer Overflow (CSO) Summary Results CMM EmiStatR 1.2.1.0

Period, p (day) 365 365
Duration of CSO spill volume, dSv (h) 90 100
Frequency of CSO spill volume, fSv (events) 19 16
Total CSO spill volume, VSv (m3) 373 222
Average CSO, QSv (L/s) 1.15 0.62
95th percentile of CSO spill volume, VSv,95 (m3) 27.74 15.26
Maximum CSO spill volume, VSv,max (m3) 33.06 21.62

COD total load (BCOD), BCOD,Sv (kg) 5.875 4.610
Average BCOD, BCOD,Sv,av (kg) 0.131 0.092
95th percentile of BCOD, BCOD,Sv,95 (kg) 0.320 0.252
Maximum BCOD, BCOD,Sv,max (kg) 0.450 0.360

NH4 total load (BNH4), BNH4,Sv (kg) 0.224 0.208
Average BNH4, BNH4,Sv,av (kg) 0.005 0.004
95th percentile of BNH4, BNH4,Sv,95 (kg) 0.012 0.011
Maximum BNH4, BNH4,Sv,95 (kg) 0.020 0.020

Run time (min) 30 1.09
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Figure 5. Rainfall (top), CSO volume (second), chemical oxygen demand (COD) load (third), and
NH4 load (bottom). January to December 2010 time series (Esch-sur-Sûre rain gauge) for validation of
EmiStatR using output of a complex mechanistic model (CMM). Simulation at 10 min resolution at
Goesdorf; results aggregated to 120 min.

3.4. Scalability and Performance

A hardware set-up was defined to execute the scalability test. We used an Intel(R) Xeon(R) CPU
E7-L8867 server (Santa Clara, CA, USA) at 2.13 GHz with 40 physical cores (and 40 virtual cores) at
1.064 GHz, 516 GByte in random access memory (RAM), and the operating system (OS) Linux Ubuntu
12.04.5 LTS 64-bit. We used a maximum of 25 = 32 cores. Additionally, we multiplied the number of
simulations by 10 and 100 to evaluate the model runtime under repeated model calls, such as would
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typically be required in MC uncertainty analyses. As a result, the selected numbers of simulations
were 32, 320 and 3200.

Regarding the results of the scalability test, the code implemented in EmiStatR allowed for
specifying the number of cores to be used in the simulation according to the number of cores available.
In the scalability test, a single simulation referred to a full year at 10 min time steps. We used the
calibrated values for Goesdorf. For Kaundorf and Nocher-Route, we used the reference values given in
Section 2.3.1. Tables 5 and 6 summarise the general input data and the CSO structures in the simulation
mode, respectively.

Table 5. General input data of the EmiStatR scalability test.

General Input Units Value

Wastewater
Water consumption, qs L · PE−1 · day−1 a 150
Daily factors for water consumption,

ATV-A134 curve – –
Pollution COD b, CCOD,S g · PE−1 · day−1 120
Pollution NH4

c, CNH4,S g · PE−1 · day−1 4.7

Infiltration water
Inflow, qf L· s−1 · ha−1 0.05
Pollution COD, CODf g · PE−1 · day−1 0
Pollution NH4, NH4f g · PE−1 · day−1 0

Rainwater
Precipitation time series, P1 mm –
Pollution COD, CODr mg · L−1 0
Pollution NH4, NH4r mg · L−1 0

a PE: population equivalent; b COD: chemical oxygen demand; c NH4: ammonium.

Table 6. General input data of the combined sewer overflow (CSO) structures of the EmiStatR scalability
test, after calibration for structure 1. Structures 2 and 3 were not calibrated; therefore, reference values
were defined.

CSO Input Sub-Catchment

Identification
ID of the structure 1 2 3
Name of the structure FBH Goesdorf FBN Kaundorf FBH Nocher-Route

Sub-catchment data
Name of the municipality Goesdorf Kaundorf Nocher-Route
Name of the catchment Haute-Sûre Haute-Sûre Haute-Sûre
Number of the catchment 1 1 1
Land use a R/I R/I R/I
Total area, Ages (ha) 30 22 18.6
Impervious area, Aimp (ha) 5 11 4.3
Run-off coefficient for impervious area, Cimp 0.28 0.30 0.30
Run-off coefficient for pervious area, Cper 0.07 0.10 0.10
Flow time structure, t f S (min) 1 2 2
Population equivalents, pe (PE) 611 358 326

Structure data
Volume, V (m3) 190 180 157
Curve level–volume, lev2vol Goesdorf Kaundorf Nocher-Route
Initial water level, Levini 0.57 1.8 1.8
Maximum throttled outflow, Qd,max 5 9 4
Orifice diameter, Dd 0.015 0.015 0.015
Orifice coefficient of discharge, Cd 0.67 0.67 0.67

1
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Table 7 presents the runtime results in minutes depending on the number of cores used. The row
“speed-up” factor (SF) was calculated as the ratio between the maximum computation time and the
current computation time. The maximum computation time was set for the computation with just
one core, that is, non-parallel computing. The minimum time is presented in bold font for each test.
The results indicated speed-up factors of 12.2 (32 MC simulations), 22.0 (320 MC simulations), and 23.6
(3200 MC simulations). The highest speed-up factor (23.6) was obtained in scenario 3 (3200 MC
simulations) using 32 cores. Although the lowest computation time was obtained running scenario 1
(32 MC simulations), the lowest speed-up factor was also reached (12.2).

Table 7. Runtime in minutes and “speed-up” factor as a function of number of cores used in simulations.

32 Simulations 320 Simulations 3200 Simulations

Cores Time SF a Time SF Time SF

1 3.4 1.0 33.9 1.0 334.9 1.0
2 1.9 1.8 18.1 1.9 176.6 1.9
4 0.9 3.7 8.9 3.8 87.8 3.8
8 0.6 5.7 4.8 7.0 46.0 7.3
16 0.4 9.1 2.6 13.0 25.3 13.3
32 0.3 12.2 1.5 22.0 14.2 23.6

a Speed-up factor (SF), computed as the ratio between the time for one core and the time for the ith core.

This test was done by setting up the model to simulate three sub-catchments at the same time
in parallel mode. Therefore, the scalable code implemented also inferred that parallelisation of
sub-catchments also speeds up the overall computation with similar factors.

4. Discussion

4.1. Conceptual and Mathematical Model

EmiStatR is a simplified model. For instance, it does not take the spatial distribution of inputs into
account, in particular, rainfall and impervious areas. Additionally, the simulation of the volume and
CSO volume, and henceforth pollutant concentrations such as COD and NH4, as linear combinations
of DWF and RWF is a gross simplification of reality. Finally, the model does not take into account
additional processes, such as wash-off, first-flush, and hydrodynamics in the sewer network. From the
water quality point of view, [4] concludes that, processes typically described by empirical relationships,
such as the build-up and wash-off of pollutants, are not very well understood. The simple exponential
relationship that is often used is not reliable, and there are few datasets to validate these relationships
or to develop new relationships.

The conceptual model EmiStatR was developed for simple catchment models, such as those used
for testing purposes. Neither the advection–diffusion nor other solute transport processes for pollutants
in the sewer network were implemented, partly because of the fast response of the urban catchments
tested. Therefore, comparisons of the EmiStatR framework to other modelling platforms that include
solute transport in the sewer networks may be performed. Only one of the urban storm water models
analysed by [4] includes the advective–diffusion equation for the transportation of pollutants in pipes,
channels, or storages and explains that this equation is not commonly included (1) because of the rapid
response of an urban catchment, such that the transport of pollutants by diffusion will be negligible
compared with the advection of those pollutants, and (2) because urban storm water infrastructure
networks are generally more complex than river networks, and for this reason, the numerical solution
of the advective–diffusion equation in complex networks can be computationally expensive.

Harremoës [63] identified important measures in integrated urban drainage modelling: local
infiltration, source control, storage basin, local treatment, and real-time control. Thus, the conceptual
model implemented in EmiStatR demonstrates the usefulness of local infiltration assessment by
considering the variables infiltration flow and water pollution of the infiltration in terms of COD
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and NH4. Additionally, the conceptual model implemented serves for testing hypotheses related to
the source control by taking into account water consumption and the associated water quality of the
wastewater produced in terms of COD and NH4. Thus, it is possible to take into account the source
by means of the evaluation of several profiles for water consumption, as provided by daily profiles,
weekly profiles (distinguishing weekend days from weekdays), and seasonal patterns (i.e., monthly
patterns accounting for seasonal variability in the source or water consumption). Finally, EmiStatR
also takes the storage basin into account by representing the total volume of storage in the catchment
as the CSO storage chamber.

EmiStatR is fast and hence very useful for rapid and scalable simulation of long-term scenarios
with, for example, yearly precipitation time series as input, as well as for simulating time series with
different time-step resolutions from daily to sub-daily time steps. In the case study, we used a time
step of 10 min.

4.2. Model Implementation

The implementation of EmiStat in R, as a main advantage, made use of graphical user interfaces
(GUIs) and plotting functionalities of R. This implementation saved time in the set-up of the model. The
implementation in R was also attractive because EmiStatR can easily be extended with R routines, such
as ensuring compatibility of input and output time series with geospatial functionalities implemented
in R, for example, through the R package spacetime [64,65]. Moreover, the R environment allows for
the implementation of routines for parallel computing and scalable tasks, for example, the packages
snowfall [66] and doParallel. The implementation in R was also advantageous because it facilitated
the calibration procedures using the DREAM implementation in R.

4.3. Model Calibration and Validation

All simplifications and limitations mentioned above indicate that the model is not perfect
and that the model simulations departed from reality. However, despite these simplifications and
limitations, the validation results in water quality mode demonstrated a high accuracy. Further
uncertainty propagation studies can shed light on how simplifications affect the model output [67].
Such uncertainty propagation evaluations are time-consuming and can best be done with fast and
scalable calculators such as EmiStatR.

The plots and validation measures presented in Figures 4 and 5 indicate an accurate representation
of the model of the volume in the CSOC at Goesdorf with NSEs of 0.95 for the calibration set, 0.78
for the validation set, and 0.79 when we compared with the CMM. Regarding the simulation of COD
and NH4 loads, Table 4 and Figure 5 show that the model adequately represented the load in the CSO
when we compared it with the well-known commercial CMM simulations. This yielded NSEs of 0.80
for the CSO COD load and 0.82 for the CSO NH4 load.

After comparison of the simulations of EmiStatR with the CMM, the simulation for volume in the
CSO was similar (NSE of 0.78), and therefore the loads of COD and NH4 were represented accurately.
Thus we confirmed the hypothesis that for a small catchment system with urban drainage, it is possible
to obtain similar accuracy with a surrogate model (in terms of RMSE and NSE) as a CMM.

It is worth noting which physical processes caused the difference between EmiStatR and the
CMM. The main difference was that in EmiStatR, we did not model the pipe routing in the sewer
system explicitly. This was considered a lumped process and was represented by the tfs factor, which
represents the overall travel time in the sewer system until the flow reaches the CSOC. It works well
for small case studies, but for large catchments it remains to be seen.

4.4. Scalability

The scalable approach implemented in EmiStatR demonstrated its usefulness and good
performance. Computing times decreased substantially, particularly in the scenario with the greatest
number of simulations (3200 simulations). The greater the number of simulations, the higher the SF
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and henceforth the greater the usefulness of the distributed (parallel) computation. This constitutes
a promising application of the EmiStatR as a fast calculator in several applications related to urban
drainage modelling with increasing levels of complexity and for MC uncertainty analysis.

5. Conclusions

We show using a case study that adequate simulation of CSO spill volume as well as COD
and NH4 loads and concentrations is possible using a scalable, surrogate model. Compared with a
CMM, EmiStatR requires less input data, provides automatic calibration procedures, and can present
outputs in an accessible way (to practitioners). Another advantage is the large body of R functionalities
available to tools such as EmiStatR, for example, compatibility with input and output data formats for
temporal and geospatial data and advanced calibration techniques such as DREAM.

We show that EmiStatR provides a satisfactory representation of CSO spill volume and
COD and NH4 loads, which confirms that white box simplification can lead to well-performing
surrogate models. Moreover, its inherent parallel computation and scalable capabilities allow fast
calculations for scenarios of high complexity and for long-term simulations to test hypotheses in urban
drainage modelling.

We compare the results of EmiStatR with those obtained using a well-known CMM. The behaviour
for volume in the CSOC and the estimation of loads of COD and NH4 were very similar. Our case
study showed that this small catchment (i.e., area of ≤30 ha) could be modelled with EmiStatR with
satisfactory accuracy compared to models of much higher complexity. Future usage will show how
EmiStatR performs in other case studies. Because the basis of EmiStatR is formed by generic equations,
it is expected that the performance will be similar.

For future work, it would be of interest to the scientific and practitioner communities to take the
spatial distribution of some of the input variables, such as precipitation, impervious areas, and land
use, into account. The literature shows that spatial variation in precipitation is not considered in
many commonly used models [4,16]. Usually, precipitation is assumed to be uniformly distributed
in a sub-catchment. This is not a very realistic assumption, particularly in applications for which the
response time is short. The integration of geostatistical probability models that interpolate and simulate
precipitation data in space and time would be an important advancement in urban drainage modelling.

It should be emphasised that integrated urban drainage modelling often lacks uncertainty
propagation tools that assist in quantifying the spatial and temporal (correlated) distributions [68]. It
also lack tools for sensitivity analysis to apportion contributions of the different sources of uncertainty
to the overall model output uncertainty. Therefore, future work should address these topics and
include an economic analysis, also taking the potential failure of CSO infrastructures into account.
Such analyses benefit from fast and scalable implementations such as EmiStatR.
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Abbreviations

The following abbreviations are used in this manuscript:

COD Chemical oxygen demand
CSO Combined sewer overflow
CSOC Combined sewer overflow chamber
DOAJ Directory of open access journals
MDPI Multidisciplinary Digital Publishing Institute
NH4 Ammonium
PE Population equivalent
Ad Orifice area (m2)
Cd Orifice coefficient of discharge (–)
Cimp Run-off coefficient for impervious areas (–)
Cper Run-off coefficient for pervious areas (–)
Dd Orifice diameter (m)
Lev Water level in the CSOC (m)
Levini Initial water level in the CSOC (m)
V Volume of the CSOC structure (m3)
ε Precision term (10−5) (–)
Aimp Impervious area of the catchment (ha)
Atotal Total area of the catchment (ha)
BCOD,Sv Load of COD in spill volume (g)
BNH4,Sv Load of NH 4 in spill volume (g)
COD f COD infiltration water pollution per capita (PE) load per day (g · PE−1 · day−1)
CODr Rainwater pollution - COD concentration (mg · L−1)
CCOD,Sv Concentration of COD in spill volume (mg · L−1)
CCOD,S COD sewage pollution per capita (PE) load per day (g · PE−1 · day−1)
CCOD Mean dry weather COD concentration (mg · L−1)
CNH4,Sv Concentration of NH 4 in spill volume (mg · L−1)
CNH4,S NH4 sewage pollution per capita (PE) load per day (g · PE−1 · day−1)
CNH4 Mean dry weather NH 4 concentration (mg · L−1)
NH4 f NH4 infiltration water pollution per capita (PE) load per day (g · PE−1 · day−1)
NH4r Rainwater pollution - NH 4 concentration (mg · L−1)
P1 Rainfall depth time series (mm)
Qd,max Maximum throttled outflow to the WwTP (L · s−1)
Qdi

Throttled outflow to the WwTP at time i (L · s−1)
Qd Throttled outflow to the WwTP (L · s−1)
Q f Infiltration flow (L · s−1)
Qs24 DWF (L · s−1)
Qt24i Total DWF (L · s−1)
VChamber CSOC filling-up volume (m3)
VSv Spill volume (m3)
Vdi

Volume of throttled outflow to the WwTP at time i (m3)
Vdw Dry weather volume (amount of dry weather water in CSF) (m3)
Vr Rainwater volume (amount of rainwater in CSF) (m3)
csmr Combined sewage mixing ratio (–)
i ith term of the time series (–)
oc f yni

Status variable for CSOC filling at time i (yes or no) (–)
pei PEs of connected CSO structure (PE)
pe PEs of connected CSO structure at time i (PE)
q f Infiltration water inflow (L · s−1 · ha−1) (specific infiltration discharge)
q fi

Infiltration water inflow at time i (L · s−1 · ha−1) (specific infiltration discharge)
qs Individual water consumption (residential) (L · PE−1 · day−1)
t f S Flow time or delay in the sub-catchment or structure (time steps)
g Gravity acceleration (m · s−2)
PE Units for PEs (unit per capita loading)
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