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Abstract: Non-Fickian diffusion has been increasingly documented in hydrology and modeled
by promising time nonlocal transport models. While previous studies showed that most of the
time nonlocal models are identical with correlated parameters, fundamental challenges remain in
real-world applications regarding model selection and parameter definition. This study compared
three popular time nonlocal transport models, including the multi-rate mass transfer (MRMT)
model, the continuous time random walk (CTRW) framework, and the tempered time fractional
advection–dispersion equation (tt-fADE), by focusing on their physical interpretation and feasibility
in capturing non-Fickian transport. Mathematical comparison showed that these models have both
related parameters defining the memory function and other basic-transport parameters (i.e., velocity
v and dispersion coefficient D) with different hydrogeologic interpretations. Laboratory column
transport experiments and field tracer tests were then conducted, providing data for model
applicability evaluation. Laboratory and field experiments exhibited breakthrough curves with
non-Fickian characteristics, which were better represented by the tt-fADE and CTRW models than the
traditional advection–dispersion equation. The best-fit velocity and dispersion coefficient, however,
differ significantly between the tt-fADE and CTRW. Fitting exercises further revealed that the
observed late-time breakthrough curves were heavier than the MRMT solutions with no more
than two mass-exchange rates and lighter than the MRMT solutions with power-law distributed
mass-exchange rates. Therefore, the time nonlocal models, where some parameters are correlated
and exchangeable and the others have different values, differ mainly in their quantification of
pre-asymptotic transport dynamics. In all models tested above, the tt-fADE model is attractive,
considering its small fitting error and the reasonable velocity close to the measured flow rate.
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1. Introduction

Non-Fickian or anomalous transport, where the plume variance grows nonlinearly in time,
has been documented extensively for solute transport in heterogeneous aquifers [1–4], soils [5–7],
and rivers [8,9]. Non-Fickian transport for dissolved contaminants can occur at all scales, varying
from field scale [10] to micro- and nano-scale media [11,12]. Non-Fickian diffusion, which is
characterized by slow diffusion (sometimes further classified as sub-diffusion), has long been believed
to relate to sorption/desorption between mobile and immobile domains under an equilibrium
assumption [13] or kinetic conditions [14,15], or mass exchange between flow regions with relatively
high and low velocities [16]. Note here the term “diffusion” contains both molecular diffusion and
mechanical dispersion (representing the local variation of advection from the mean velocity), and hence
“non-Fickian diffusion” is used interchangeable with “non-Fickian transport” in this study.

To capture non-Fickian transport induced by solute retention, various transport models have been
developed, starting from the standard advection–dispersion equation (ADE) with either equilibrium
or kinetic sorption [17,18] and the two-domain or two-site models proposed originally in chemical
engineering [19]. Time nonlocal transport models were then developed to capture solute retention
in natural geologic media with intrinsic physical and chemical heterogeneity. There are at least three
popular time nonlocal transport models, which are the multi-rate mass transfer (MRMT) model [16,20],
the hydrologic version of the continuous time random walk (CTRW) developed by Berkowitz and
colleagues (see the extensive review in [21] and the mathematical version of CTRW in [22]), and the
tempered time fractional advection–dispersion equation (tt-fADE) model [23]. Some of these models
have been compared theoretically. For example, mathematical similarity between the CTRW framework,
the tt-fADE, and the MRMT model was explored by [24] and [21] (whose main conclusion is discussed
below for clarification), and the numerical approximation of the MRMT model using CTRW schemes
was developed by [25].

While previous studies showed that most of the time nonlocal models are identical with correlated
parameters, fundamental challenges remain in real-world applications regarding model selection and
parameter definition. Although various stochastic models have been developed for three decades in
hydrology, they have not become routine modeling tools, due to many reasons. For example, given
well-controlled laboratory transport experiments using heterogeneous sand columns and conservative
tracers (which have been widely used to understand real-world diffusion and the resultant transport
dynamics that are non-Fickian), a newcomer faces the challenge of model selection: which time nonlocal
model should be used to capture the observed non-Fickian dynamics under specific flow/transport
conditions, such as conservative tracer transport in saturated, heterogeneous columns repacked in the
laboratory with a stable, relatively high water flow rate? To our best knowledge, there is, unfortunately,
no literature providing such an answer for this simple question. The above time nonlocal transport
models were originally built upon different physical theories and contain different quantities and
types of parameters. A better understanding of the potential benefits and limitations of different
time nonlocal transport models as applied to non-Fickian dynamics, therefore, is required before they
can be reliably applied for real-world applications and attract new users with limited knowledge
in stochasticity.

This study will systematically evaluate the above (MRMT, CTRW, and tt-fADE) theoretical
treatments of non-Fickian transport of conservative solutes, with respect to their parameters and
ability to represent non-Fickian dispersion, especially the late-time tailing behavior, which is typical
for hydrological processes in heterogeneous geological media. Late-time dynamics of contaminant
transport is also a major factor in many environmental issues, such as groundwater contamination
remediation and aquifer vulnerability assessment. We will then apply all the modeling methods for
laboratory column transport experiments and field tracer tests. We emphasize here that the application
of a time nonlocal transport model to capture non-Fickian transport is not new. What is new in this
study is the quantitative, practical comparison of nonlocal transport models given experimental data.
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The rest of the work is organized as follows. In Section 2, we review the above time nonlocal
transport models. In Section 3, the time nonlocal transport models are applied to non-Fickian
transport in multidimensional heterogeneous porous media. The applicability of those time nonlocal
models is checked using laboratory experiments and field tests. Our laboratory experiments, where a
conservative tracer moves through heterogeneous lightweight expanded clay aggregate (Leca) beads,
exhibit typical non-Fickian diffusive behavior with elongated late-time tails. The field tracer tests also
exhibit apparent tailing behaviors. Section 4 checks and compares all the time nonlocal models for
characterizing the observed non-Fickian dynamics. Further analyses are shown in Section 5, where we
group the transport models and briefly discuss parameter uncertainty. Conclusions are finally drawn
in Section 6.

2. Review and Evaluation of Time Nonlocal Transport Models

The core of the time nonlocal models is the appropriate definition of the memory function,
which controls the distribution of waiting times for contaminants trapped by immobile zones. In this
section, we focus on the theoretical background, especially the memory function, for each model and
explore potential correlation of critical parameters in different models. For example, previous studies
emphasized that the tt-fADE is a specific form of the CTRW framework since the tt-fADE assumes a
truncated power-law memory function, which is one of the memory functions previously assumed by
the CTRW framework [21]. Identical functionality was also pointed out for the MRMT and the CTRW
framework (see Section 1).

2.1. Multi-Rate Mass Transfer Model

The MRMT model describes mass transfer between a mobile domain and any number of immobile
domains with varying properties. The linear, multi-rate, first-order solute transport equations in the
absence of sources/sinks can be written as [20]:

∂Cm

∂t
+

n

∑
j=1

β j
∂Cim,j

∂t
= −∇·[v Cm − D∇Cm], (1)

∂Cim,j

∂t
= αj

[
Cm − Cim,j

]
, j = 1, 2, · · · , n, (2)

where Cm and Cim,j [ML−3] represent the aqueous concentrations in the well-mixed mobile zone and
the j-th well-mixed immobile zone, respectively; βj [dimensionless] is the capacity coefficient usually
defined as the ratio of porosities of the j-th immobile and the mobile phases; v [LT−1] is the velocity
vector; D [L2T−1] is the dispersion coefficient tensor; n [dimensionless] is the number of distinct
immobile phases; and αj [T−1] is the first-order mass transfer rate (also called the rate coefficient)
associated with the j-th immobile zone. When n = 1, Equation (1) reduces to the single-rate mass
transfer model.

The summation term in the left-hand side of (1) can be expressed as a convolution, leading to the
time-nonlocal form [16,26]:

∂Cm

∂t
+ g(t) ∗

∂Cim,j

∂t
= −∇·[v Cm − D∇Cm], (3)

where the symbol “∗”denotes convolution, and g(t) [T−1] is a memory function defined by the weighted
sum of the exponential decay from individual immobile zones [16]:

g(t) =
∫ ∞

0
α b(α) exp(−αt) dα, (4)

where b(α) [T] is a density function of first-order rate coefficients.
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In terms of similarities with the other nonlocal methods discussed below, the MRMT model
captures the time nonlocality caused by the diffusion-limited transport of solutes in immobile zones.
A practical advantage of this approach is that the memory function has explicit hydrogeological
meaning and thus it may be calculated, fitted, or even predicted [27]. Finally, the parameters v, D,
and g(t) can be spatially variable, so the MRMT method can capture the local variation of solute
transport velocity caused by heterogeneity.

2.2. Tempered Time Fractional Advection–Dispersion Equation Model

The tt-fADE is one analytic technique that accounts for the time nonlocality of the medium, and
simultaneously accounts for convergence of a stochastic solute particle motion process (i.e., a CTRW) to
a limit distribution. In particular, if the distribution of trapping times between the movement of solute
particles has an infinite mean, then the overall transport equation has one fractional-order derivative
representing “dispersion” in time, leading to the standard time fractional advection–dispersion
equation (t-fADE) model. Assuming a power-law memory function to describe random waiting
times in the immobile zones [28]:

g(t) =
t−γ

Γ(1− γ)
, (5)

where Γ(·) is the Gamma function, and the exponent 0 < γ ≤ 1 (when γ approaches to 1, Γ(1 − γ)
approaches to infinity, making no memory effects g(t) = 0, and the model would behave like the
traditional ADE model with a retardation coefficient 1 + β). Then by definition,

∂Cm(x, t)
∂t

∗ g(t) =
∂Cm(x, t)

∂t
∗ t−γ

Γ(1− γ)
=

∂γCm(x, t)
∂tγ

, (6)

is a Caputo fractional derivative of order γ. Inserting (6) into the MRMT model (1) and assuming
that the solute is initially placed in the mobile zone only, one obtains the following standard t-fADE
describing the mobile and immobile solute transport:

∂Cm

∂t
+ β

∂γCm

∂tγ
= −∇·[v Cm − D∇Cm]− β Cm(x, t = 0)

t−γ

Γ(1− γ)
, (7)

∂Cim
∂t

+ β
∂γCim

∂tγ
= −∇·[v Cim − D∇Cim] + Cm(x, t = 0)

t−γ

Γ(1− γ)
, (8)

where Cim denotes the overall chemical concentration in all immobile domains.
Meerschaert et al. [23] generalized the t-fADE (7) and (8) by introducing an exponentially

truncated power-law function, which is an incomplete Gamma function, as the memory function:

g(t) =
∫ ∞

t
e−λ s γ s−γ−1

Γ(1− γ)
ds, (9)

where λ > 0 [T−1] is the truncation parameter in time. This modification leads to the tt-fADE:

∂Cm

∂t
+ β e−λt ∂γ

∂tγ

[
eλt Cm

]
− β λγ Cm = −∇·[v Cm − D∇Cm]− β C0

m

∫ ∞

t
e−λτ τ−γ−1

Γ(1− γ)
dτ (10)

∂Cim
∂t

+ β e−λt ∂γ

∂tγ

[
eλt Cim

]
− β λγ Cim = −∇·[v Cim − D∇Cim] + C0

m

∫ ∞

t
e−λτ τ−γ−1

Γ(1− γ)
dτ (11)

where C0
m = Cm (x, t = 0) denotes the initial source located only in the mobile phase. At a time

t << 1/λ, (12)
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the tail of the mobile-phase breakthrough curve (BTC) declines as a power law function:

Cm(x, t) ∝ t−1−γ, (13)

while at a much later time t >> 1/λ, the slope of the mobile-phase BTC approaches negative infinity
(i.e., the late-time BTC tail declines exponentially). Therefore, the value of λ controls the transition of
the BTC late-time tail from a power-law function to exponential function [29].

The use of the tt-fADE (10) and (11) to model mobile/immobile anomalous solute transport is
motivated by four factors: (1) the equation governs the limits of known stochastic processes; (2) it
describes a combination of first-order mass transfer models and reduces to known mobile/immobile
equations in the integer order case; (3) the equation has tractable solutions that model the significant
features of solute plume evolution in time and space; and (4) the equation is parsimonious, with no
more parameters than the standard MRMT model (1) with multiple pairs of rate and capacity
coefficients. To summarize, the tt-fADE has one major limitation compared to the MRMT model
(1) and the CTRW model discussed below: the memory function embedded in the tt-fADE is a specific
form (9), while the memory function used in the MRMT and the CTRW model can have different forms.
Potential effects of this difference on the models’ abilities to estimate real-world physical behavior is
explored below, in Section 4, and discussed in Section 5.

2.3. Continuous Time Random Walk Framework

Derivation of the CTRW model in hydrologic sciences [21] starts from the generalized master
equation with the kernel Φ defined as (in Laplace space (t→ s)) [30]:

Φ̃(x, s) =
s Ψ̃(x, s)
1− φ̃(s)

, (14)

where the tilde “~” denotes the Laplace transform, Ψ̃(x, s) is the Laplace transform of the joint density
of jump length and duration, and φ̃(s) is the Laplace transform of the transition time or duration

density φ(t) =
+∞∫
−∞

Ψ(x, t)dx used in the master equation [31]

ˆ̃p (k, s) =
1− φ̃(s)

s
1

1− φ̃(s) f̂ (k)
, (15)

where the right-hand side term is valid for independent jump size and transition time, and f̃ (k)
denotes the jump size density.

Berkowitz et al. [21] defined a memory function M to replace φ̃(s) in (15)

M̃ (s) =
t1 s φ̃(s)
1− φ̃(s)

, (16)

where t1 [T] denotes a “typical median transition time” for particles. Inserting (16) into (15), and taking the
Laplace and Fourier inverse transform, the following well-known CTRW framework was obtained [21]:

∂ p(x, t)
∂ t

=
∫ t

0
M(t− τ)

[
−vψ

∂

∂x
+ Dψ

∂2

∂x2

]
p(x, τ) dτ, (17)

where vψ denotes the average velocity, and Dψ is the dispersion coefficient. When deriving the CTRW
(17) from the master Equation (15), the jump size density f̃ (k) in (15) needs to be expanded as

f̂ (k) ≈ 1− µ i k +
α2

2
(i k)2, (18)
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resulting in the spatially-averaged velocity vψ and dispersion coefficient Dψ in (17):

vψ =
µ

t1
, (19)

Dψ =
σ2

2t1
, (20)

Therefore, here the “typical median transition time” t1 is the mean waiting time:

t1 =
∫ +∞

0
t φ(t) dt, (21)

The CTRW memory function M defined by (16) has various forms to capture various breakthrough
curves (BTCs). One popular form is the exponentially truncated power-law, defined by the transition
time φ (see Equation (16) in [32]):

φ(t) = B
exp(−t/t2)

(1 + t/t1)
1+ξ

, (22)

where the factor B = {t1τ
−ξ
2 exp

(
τ−1

2

)
Γ ∗ (−ξ, τ−1

2 )}
−1

(with τ2 = t2/t1.) keeps the integral of φ(t) to
be 1. For simplicity and direct comparison between models, we constrain the exponent ξ to be 0 < ξ < 1
in this study. The Laplace transform of (22) is (see Equation (17) in [32])

φ̃(s) =
Γ
(
−ξ, τ−1

2 + t1s
)

Γ
(
−ξ, τ−1

2

) (1 + τ2 s t1)
ξ exp(t1s), (23)

A simple manipulation shows the relationship between the MRMT memory function g(t) and the
CTRW memory function M(t) in Laplace space:

M̃(s) =
1

θM + θI g̃(s)
, (24)

where θM [dimensionless] and θI [dimensionless] are the porosity in the mobile and (total) immobile
domains, respectively. Inserting (16) and (23) into (24), we obtain:

g̃(s) = 1−φ̃(s)
θ1 t1 s φ̃(s)

− θM
θI

= 1
θ1 t1 s

Γ(−ξ, τ−1
2 )

Γ(−ξ, τ−1
2 +t1s) (1+τ2st1

ξ exp(t1s)
− 1

θI st1
− θM

θI

, (25)

There is no known analytical solution for g in real time t, except for the following asymptote at
late time t >> t1τ2:

g(t) ∝ exp(− t
t1 τ2

) = exp(− t
t2
), (26)

Based on (26), we obtain the late-time growth rate for p

p(tlate) ∝ −∂ g(t)
∂ t

∝ exp(− t
t2
), (27)

Therefore, for time t >> t2, the non-Fickian transport transitions to Fickian diffusion. The cutoff
time scale t2 in (22), as explained by [32], “corresponds to the largest heterogeneity length scale”. In another
numerical study by Willmann et al. [33], t2 was also called “the late cutoff time”. The above analysis
shows that t2 is functionally equivalent to the inverse of the truncation parameter λ used in the tt-fADE
model (10) and (11).
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For the intermediate time t1 << t << t2, one can obtain the memory function g by solving (25)
numerically (e.g., using the numerical inverse Laplace transform). This was done by [32], who found
that the transition probability scales as a power-law function

p(t) ∝ t−ξ−1, where t1 << t << t2 (28)

Comparing (28) and (13), we find that the power-law exponent ξ in the CTRW framework is
functionally equivalent to the scale index γ in the tt-fADE model (10) and (11).

Hence, the parameters in the CTRW framework (17) (e.g., ξ and t2) are related to the parameters
in the tt-fADE model (10) and (11) (γ and λ), except for t1 in (17), which may be estimated by the mean
diffusive time. Parameters predicted by one model (such as the tt-fADE) may also help to improve the
estimated parameters of the other (i.e., the CTRW framework).

3. Applications: Capturing Non-Fickian Transport in Multidimensional Porous Media

Here we apply the above time nonlocal transport models to capture non-Fickian transport
observed in multidimensional, heterogeneous porous media. Well-controlled laboratory experiments
of sand column transport were conducted, to provide data to evaluate the three nonlocal transport
models reviewed above. We used a cylindrical organic glass (polymethyl methacrylate) tube filled
with non-uniform “lightweight expanded clay aggregate” (Leca) beads to monitor solute transport
in saturated porous media. Leca beads were selected since they contain high intra-granular porosity
(and potential for sorption on the large surface area of clay particles), which can lead to retention
for solute transport as often occurs in the field. The length of the Leca column was 100 cm with an
internal diameter of 4 cm. The experimental apparatus was composed of inflow and outflow water
tanks, a porous medium column, tubing, and a detection device (Figure 1). The diameter of the
Leca beads varied from 1.0 to 2.0 mm. A pulse of Brilliant Blue FCF (BBF), which is a conservative
organic compound typically used as colorant for foods, with a volume of 5 mL was injected into the
column (from the bottom of the glass tube set vertically) at a concentration of 0.1 g/L, representing
an instantaneous point source. For the relatively short time-scales of these experiments, we believe
the mechanical dispersion of BBF is predominant, and effects of molecular diffusion are negligible.
An ultraviolet visible light spectrophotometer was used to measure the absorbance of solute, and the
absorbance was then converted to concentration. Continuous sampling provided tracer BTCs used to
check the applicability of the nonlocal transport models.
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Six flow rates (increasing from 0.4, 0.6, 0.8, 1.0, 1.2, to 1.4 mL/s; see Table 1) were carried out in
the experiment. For each flow rate, three experimental runs were conducted where the BBF BTCs were
collected at three sections of the sand column, varying from 50, 70, to 100 cm. During each run with
the similar flow rate, the hydraulic gradient between the inlet and outlet was kept constant in time,
and therefore the flow velocity for the three experimental runs should be close to each other.

Table 1. Measured and fitted parameters (using the advection–dispersion equation (ADE) model with
equilibrium sorption) for Brilliant Blue FCF (BBF) transport through the “lightweight expanded clay
aggregate” (Leca) beads at different flow rates and travel distances and field tests. In the legend,
Q represents the flow rate; L denotes the travel distance (i.e., the length of the column); v* (=v/R) is
the average flow velocity divided by the retardation coefficient; D* (=D/R) is the dispersion coefficient
divided by the retardation coefficient; θ is the porosity; and RMSE stands for root mean square error
between observed values and predicted values.

Experiment
Q (mL/s) L (cm) v* (mm/s) D* (mm2/s) Θ RMSE

Measured Measured Fitted Fitted Measured Calculated

Lab

0.4
50 1.20 5.0 0.39 2.75
70 1.12 7.0 0.39 1.54

100 1.07 5.3 0.39 2.30

0.6
50 1.45 6.8 0.39 2.16
70 1.55 15 0.39 0.78

100 1.63 9.2 0.39 1.99

0.8
50 2.23 15 0.39 1.57
70 2.20 22 0.39 0.97

100 2.07 14 0.39 1.55

1
50 2.67 20 0.39 1.85
70 2.85 24 0.39 1.43

100 2.90 16 0.39 2.92

1.2
50 3.25 23 0.39 2.80
70 3.22 28 0.39 1.53

100 3.04 19 0.39 2.40

1.4
50 3.48 40 0.39 1.09
70 3.85 50 0.39 0.90

100 3.70 38 0.39 1.33

Field 83.33
200 0.003 0.694 0.3 n/a
400 0.004 0.984 0.3 n/a
600 0.004 0.926 0.3 n/a

The measured BTCs all exhibit late-time tailing behavior (see Figure 2 and Figures S1–S5 in the
Supplementary File), which is one of the major characteristics of non-Fickian transport.Water 2018, 10, x FOR PEER REVIEW  9 of 28 
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Figure 2. Laboratory tracer test: Comparison between the measured (symbols) and the modeled
(lines) breakthrough curves (BTCs) using the advection–dispersion equation (ADE), the tempered time
fractional advection–dispersion equation (tt-fADE) (red thick lines), the continuous time random walk
(CTRW) (green dashed lines), and the multi-rate mass transfer (MRMT) model with the water flow rate
Q = 1.4 mL/s.

4. Model Fit and Comparison

Comparisons of the measured and best-fit BTCs using the above three time-nonlocal transport
models and the classical ADE are shown in Figure 2 and Figures S6–S10 in the Supplementary File.
In this section, we briefly introduce the model fitting process, and then compare the model results.

4.1. The ADE Model with Equilibrium Sorption

For comparison, we first use the classic ADE with equilibrium sorption to quantify the measured
BTCs. The governing equation for one-dimensional chemical transport in groundwater with advection,
dispersion, and retardation is [34]:

R
∂ C
∂ t

= D
∂2 C
∂ x2 − v

∂ C
∂ x

, (29)

which has the following solution with an instantaneous point source at the origin:

C(x, t) =
M

2A
√

π D∗t
exp

[
− (x− v∗t)2

4D∗t

]
, (30)

where M [M] represents the initial mass injected into the column; A [L2] is the cross-section area; and R
[dimensionless] is the retardation coefficient. From a mathematical perspective, R acts as a rescaling
factor in time. Hence, we reduce the three parameters v, D, and R in the ADE model to two parameters
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v* (=v/R) and D* (=D/R). The fitted values for parameters v* and D* are listed in Table 1. These two
parameters were calibrated manually based on visual inspection.

In our Leca-column transport experiments, the relatively large flow velocity led to a large Peclet
number (Pe >> 1) and the dispersion coefficient D relates to v via D = α v, where α [L] denotes
the dispersivity. The relationship between dispersivity α and the travel distance in the laboratory
experiments is shown in Figure 3. For a fixed flow rate, α varies with the travel distance without any
fixed trend, perhaps due to varying dispersion over the relatively short travel distance.
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The relationship between dispersivity and flow rate in the laboratory experiments is shown in
Figure 4. Although the best-fit dispersivity fluctuates with the flow rate, it generally increases with
an increasing flow velocity. A larger flow velocity causes a wider spatial distribution of contaminant
plume and increases the apparent dispersivity in the ADE model. This phenomenon is consistent
with known non-Fickian solute transport behavior and indicates that the ADE model is performing as
expected [33].

In the BTCs measured at three travel distances with six different flow rates in the laboratory
experiments and field tracer tests, the ADE model (29) captures the rapid increase of early-time
BTCs, but overestimates the decline of the late-time BTC tails although the delay of transport due to
retardation was considered in the ADE (29). This implies that the delayed transport observed in our
laboratory experiments and field tests is more complex than equilibrium adsorption described in (29),
where the sorbed or immobile concentration is a simple linear function of the dissolved concentration.
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Figure 4. The best-fit dispersivity in the ADE model versus the water flow rate.

4.2. The MRMT Model

The MRMT model (1) has various specific forms, which might be useful for applications and
therefore require further evaluation. For example, the immobile domain can be characterized as
multiple layers with a distribution of diffusion rate coefficients or first-order mass-transfer rates, or be
simplified as a layer with a single diffusion rate which can be attractive in applications due to its
simplicity in manipulation. There is, however, no solid physical justification for the selection of any of
these forms, given simply the limited information for a sand column like the one used in our laboratory.
For systematic analyses of all potential mass transfer models, we selected the following four MRMT
subsets with different mass-transfer formulations:

(1) MRMT model 1 (single mass-transfer rate): the immobile zones can be simplified by a single,
homogeneous first-order mass-transfer rate (which is also the single-rate double-porosity model);

(2) MRMT model 2 (single diffusion rate): the immobile zones have a single diffusion rate for
all layers;

(3) MRMT model 3 (two mass-transfer rates): the immobile zones have two sets of rate coefficients;
(4) MRMT model 4 (multiple mass-transfer rates): the immobile zones have a power-law distribution

of (first-order mass-transfer) rate coefficients.

We use the STAMMT-L version 3.0 code [35] to solve the above four MRMT models. Best-fit results,
which were calibrated manually, are shown in Figure 2 and Figures S6–S10 and discussed below.

4.2.1. MRMT Model 1 with a Single Mass-Transfer Rate

The general mobile-immobile (MIM) model with diffusion in the immobile zone can be written
as [20]:

∂ Cm,t

∂ t
+ T(x, t) = −v∇Cm,t + D∇2Cm,t, (31)

∂ Cim,t

∂ t
=

Da

rn−1∇
[
rn−1∇Cim,t

]
, (32)

where T(x,t) [ML−3T−1] is a transient term accounting for rate-limited mass transfer between the
mobile and immobile domains, and Da is the apparent diffusion coefficient. Here n denotes the
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dimensionality of the problem, and n = 1, 2, 3 denotes diffusion into layers, cylinders, and spheres,
respectively. For a single rate first-order mass-transfer approximation, T(x,t) can be expressed as [35]:

T(x, t) = β
∂ Cim,t

∂ t
, (33)

∂ Cim,t

∂ t
= α [Cm,t − Cim,t], (34)

which is the single rate version of the MRMT model (1).
The best-fit parameters using the single-rate MIM model (31)–(34) are listed in Table 2. The fitting

exercise showed the sensitivity of model parameters to the travel distance and water flow rate in the
laboratory experiments. First, the dispersivity αL does not change with the travel distance (Table 2),
since the plume expansion with time is captured by the mass transfer term in the model. This is
different from the standard ADE model, where the dispersivity must increase with the travel distance
to capture scale-dependent dispersion.

Table 2. The fitted parameters for the single mass-transfer rate mobile-immobile model (i.e., Equations
(31)–(34)) at different flow rates and travel distances. In the legend, L denotes the travel distance
(i.e., the length of the column); αL is the dispersivity; v is the flow velocity; βtot is the total capacity
coefficient; and α stands for the mass transfer rate.

Experiment
Q (mL/s) L (cm) αL (mm) v (mm/s) βtot α (s−1)

Measured Measured Fitted Fitted Fitted Fitted

Lab

50 1.5 1.4 0.50 0.05
0.4 70 1.5 1.35 0.50 0.04

100 1.5 1.35 0.50 0.04
50 1.5 1.68 0.50 0.05

0.6 70 1.5 1.71 0.40 0.04
100 1.5 1.68 0.31 0.03
50 1.5 2.38 0.45 0.06

0.8 70 1.5 2.32 0.40 0.04
100 1.5 2.15 0.33 0.05
50 1.5 2.75 0.45 0.06

1 70 1.5 2.93 0.43 0.06
100 1.5 2.93 0.35 0.07
50 1.5 3.15 0.30 0.06

1.2 70 1.5 3.15 0.30 0.06
100 1.5 3.13 0.28 0.06
50 1.5 3.52 0.35 0.06

1.4 70 1.5 3.95 0.35 0.06
100 1.5 3.98 0.35 0.06

Field
200 210 0.004 0.50 0.14

83.33 400 230 0.004 0.50 0.10
600 230 0.004 0.50 0.03

Second, the average velocity used in the model is slightly larger than the measured BTC peak
velocity and the ADE velocity (note that the ADE velocity is also larger than the real BTC peak velocity),
probably due to the assumption that there might be an immobile domain interacting with the mobile
domain. The parameters v and D in the MRMT and ADE models have different meanings and hence
may not have the same values. Parameters v and D in the MRMT model refer to the mobile domain [36],
and therefore the velocity in the MRMT model is generally larger than the ADE velocity, while the
opposite is expected for the dispersion coefficient D. This holds true for all the MRMT formulations.
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Third, the capacity coefficient β either remains constant or decreases very slightly with the
travel distance, implying that the medium heterogeneity might not significantly change with the
medium’s length.

Fourth, the rate coefficient α increases slightly and the capacity coefficient β decreases slightly
with an increasing flow rate at each control plane. This subtle change is likely due to the assumption
that the faster water flows correspond to less volumetric proportion of immobile domains. A faster flow
may decompose immobile domains and enhance the mass exchange between mobile and immobile
domains, resulting in a larger mass exchange rate α.

4.2.2. MRMT Model 2 with a Single Diffusion Rate

The layered diffusion model is a specific case of the MRMT model [20] with the following rate
and capacity coefficients:

αj =
(2j− 1)2 π2

4
Da

a2 , j = 1, 2, · · · , Nim, (35)

β j =
8

(2j− 1)2 π2
β, j = 1, 2, · · · , Nim, (36)

The best-fit parameters for model (35) and (36) are listed in Table 3. There is no apparent correlation
between the mass transfer rate and the travel distance or water flow velocity. The same conclusion is
found for the capacity coefficient.

Table 3. The fitted parameters for the single diffusion rate multi-rate mass transfer (MRMT) model at
different flow rates and travel distances. In the legend, αd is the diffusion rate coefficient (αd = Da/a2,
where Da is the apparent diffusion coefficient and a is the layer half-thickness).

Experiment
Q (mL/s) L (cm) αL (mm) v (mm/s) βtot αd (s−1)

Measured Measured Fitted Fitted Fitted Fitted

Lab

0.4
50 1.5 1.55 0.60 0.02
70 1.5 1.48 0.60 0.02

100 1.5 1.43 0.60 0.02

0.6
50 1.5 1.73 0.50 0.03
70 1.5 2.22 0.80 0.02

100 1.5 2.12 0.61 0.02

0.8
50 1.5 2.69 0.61 0.03
70 1.5 2.85 0.70 0.02

100 1.5 2.55 0.55 0.03

1
50 1.5 3.00 0.55 0.03
70 1.5 3.30 0.55 0.02

100 1.5 3.25 0.48 0.05

1.2
50 1.5 3.73 0.48 0.04
70 1.5 3.69 0.48 0.03

100 1.5 3.25 0.31 0.03

1.4
50 1.5 4.25 0.60 0.03
70 1.5 4.90 0.60 0.03

100 1.5 4.10 0.40 0.02

Field 83.33
200 210 0.004 0.50 0.05
400 210 0.004 0.50 0.04
600 210 0.005 0.50 0.03

4.2.3. MRMT Model 3 with Two Mass-Exchange Rates

MRMT model 3 contains two pairs of coefficients: two rate coefficients (α1 and α2) and two capacity
coefficients (β1 and β2) corresponding to the first and the second immobile domains, respectively.
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The best-fit parameters are listed in Table 4. The dispersivity αL remains constant, since solute plume
expansion (due likely to solute retention) is mainly captured by mass exchange between mobile and the
two immobile zones. Or in other words, the two pairs of parameters, αj (j = 1, 2) and βj (j = 1, 2), control
the mass exchange. Their values fluctuate (without predictable trends) with the travel distance and
flow rate in the laboratory experiments, although α2 decreases with increasing α1 for the same flow rate.
There is no efficient way to directly measure the rate coefficient or capacity coefficient, which creates a
challenge for relating MRMT model parameters to observable physical phenomena, and for providing
information to MRMT models based on ancillary observations in heterogeneous media.

Table 4. The fitted parameters for the two-set MRMT model at different flow rates and travel distances.
In the legend, α1 and β1 represent the mass transfer rate and capacity coefficient of the first immobile
domain, respectively; and α2 and β2 are the mass transfer rate and capacity coefficient of the second
immobile domain, respectively.

Experiment
Q (mL/s) L (cm) αL (mm) v (mm/s) α1 (s−1) β1 α2 (s−1) β2

Measured Measured Fitted Fitted Fitted Fitted Fitted Fitted

Lab

0.4
50 1.5 1.12 0.08 0.08 0.015 0.15
70 1.5 1.10 0.08 0.09 0.015 0.15

100 1.5 1.03 0.10 0.09 0.008 0.10

0.6
50 1.5 1.31 0.08 0.07 0.020 0.13
70 1.5 1.54 0.15 0.08 0.020 0.25

100 1.5 1.55 0.15 0.08 0.015 0.15

0.8
50 1.5 1.96 0.05 0.15 0.030 0.08
70 1.5 2.08 0.05 0.20 0.015 0.10

100 1.5 1.88 0.07 0.10 0.018 0.10

1
50 1.5 2.30 0.05 0.12 0.030 0.15
70 1.5 2.50 0.07 0.13 0.025 0.13

100 1.5 2.57 0.20 0.11 0.020 0.11

1.2
50 1.5 2.85 0.07 0.12 0.020 0.13
70 1.5 2.87 0.06 0.11 0.027 0.13

100 1.5 2.87 0.07 0.10 0.025 0.01

1.4
50 1.5 3.33 0.08 0.17 0.030 0.17
70 1.5 3.80 0.09 0.17 0.030 0.17

100 1.5 3.75 0.08 0.15 0.030 0.16

Field 83.33
200 210 0.004 0.4 0.2 0.1 0.2
400 210 0.004 0.4 0.2 0.1 0.2
600 210 0.004 0.4 0.1 0.1 0.1

4.2.4. MRMT Model 4 with Power-Law Distributed Rate Coefficients

The density of rate coefficient for MRMT model 4 can be defined as [16]:

b(α) = b(αmin, αmax, k) =

 βtot
(k−2)αk−3

αk−2
max−αk−2

min
k 6= 2

βtot
1

ln(αmax/αmin)α
k = 2

, for αmin ≤ α ≤ αmax (37)

where αmin [T−1] denotes the minimum rate coefficient, αmax [T−1] is the upper boundary of the rate
coefficient, and k is the exponent.

In the fitting parameters shown in Table 5, the dispersivity αL remains stable for the same reason
mentioned above for the other MRMT models. Flow velocity used in this model can be approximated
by the peak velocity for the measured BTC. The total capacity coefficient (βtot) does not significantly
change with the travel distance. The exponent k controls the slope of the late-time BTC in a log-log plot,
and hence a larger k denotes faster decline of the late-time BTC. The best-fit k slightly increases with
an increasing flow rate, due likely to the relatively faster decline of the late-time solute concentration
under a larger water flow rate.
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Table 5. The best-fit parameters for the power-law MRMT model 4 at different flow rates and travel
distances. In the legend, k stands for the slope of the late-time tail, and αmin and αmax stand for the
lower and upper boundary of the mass transfer rates, respectively.

Experiment
Q (mL/s) L (cm) αL (mm) v (mm/s) βtot k αmin (s−1) αmax (s−1)

Measured Measured Fitted Fitted Fitted Fitted Fitted Fitted

Lab

0.4
50 1.6 1.40 0.50 2.250 0.010 0.6
70 1.6 1.35 0.50 2.250 0.010 0.6

100 1.6 1.35 0.50 2.250 0.010 0.6

0.6
50 1.6 1.69 0.50 2.292 0.011 0.6
70 1.6 1.85 0.60 2.292 0.012 0.6

100 1.6 2.10 0.60 2.292 0.012 0.6

0.8
50 1.6 2.83 0.70 2.290 0.013 0.6
70 1.6 2.95 0.80 2.290 0.012 0.6

100 1.6 3.05 0.80 2.290 0.013 0.6

1
50 1.6 3.59 0.80 2.300 0.013 0.6
70 1.6 4.05 0.85 2.300 0.013 0.6

100 1.6 4.16 0.80 2.300 0.014 0.6

1.2
50 1.6 4.63 0.80 2.335 0.014 0.6
70 1.6 4.63 0.80 2.335 0.014 0.6

100 1.6 4.44 0.75 2.335 0.014 0.6

1.4
50 1.6 4.95 0.85 2.358 0.014 0.6
70 1.6 5.48 0.80 2.358 0.015 0.6

100 1.6 5.50 0.80 2.358 0.015 0.6

Field 83.33
200 210 0.004 0.5 2.25 0.01 0.6
400 210 0.004 0.5 2.25 0.01 0.6
600 210 0.005 0.5 2.25 0.01 0.6

It is also noteworthy that, on one hand, the minimum mass transfer rate (αmin) in (37) controls
the maximum waiting time for solute particles, which is functionally equivalent to the inverse of the
cutoff time scale t2 in the CTRW framework and the truncation parameter λ in the tt-fADE model.
In general, αmin increases with an increasing flow rate (Table 5). Faster flow may accelerate the mass
exchange between mobile and immobile domains, generating shorter mean residence times for solute
particles in the immobile domain and leading to a greater mass transfer rate. On the other hand,
the maximum mass transfer rate (αmax) in (37) defines the shortest waiting time (for solute particles
between two displacements), whose impact on the late-time transport dynamics can be overwhelmed
by the other smaller rates. Numerical results also show that αmax apparently does not change with the
travel distance and flow rate. Hence, αmax can be kept constant for all cases (Table 5).

As shown in Figure 2 and Figures S6–S10, the MRMT model 4 captures the BTC late-time tail
much better than the other mass-transfer formations with fewer rate coefficients. However, compared
with the tt-fADE model, the simulated tail of the MRMT model 4 tends to be slightly heavier at the end
of the modeling time. In other words, it slightly underestimates the mass transfer rate at the late time.
Note that the memory function in the tt-fADE is not exactly the same as that in the MRMT model 4.
The tt-fADE has exponentially-truncated power-law rate coefficients, while the MRMT model 4 simply
deletes any rate coefficient larger than αmax and smaller than αmin. This subtle difference in memory
functions between the tt-fADE and MRMT model 4 might be the reason for the differences observed
here. In addition, the MRMT model 4 (with six model parameters) requires one more parameter than
the tt-fADE model.

As shown in Figure 2 and Figures S6–S10, both the MRMT model 1 and model 2 can capture most
characteristics of the observed BTCs, except for the late-time tailing. Therefore, we need more than
one mass-transfer rate to fit the solute transport in the one-dimensional heterogeneous sand column
and field tracer tests. Increasing the number of immobile domains improves the model’s performance
at late times, but more immobile domains can complicate the model application. To be specific, adding
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one more immobile domain adds two unknown parameters (a pair of capacity coefficient and mass
exchange rate coefficient for that immobile domain).

4.3. The tt-fADE Model (10) and (11)

The failure of the standard ADE model and the single rate mass transfer model in capturing the
late-time BTC tailing motivates the application of the other time nonlocal transport models such as
the tt-fADE model (10) and (11). A numerical solver of (10) and (11) can be found in [37]. The best-fit
results using this model are shown in Figure 2 and Figures S1–S5, where both the peak and the late
time tailing can be captured simultaneously.

The best-fit parameters are shown in Table 6, where the best-fit velocity v is slightly larger than
the measured peak velocity vpeak, due to the fractional-order capacity coefficient β in the left-hand side
of the tt-fADE Equations (10) and (11) when γ→ 1:

v = (1 + β) vpeak, (38)

Table 6. The best-fit parameters for the tempered time fractional advection–dispersion equation
(tt-fADE) model (10) and (11) at different flow rates and travel distances. In the legend, α is the
dispersivity; γ is the time/scale index; β is the fractional-order capacity coefficient; and λ is the
truncation parameter.

Experiment Q (mL/s) L (cm) v (mm/s) D (mm2/s) α (mm) γ β (sγ−1) λ (s−1) RMSE

Measured Measured Fitted Fitted α = D/v Fitted Fitted Fitted Calculated

Lab

0.4
50 1.10 0.2 0.18 0.250 0.011 0.010 0.379
70 1.05 0.2 0.19 0.250 0.011 0.010 0.171
100 1.00 0.2 0.20 0.250 0.011 0.010 0.343

0.6
50 1.30 0.2 0.15 0.292 0.013 0.011 0.461
70 1.40 0.4 0.29 0.292 0.013 0.012 0.296
100 1.49 0.4 0.27 0.292 0.013 0.012 0.489

0.8
50 1.91 0.5 0.26 0.290 0.018 0.013 0.577
70 1.95 0.6 0.31 0.290 0.018 0.012 0.398
100 1.84 0.6 0.33 0.290 0.018 0.013 0.443

1
50 2.25 1.8 0.80 0.300 0.014 0.013 0.529
70 2.40 1.8 0.75 0.300 0.014 0.013 0.218
100 2.40 1.8 0.75 0.300 0.014 0.014 0.326

1.2
50 2.86 1.0 0.35 0.335 0.019 0.014 0.405
70 2.84 1.0 0.35 0.335 0.019 0.014 0.190
100 2.81 1.0 0.36 0.335 0.019 0.014 0.260

1.4
50 3.18 3.0 0.94 0.358 0.026 0.014 0.636
70 3.55 3.0 0.85 0.358 0.026 0.015 0.380
100 3.45 3.0 0.87 0.358 0.026 0.015 0.329

Field 83.33
200 0.004 0.69 198 0.358 0.17 0.01 n/a
400 0.005 0.69 148 0.358 0.17 0.01 n/a
600 0.005 0.69 148 0.358 0.17 0.01 n/a

Figures 5 and 6 show the fitted parameters versus the flow rate and travel distance in the laboratory
experiments. The best-fit dispersivity α does not change significantly with the travel distance (Figure 5),
which is different from the scale-dependent dispersion observed by other studies [38].

This discrepancy might be due to the following reasons: (1) the travel distance is too short
to observe any stable trend of dispersion (tracer injection at the inlet may cause a boundary effect
on transport and random deviation from the local mean velocity), and (2) the system is advection
dominated (as a typical laboratory sand-column transport experiment) and therefore the estimates of
D might be too uncertain to clearly show a subtle trend. In addition, the best-fit dispersivity increases
with an increasing flow rate. The faster the water flows, the wider the plume becomes, requiring a
larger dispersivity. This is consistent with the fitting results of the other models mentioned above.
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Figure 6. The tt-fADE model parameters change with the travel distance and flow rate.

The other model parameters, including the time index γ (representing residence time in the
immobile domain), the capacity coefficient β (the ratio of immobile to mobile volume), and the
truncation parameter λ (controlling the transition from power-law to exponential tailing), vary with
the flow rate (Figure 6). First, the time index γ increases with an increasing flow rate, since a larger
γ represents a shorter mean residence time for solute particles in the immobile domain (here we
assume that the mean residence time in the immobile domain decreases with an increasing flow
velocity). Second, the capacity coefficient β also increases with the flow rate, showing that the variation
of the time index might overshadow the variation of the capacity coefficient. Third, the truncation
parameter λ increases with the flow rate, implying that the non-Fickian transport converges to its
Fickian asymptote more quickly if the flow rate is larger. This trend might be due to the decreased
immobile portion with a higher flow rate in the short sand column. In addition, the truncation
parameter λ is relatively small, in order to capture the relatively heavy late-time tails.

The above three parameters (γ, β, and λ), however, generally remain constant at different
travel distances if the flow rate remains unchanged (Table 6). The packing procedure for the sand
column was designed to yield a macroscopically homogeneous texture, and, indeed, the results
imply that the statistics of medium properties (such as the sand size distribution, specific surface
area, effective porosity, and/or internal structure) are spatially uniform. For example, a uniform
fractional capacity coefficient β suggests that the ratio of mobile to immobile volume is constant in
space. This phenomenon holds true for the field tracer tests. The spatial uniformity of these parameters
simplifies the fitting procedure. For each flow rate with different sample distances, the time index
and the capacity coefficient can be calibrated a single time for one sampling distance, and then kept
constant for the other sampling distances.
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Therefore, when using the tt-fADE model (10) and (11), we only need to fit three parameters:
velocity, dispersion coefficient, and truncation parameter. Fitting is further simplified by using the
observed BTC peak velocity as a lower bound when predicting the velocity in the tt-fADE model.

4.4. The CTRW Model

The fitted results using the CTRW model (17) are shown in Figure 2 and Figures S1–S5. We used
the CTRW MATLAB Toolbox Version 3.1 developed by [39]. The CTRW framework with the truncated
power-law transition time φ(t) (22) was used, as suggested by [21], since it can efficiently capture the
transition from non-Fickian to Fickian transport [32].

This CTRW model contains five unknown parameters, ξ, t1, t2, vψ, and Dψ. The time t1 expressed
by formula (21) represents the approximated mean transition time. The power law behavior in the
BTC begins from t1 and ends at t2. Knowledge of parameters gained in the fitting exercise of the
tt-fADE model in Section 4.3 improves the predictability of the CTRW model. In particular, we set
the power-law exponent ξ in the CTRW model equal to the time index γ in the tt-fADE model (10)
and (11), and approximate the cutoff time scale t2 in the CTRW framework using the inverse of the
truncation parameter λ in the tt-fADE (see Section 2.3). Here a smaller ξ represents more disorder of
the host system. The remaining three parameters, including the velocity vψ, the dispersion coefficient
Dψ, and the mean waiting time t1 in (17), can be fitted using the observed BTCs. The fitted parameters
using the CTRW model are listed in Table 7.

Table 7. The best-fit parameters for the continuous time random walk (CTRW) model. In the legend,
vψ is the CTRW transport velocity, which can be different from the average pore velocity v; Dψ is
the dispersion coefficient with the subscript ψ indicating CTRW interpretation; ξ is the power-law
exponent; t1 is the mean transition time; and t2 is the truncation time scale. ξ is converted from γ in the
tt-fADE model (10) and (11), and t2 is converted from λ in the tt-fADE model.

Experiment

Q L vψ Dψ

ξ log10t1 (s) log10t2 (s) RMSE(mL/s) (cm) (mm/s) (mm2/s)

Measured Measured Fitted Fitted Fixed Fitted Fixed Calculated

Lab

0.4
50 0.465 0.38 0.250 1.70 2.00 0.239
70 0.637 0.69 0.250 1.70 2.00 0.447

100 0.900 14.00 0.250 1.70 2.00 0.862

0.6
50 0.505 0.50 0.292 1.70 1.94 0.932
70 0.735 1.47 0.292 1.70 1.93 0.859

100 1.130 2.00 0.292 1.70 1.93 1.201

0.8
50 0.575 0.75 0.290 1.80 1.90 1.317
70 0.840 3.43 0.290 1.80 1.92 0.491

100 1.150 4.00 0.290 1.80 1.90 0.976

1
50 0.660 1.00 0.300 1.80 1.90 2.039
70 0.994 2.94 0.300 1.81 1.89 0.780

100 1.410 4.00 0.300 1.81 1.86 0.265

1.2
50 0.760 1.75 0.335 1.81 1.84 0.972
70 1.050 3.43 0.335 1.81 1.84 0.457

100 1.500 4.00 0.335 1.81 1.84 0.913

1.4
50 0.820 2.75 0.358 1.80 1.84 1.237
70 1.288 5.88 0.358 1.80 1.83 0.713

100 1.800 12.00 0.358 1.80 1.82 0.439

Field 83.33
200 0.30 0.0300 0.358 1 2 n/a
400 0.18 0.0090 0.358 1 2 n/a
600 0.12 0.0025 0.358 1 2 n/a

5. Discussion

5.1. Comparison of Transport Models

The transport models discussed in Section 4 can be classified into two main groups. The first
group includes the ADE with equilibrium adsorption, the single mass-transfer rate MIM model,
and the single diffusion rate MRMT model, which capture the observed early-time BTC and its peak,
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but underestimate the persistent late-time tail of each BTC. The second group includes the MRMT
model with two or a power-law distributed rate coefficients, the tt-fADE, and the CTRW model with a
truncated power-law memory function, which can capture the overall trend and positive skewness of
the BTCs. The two rate coefficients in the MRMT model, however, might not be adequate to capture
heavy late-time tailing for solute transport observed in the field. There is no efficient way to predict the
capacity coefficient and the mass transfer rate in the MRMT model, especially when there are multiple
sets of mass transfer rates due to various retention capabilities in natural soils with spatial variable
hydraulic properties. In contrast, the tt-fADE and the CTRW model parameters are more directly
relatable to physical features [29].

MRMT model: As articulated by [24], the MRMT model relates closely to the CTRW framework in
capturing solute retention times. Particularly, the mean transition time t1 in the CTRW framework is
related to the inverse of the mean rate coefficient in the MRMT model with power-law distributed rate
coefficients. Our fitting exercise in Section 4.4 shows that the BTC is not sensitive to αmax. The mean
transition time t1 in the CTRW framework and the maximum boundary αmax used in the MRMT model
might not be needed when capturing the late-time tailing of solute transport (note that the cutoff
time t2 in the CTRW model or the minimum rate coefficient αmin in the MRMT model play a more
important role than t1 or αmax in affecting the late-time BTC), and therefore they may be removed from
the fitting parameters to simplify the model applications. Note that the tt-fADE model does not need
the lower-bound of retention times. In addition, the MRMT model with power-law distributed rate
coefficients tends to slightly overestimate the late-time tailing in BTCs (Figure 2 and Figures S6–S10),
implying that the actual mass transfer rates may decline faster than a power-law function at late times.

CTRW model: The CTRW framework has a complex relationship to the tt-fADE model. On one
hand, as discussed in Section 2.3 and checked in Section 4.4, the power-law exponent ξ in the CTRW
framework is functionally equivalent to the scale index γ in the tt-fADE, and the cutoff time scale
t2 in CTRW is equivalent to the inverse of the truncation parameter λ in the tt-fADE. On the other
hand, the velocity and dispersion coefficient in the CTRW framework significantly differ from those
in the tt-fADE model. Similarly, they are not directly related to the solution of the traditional ADE.
Applications in Section 4.4 show that the average CTRW transport velocity vψ (1.303 mm/s) is ~59%
less than the average real peak velocity (3.18 mm/s) of the observed BTC and ~62% less than the
average best-fit velocity (3.39 mm/s) in the tt-fADE model at the flow rate Q = 1.4 mL/s. For the
field tracer tests, the CTRW transport velocity vψ (0.3 mm/s) is two orders of magnitude larger than
the real peak velocity (0.003 mm/s) of the observed BTC, which is similar to the best-fit velocity
(0.004 mm/s) in the tt-fADE model. The velocity used in the tt-fADE model can be calculated by
using Equation (38), instead of fitting. This procedure further eliminates the number of parameters
in the tt-fADE model and makes the fitting more convenient. In addition, the dispersion coefficient
in the CTRW framework Dψ cannot be kept constant under the same flow rate for different travel
distances like the dispersion coefficient in the tt-fADE model for both laboratory experiments and
field tracer tests. Therefore, the spatially averaged velocity defined by Formula (19) for the CTRW
framework may differ from the actual pore-scale velocity. In the CTRW model, different from the
traditional ADE, the advective, dispersive, and diffusive transport mechanisms are combined in the
random walk formalism. The advective component and the dispersive component are calculated by
spatial moments of the same joint probability density function (PDF) for particle transitions and hence
cannot be disconnected [21]. In particular, according to Equation (19), velocity in the CTRW model
can be estimated by determining the characteristic time and mean distance, which is the first moment
of the PDF of transition displacement. It is, however, difficult to predict the effective velocity vψ

without detailed knowledge of the porous medium. It is also noteworthy that the generalized master
Equation (21) does not separate the effects of the spatially varying velocity field on solute particle
displacement into an advective part and a dispersive part. The concept of CTRW therefore does not
build an explicit relationship between real velocity and model velocity, and the same is true for the
dispersion coefficient. In addition, the power-law exponent ξ can also affect the overall magnitude of
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solute plume expansion, an effect that intermingles with the dispersion coefficient Dψ and the effective
velocity vψ. The above analysis is consistent with the result in [40] that many parameters, particularly
vψ and ξ, in the CTRW model are correlated with each other. Their fitting exercises showed that
different parameter combinations can lead to the same mean Eulerian velocity predicted by the model,
implying that the estimated model parameters were not unique.

tt-fADE model: In the tt-fADE model, the best-fit velocity v can be larger than the plume peak’s
velocity vpeak because the effective velocity used in the tt-fADE is adjusted by the elapsed time for
solutes spent in retention, as represented by the fractional-order capacity coefficient β on the right-hand
side of Equation (38). In this study, laboratory experiments with six flow rates and field tracer tests
show that the best-fit velocity in the tt-fADE model is close to the measured BTC’s peak velocity, since
the capacity coefficient shown in Equation (38) is relatively small. Because the transport velocity used in
the tt-fADE model (10) and (11) is not significantly different from the BTC’s peak velocity, the tt-fADE
model uses an independent parameter, the time index γ, to control the power-law distribution of
the late-time BTC. This parameterization of the tailing is relatively simple as compared to the CTRW
model, with three parameters, vψ, Dψ, and ξ that contribute to time-nonlocal non-Fickian dispersion.
We calculate the root mean square error (RMSE) for the laboratory experiments. Comparison of the
RMSE (see Tables 1, 6 and 7) of the two models and the ADE model demonstrates that they both
perform better than the standard ADE, especially in describing tailing behavior in a heterogeneous
medium. When the Formula (38) is used, the tt-fADE model is more convenient to apply in practice
than the CTRW framework, since the former contains fewer parameters.

Why the fitted four-parameter tt-fADE model may provide the best performance? This might be
due to two reasons. First, according to the physical derivation of the tt-fADE in Section 2.2, the tt-fADE
separates motion in the mobile zone (using the basic transport parameters v and D to define advection
and Gaussian diffusive displacement) and retention in the immobile domains. When the tracer particle
moves in the mobile domain, its average speed is v, with a finite time required to finish the jump.
This physical separation might be reasonable in hydrogeological media. In the CTRW framework, the
memory function defines the random waiting time between two subsequent jumps, while the motion
can finish instantaneously (in other words, no physical time is required for the tracer particle to move).
This physical discrepancy may also cause the discrepancy of the two basic transport parameters v
and D between the two models, in addition to the spatial average parameters required by the CTRW
framework. Second, the tt-fADE does not specify the lower-bound of the waiting time (using an
additional parameter such as the lower-limit t1 in the CTRW framework), since the slow advection can
also affect the late-time BTC tail. Mass exchange can apparently affect the late-time BTC tail only when
the diffusive time scale is much longer than the advective time scale, as pointed out by [16]. This may
explain why t1 might not be needed in the CTRW framework. Further real-world tests are needed to
check the above hypotheses.

5.2. Parameter Sensitivity

One example of parameter sensitivity is tested here for the tt-fADE (10) and (11). Sensitivity of the
BTCs to variations of the four main parameters (D, γ, β, λ) in the tt-fADE model is shown in Figure 7.

First, the dispersion coefficient D has a subtle impact on the overall shape of BTCs. Decreasing D
from 0.005 cm2/s to 0.0005 cm2/s results in similar BTCs after normalization (i.e., re-scaling), implying
that trapping due to the immobile zones may account at least partially for the spatial expansion of
solute plumes. When D increases from 0.005 cm2/s to 0.05 cm2/s, the BTC becomes wider and its
shape slightly changes (Figure 7a,b).

Second, the time index γ controls the power-law slope of the late-time BTC. For example, when
γ increases from 0.29 to 0.50 (representing the decrease of probability for long retention times),
the late-time BTC becomes steeper, approaching relatively fast to its Gaussian asymptote (Figure 7c,d).
When γ decreases from 0.29 to 0.05, the BTC’s late-time tail becomes heavier (i.e., with a gentler slope),
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although the overall BTC looks narrower (likely due to the normalization of BTCs). The simulated
BTC with the time index γ equal to 0.29 gives the best fit.Water 2018, 10, x FOR PEER REVIEW  22 of 28 
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Third, the fractional-order capacity coefficient β shifts the BTC and expands the BTC’s late-time
tail. When β decreases (representing a decrease of the immobile zone volume or the immobile solute
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mass at equilibrium), the BTC becomes narrower and shifts to the left (representing a larger effective
velocity). A faster drop is apparent in the late-time BTC tail with a smaller β. An opposite change of
the BTC can be seen for an increasing β (Figure 7e,f).

Fourth, the truncation parameter λ affects the speed for the late-time BTC to transfer from a
heavy tailed, power-law slope to an exponential tail. A larger truncation parameter means an earlier
transform from non-Fickian to Fickian transport (Figure 7g,h). For the largest λ tested, the resultant
BTC is the closest to the solution of the ADE model, as expected because the tt-fADE reduces to the
ADE model for λ→ ∞.

5.3. Application to Field Transport

A field trace transport test was conducted recently by Zheng [41], which provides field data
to evaluate further the time nonlocal transport models and compare with the laboratory column
experiments. The test site is in the Zhangjiawan Village, Zhangjiawan Town, southeast of the Tongzhou
District, Beijing, China, with the longitude of 116.72◦ and latitude 39.848◦. This experimental site is in
the Chaobai River alluvial plain. The average annual precipitation in the vicinity is about 533 mm,
and the evaporation is 1822 mm. It has a multi-layer aquifer structure. The aquifer is composed of
gravelly coarse sand, coarse sand, fine sand, silty clay and clay layer in the test field and surrounding
area. The hydraulic conductivity coefficient shows obvious heterogeneity, indicating that the aquifer
develops a small-scale preferential flow channel network.

The subsurface network consisted of one injection well, one pumping well, and three monitoring
wells with continuous multi-tubing (denoted as well 13, 23, and 33, respectively) (see Figure 8 for the
study site).

All the five wells are along the same line of the general groundwater flow direction, and therefore
a one-dimensional model may be used to approximate the overall transport. The injection well and the
pumping well are separated by 8 m, and the three observation wells have a uniform interval of 2 m.
Groundwater flows from the injection well to well 13, 23, 33, and to the pumping well.
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(CMT) wells.

Sodium bromide, a commonly used conservative tracer, was injected into the injection well at a
depth of 11.8 m, and groundwater samples were taken from the three observation wells (Well 13, 23,
33) located downstream at a depth of ~10 m. The concentration of the injected solution was 1288 mg/L.
The injection rate was about 0.3 m3/h, and the injection duration was 6 h. A peristaltic pump was
used to collect the samples in a chronological order, and the sample concentration was measured using
a MP523-06 bromide ion concentration meter.

The measured BTCs exhibit apparent late-time tailings (see Figure 9), similar to that observed in
the laboratory column transport. Applications show that the time nonlocal models can capture part
of the late-time BTC tail, but not the whole tail of BTC containing apparent noise. Due to the noise,
it is also impossible to obtain a reliable RMSE. Although the apparent noise causes high uncertainty
in model fitting, both the CTRW framework and the tt-fADE can capture a heavier late-time tail
than the MRMT model with two sets of rate coefficients, and the measured BTCs do contain a high
concentration at the very end of the sampling period (Figure 9).

In addition, all the measured BTCs show apparent early time tail, which cannot be captured
by the tt-fADE or the CTRW framework with the time index between 0 and 1. It is, however, not a
surprise, since the early arrivals are most likely due to fast motion of tracer particles along preferential
flow paths, while the delayed arrivals are caused by solute retention due to mass exchange between
the mobile and relatively immobile zones. At the field site, high-permeable sand constitutes the
layer connecting the injection well and the three monitoring wells, likely forming the preferential
channels. The time nonlocal transport models considered in this study were developed to capture
solute retention, hence missing the early tail of the BTC. The spatiotemporal fADE may capture both
the early and late time tails in the BTC [28,42], which will be explored in a future study.

It is also noteworthy that the flow velocity in real aquifers is several orders of magnitude smaller
than that used in the laboratory experiments. Hence, the field transport is diffusion dominated, while
the laboratory transport is advection dominated. This discrepancy might imply that the late-time BTC
tail persists for groundwater flow with a broad range of Peclet numbers, which can be characterized by
the time nonlocal models. However, for groundwater flow with a small Peclet number and potential
preferential flow paths, the early time BTC tail may occur, which cannot be efficiently captured by the
time nonlocal transport models such as the tt-fADE or the CTRW framework with an index less than 1.



Water 2018, 10, 778 25 of 28

Water 2018, 10, x FOR PEER REVIEW  25 of 28 

 

captured by the time nonlocal transport models such as the tt-fADE or the CTRW framework with 
an index less than 1. 

 
Figure 9. Field tracer test: comparison between the measured field data (symbols) and the modeled 
(lines) breakthrough curves using the ADE, the tt-fADE (red thick lines), the CTRW (green dashed 
lines), and the MRMT models. 

6. Conclusions 

This study compared three time-nonlocal transport models by combining theoretical analyses 
and applications for laboratory sand column transport experiments and field tracer tests. The models 
revisited by this study include the MRMT model with various specific forms, the tt-fADE model, and 
the CTRW framework. Four major conclusions were obtained for these models, which can be used 
by practitioners to select the appropriate model and improve practical applications, and can improve 
our understanding of the nature of non-Fickian transport in heterogeneous media. 

First, the sand column packed in the laboratory and soil in the field may contain multiple 
immobile domains with different mass transfer capabilities. This assumption and the laboratory 
measurements challenge the applicability of the classical ADE model with equilibrium adsorption 
(i.e., instantaneous sorption/desorption) and the single-rate mobile–immobile model in capturing the 
tracer BTCs with a late-time tail, which declines at a rate slower than exponential. The MRMT models 
with multiple rates do capture the BTC’s late time tail typical for non-Fickian transport, as revealed 
before, but the MRMT solutions with power-law distributed mass-exchange rates cannot capture the 

0 10 20 30 40 50
Time (day)

0

0.2

0.4

0.6

0.8

1
(a) BTC of Well 13

0 10 20 30 40 50
Time (day)

10-3

10-2

10-1

100

(b) Semi-log plot of (a)

0 10 20 30 40 50
Time (day)

0

0.2

0.4

0.6

0.8

1

(c) BTC of Well 23

0 10 20 30 40 50
Time (day)

10-3

10-2

10-1

100

(d) Semi-log plot of (c)

0 10 20 30 40 50
Time (day)

0

0.2

0.4

0.6

0.8

1

(e) BTC of Well 33

0 10 20 30 40 50
Time (day)

10-3

10-2

10-1

100

(f) Semi-log plot of (e)

Figure 9. Field tracer test: comparison between the measured field data (symbols) and the modeled
(lines) breakthrough curves using the ADE, the tt-fADE (red thick lines), the CTRW (green dashed
lines), and the MRMT models.

6. Conclusions

This study compared three time-nonlocal transport models by combining theoretical analyses
and applications for laboratory sand column transport experiments and field tracer tests. The models
revisited by this study include the MRMT model with various specific forms, the tt-fADE model,
and the CTRW framework. Four major conclusions were obtained for these models, which can be used
by practitioners to select the appropriate model and improve practical applications, and can improve
our understanding of the nature of non-Fickian transport in heterogeneous media.

First, the sand column packed in the laboratory and soil in the field may contain multiple immobile
domains with different mass transfer capabilities. This assumption and the laboratory measurements
challenge the applicability of the classical ADE model with equilibrium adsorption (i.e., instantaneous
sorption/desorption) and the single-rate mobile–immobile model in capturing the tracer BTCs with a
late-time tail, which declines at a rate slower than exponential. The MRMT models with multiple rates
do capture the BTC’s late time tail typical for non-Fickian transport, as revealed before, but the MRMT
solutions with power-law distributed mass-exchange rates cannot capture the nuance of observed
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transition from power-law to exponential decline of the late-time concentration. The increase of the
number of unpredictable parameters (both the rate coefficient and the capacity coefficient) may create
a challenge for the applicability of the MRMT model.

Second, the tt-fADE model and the CTRW framework are similar in functionality, but differ
in detailed parameters. (1) Both the CTRW framework and the tt-fADE model can capture a
complex BTC with late time tailing. Both the CTRW framework and the tt-fADE model assume an
exponentially-truncated power-law memory function, to capture the gradual transition from power-law
to exponential decline of late-time concentration in the observed BTCs. (2) The tt-fADE parameters can
be linked to the CTRW framework parameters. For example, the power-law exponent ξ in the CTRW
framework is functionally equivalent to the scale index γ in the tt-fADE model (as revealed before),
and the cutoff time scale t2 in the CTRW framework is also equivalent to the inverse of the truncation
parameter λ in the tt-fADE (not shown specifically before). Hence the predictability obtained by
the tt-fADE model can also improve the predictability of the CTRW framework, and vice-versa.
(3) Compared to the tt-fADE model, the CTRW framework defines one additional parameter t1, which
represents the mean diffusive time, corresponding to the mean of the inverse of rate coefficients in the
MRMT model. Model applications, however, showed that t1 in the CTRW framework is insensitive to
model results, and may be neglected to alleviate model fitting burdens.

Third, in the tt-fADE model, the real BTC’s peak velocity can be used to estimate the lower-end
of the model velocity, increasing the predictability of the tt-fADE for real-world applications. Hence,
the tt-fADE model with less parameters may conveniently and accurately estimate the BTC late-time
tailing under the conditions of the column experiments and field tracer tests.

Fourth, for tracer transport in the field, early arrivals are likely due to preferential flow paths.
Super-diffusive jumps along preferential flow paths cannot be efficiently captured by a typical
time-nonlocal transport model focusing on solute retention with a time index less than one. Fast motion
(which can exhibit direction-dependent scaling rates) and delayed transport (which is dimensionless),
although co-existing in some field sites, are driven by different mechanisms, and hence we recommend
different physical components to capture these processes. This motivates the application of the
spatiotemporal fADE [28,43], which will be re-visited in a future study.
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