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Abstract: Water distribution networks (WDNs) are designed to meet water demand with minimum
implementation costs. However, this approach leads to poor long-term results, since system resilience
is also minimal, and this requires the rehabilitation of the network if the network is expanded or the
demand increases. In addition, in emergency situations, such as pipe bursts, large areas will suffer
water shortage. However, the use of resilience as a criterion for WDN design is a difficult task, since
its economic value is subjective. Thus, in this paper, it is proposed that trunk networks (TNs) are
rehabilitated when considering the generation of electrical energy using pumps as turbines (PATs)
to compensate for an increase of resilience derived from increasing pipe diameters. During normal
operation, these micro-hydros will control pressure and produce electricity. When an emergency
occurs, a by-pass can be used to increase network pressure. The results that were obtained for two
hypothetical networks show that a small increase in TN pipe diameters is sufficient to significantly
improve the resilience of the WDN. In addition, the value of the energy produced surpasses the
investment that is made during rehabilitation.

Keywords: trunk network; water distribution network; resilience; optimization; energy recovery;
pumps as turbines

1. Introduction

For efficient operation of Water Distribution Networks (WDNs), suitable designs are necessary,
which should consider economic criteria [1–3], hydraulic parameters, such as resilience [4] and water
quality [5], and management criteria, such as system flexibility [6] and robustness [7]. However,
a design is made based on a specific model of the WDN, and uncertainties in roughness [8] and mainly
in future demands [9] can affect its real operation conditions. Taking into account all of these variables
and uncertainties, multi-objective approaches reveal as an alternative to reach feasible designs [10–12].
However, WDN cost and reliability are conflicting parameters, i.e., to improve one of them, the other
has to be impaired. The importance of resilience to achieve a reliable system is a well-known fact.
However, it is hard to economically quantify the value of its improvement. As a result, even in a
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multi-objective design, it is up to the decision maker to choose the best possible scenario based on his
or her experience.

An alternative to better seize the resilience improvement is the use of Pumps as Turbines (PATs) to
generate electrical energy during the periods of normal operation conditions, when those micro-hydros
act as both pressure control and energy generation devices simultaneously [13–15]. When an emergency
occurs, such as a pipe burst, the pressure in the network can be controlled while using a by-pass. In this
scenario, the additional investment that is necessary to improve resilience is recovered during normal
operation conditions through energy production. Due to the dynamic behavior of a WDN, PATs are
not able to perform pressure control as Pressure Reducing Valves (PRVs) [16]. To solve this problem,
variable speed drives [17,18] and a combined configuration of PATs and PRVs [19,20] can be used.

The studies presented in [21,22] show the feasibility of increasing network pipes diameters to
improve energy production for various topologies. However, these studies are restricted to the design
of new WDNs. For existing systems, the costs of replacing pipes are much higher, since pipes are
already buried. In addition, technical issues, such as traffic changes and the interruption in water
supply can cause troubles for the population. In this case, rehabilitation of the Trunk Network (TN)
can be an alternative to improve WDN flow capacity. According to [23,24], WDN sensitivity is strongly
related to TN performance due to the high flow transported, highly influencing pressure in the
entire network.

Therefore, when considering the difficult to evaluate resilience in WDN design and the high
investment that is necessary to improve this parameter in existing systems, in this research, TN
rehabilitation is proposed to improve WDN resilience while considering the use of PATs for energy
recovery during normal operation to compensate the investment that is made. In this way, it is expected
that a technical issue such as resilience can be better exploited as a design parameter, and benefits will
derive for the economic side. Thus, the decision maker, even inexperienced in this kind of problem,
may have a reference to choose the best alternative. Different sizes of TNs are evaluated to access
the solution with minimum interventions and reasonable resilience improvement. The TN is defined
using graph theory to achieve the shortest path of flow to supply a given demand node. The flow
that is observed in the pipes is used as a weighting coefficient to avoid the inclusion of small pipes
in TNs. Then, applying the Particle Swarm Optimization (PSO) technique to obtain the diameters of
the TN pipes, allows for minimizing the implantation costs, which are calculated as the sum of pipe
and micro-hydro costs, discounting the energy recovery benefits that were obtained during the PAT
life span. The proposed methodology is applied in two different case studies: the Fossolo Drinking
Network [25] and the Balerma Irrigation Network [26].

2. Materials and Methods

2.1. Trunk Network

A WDN topology can be seen as a graph, with the nodes representing the vertices and the pipes
the edges. Several studies show that the algorithms and concepts that were developed within graph
theory can be applied to define the best path of a TN [27,28].

The concept of shortest path can be used for this purpose, since it defines the frequency of all the
possible paths in a graph. The flow direction in each pipe is necessary to create a so-called digraph,
which is a graph with directions that are previously set. However, in a WDN, the flow behavior can
change according to the day time and the settings of valves and pumps. Usually, a hydraulic simulation
is made for the maximum consumption period, with the usual setting of pumps and valves to define
the flow direction. Taking into account tanks and reservoirs as sources for water supply, the Breadth
First Search (BFS) technique [29] can be applied to define the shortest path in terms of nodes between
the source and each consumption node. Then, a square matrix is built, with columns representing the
start nodes and rows the end nodes. The sum of the values of each row, which are called Accumulated
Shortest Path Value (ASPV), will define the most important nodes of the WDN, since this sum indicates
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their reach, i.e., to meet the demand of some areas the flow has to pass through these most important
nodes. The values have to be first normalized to achieve this importance classification.

According to [23], an additional criterion is necessary to avoid the introduction of small pipes
that are capable of supplying larger pipes in the TN. Thus, the flow that was observed in the pipe is
used as a weighting coefficient for the ASPV, and only really important pipes will present high ASPVs.

Finally, the size of the TN has to be defined. A statistical analysis of the frequencies of ASPVs
has to be done to achieve the best value. However, in this work the optimal size of a TN is defined
according to the value of an objective function. Thus, to evaluate different scenarios, the TN size is
gradually changed, and the results are compared in order to define the best configuration. Figure 1
summarizes the procedure to obtain the TN.
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Figure 1. Flowchart to obtain the Trunk Network.

2.2. Resilience Index

The resilience index that is proposed by [30] expresses the capacity of a WDN to supply the
demand in emergency situations, such as pipe bursts, pumping station shutdowns, and even sudden
demand increases, as observed in firefighting. In all of these cases, the velocity in certain pipes
increases, and the additional headloss produced causes pressure reduction in the consumption nodes.
Thus, if some additional pressure is not available, then the minimum conditions for supply are not
met, causing water shortage in some network zones. In the proposed scheme, the WDN operates close
to these minimum conditions during a normal scenario. However, in emergency cases, the flow can be
driven through a by-pass to regulate the pressure in the network, thus reducing the head drop that
is caused by the PAT. Two valves are necessary to isolate and regulate the PAT flow and one valve is
used in the by-pass, as shown in Figure 2. With this configuration, the flow can be regulated in both
branches, and in extreme conditions, only through the by-pass. In addition, the PAT isolation valves
allow for its maintenance when necessary. The resilience index will be calculated for the condition
where the PAT is not operating, according to Equation (1).
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Ir =
∑Nn

i=1 qi·
(
hi − hreqi

)(
∑Nr

k=1 Qk·Hk + ∑
Np
j=1 Qj·Hj

)
− ∑Nn

i=1 qi·hreqi

(1)

Here Ir is the resilience index, Nn is the number of demand nodes, qi is the demand of node i, hi is the
hydraulic grade available in node i, hreqi is the hydraulic grade required by node i, Nr is the number of
reservoirs and tanks, Qk is the flow supplied by the reservoir or tank k, Hk is the hydraulic grade of
reservoir or tank k, Np is the number of pumps, Qj is the flow that is supplied by pump j, and Hj is the
head of pump j. As the most unfavorable scenario occurs during maximum consumption, resilience
has been calculated only for this condition.

2.3. Trunk Network Design and Energy Recovery

The design of the TN can be made through the minimization of the objective function, OF, defined
in Equation (2), which expresses the net cost of the project. The total cost, which is represented by the
pipes’ cost, CP, and the micro-hydro cost, CM, is discounted by the benefit that is obtained from the
energy recovery during the PAT life span, CE.

OF = min(CP + CM − CE) (2)

Both costs (of pipes and micro-hydros), which include design, civil works, and electro-mechanical
equipment, were obtained from Brazilian companies, for different sizes, as shown in Figure 3.
Equations (3) and (4) can be used to calculate pipes and micro-hydro costs, which are valid for
25 to 600 mm and 5 to 224 kW, respectively. Figure 4 shows the dimensionless curves of PATs, where
the head, H, and flow, Q, conditions are related to the operation on its Best Efficiency Point (BEP). A set
of 14 curves was available inside a specific speed range of 0.46 to 4.94.
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CP =
NT

∑
i=1

(
0.001539·DC2

i + 0.635491·DCi − 7.107225
)
·Li (3)

CM = 2.246·P2 + 338.23·P + 8218.79 (4)

Here, NT is the number of pipes of the TN, DC is the unitary cost of pipe i, L the length of pipe i, and
P is the power of the micro hydro.

The benefit that was obtained from the energy recovery during the PAT life span is calculated
using the Net Present Value (NPV), as defined in Equation (5).

CE = NPV =
n

∑
t=1

(
∑8760

i=1 (ρ·g·Qi,t·Hi,t·ηi,t)·TEi,t

)
− COt

(1 + j)t (5)

Here, n is the PAT life span, ρ is the water specific mass, g is the gravitational acceleration, Qi,t is the
PAT flow during hour i of year t, Hi,t is the PAT head during hour i of year t, ηi,t the PAT efficiency
during hour i of year t, TEi,t the energy tariff during hour i of year t, COt operation and maintenance
costs of year t, and j is the annual interest rate.

2.4. Optimization and TN Design Procedure

To solve the optimization problem, the PSO technique is used. Developed by [31], it is widely used
to solve a variety of problems of water supply systems, such as sectorization [32], PAT selection and
location in WDNs [33], and water demand forecasting [34]. Based on group behavior, the technique
searches feasible solutions while considering individual and group information. The position X of
each particle represents a solution. Each particle has a velocity V that defines its search direction, and it
is calculated through Equation (6), where its best position ever found, P, the best position found by the
group, G, and an inertia factor, ω, are considered. Two coefficients, c1 and c2, respectively, defined as
cognitive and social coefficients, are dynamically adjusted through iterations to allow for an extensive
search in the beginning (higher value of c1), and a refined local search at the end (higher value of c2).
At the end of each iteration, the particle position is updated using Equation (7).
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Vk+1
i = ω·Vk

i + c1·rand1·

(
Pk

i − Xk
i

)
∆t

+ c2·rand2·

(
G − Xk

i

)
∆t

(6)

Xk+1
i = Xk

i + Vk+1
i ·∆t (7)

The TN design will follow a three-stage procedure. First, the optimal design of the WDN, when
considering the classical approach of minimizing pipes diameters (cost) that guarantee a minimum
pressure, will be done. This design will be used as the default operation condition of the network.
Then, the TN will be defined using the ASPV weighted by pipes flows. The size of the TN will be
defined in a range of 10–100% of the total number of pipes of the network in order to verify the
improvement of resilience and energy production with the TN diameter increase. In the last stage,
for each scenario, the TN will be designed again as a rehabilitation process, with a pipe cost that is 20%
higher to account for replacement difficulty. In this second design stage, in addition to pipe diameters,
PAT operation points (head and flow) are also variables to be defined. Variable speed operation is
considered with a speed constraint of 60–100% of its nominal value, and a flow constraint up to 50%
of its nominal value [18]. As a result, it is expected that the best configuration of pipes and PATs will
be found, maximizing the energy production. In all cases, the software EPANET [35] was used to
model the network and to simulate the various scenarios to achieve flow and pressure data. Figure 5
summarizes the described TN design procedure, including PAT selection.
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3. Results

3.1. Fossolo Network

The first case study considers the Fossolo drinking network [25]. It has 58 pipes and 36
consumption nodes with one reservoir for water supply, where a PAT is installed, as shown in Figure 6.
A minimum pressure of 10 m is considered for the design, as set by the Brazilian standards [36].
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After the initial design, the TN network was obtained, varying its size from 10% to 100% of the
pipes of the network. This procedure was adopted to identify the saturation in resilience and the
energy recovery improvement, according to the increase of the TN size. Ten scenarios were explored,
as shown in Figure 7, where the red lines represent the TN and blue squares the water source.
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For each scenario, the TN is designed again jointly with the PAT selection. The obtained results
are shown in Figure 8. It is noticeable that for a TN with 20% of the pipes, both energy production
and resilience significantly increase when compared to the initial scenario. These parameters remain
approximately constant up to a TN size of 60%, when benefits that were obtained from energy
production rise again. This occurs due to the presence of highly elevated nodes, which are located far
from the reservoir, and with significant demands. The TN has to be overlong to reach these points.
As an alternative, isolated pipes could be enforced separately from a smaller TN. Figure 8d shows the
importance of the TN. With small sizes, the increment in diameter is higher, since only important pipes
are considered in the design. When the size of the TN increases, less relevant pipes are considered
in the design process, and a change in their diameter is irrelevant for the pressure of the network.
The results show that approximately three levels of benefit can be distinguished, where additional
increments are not important: low (TN with size below 10%), medium (TN with size from 20% to 50%),
and high (TN with size above 50%) levels.
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Another interesting feature to be observed is the behavior of resilience during a 24 h period,
as shown in Figure 9. It is observed that even with demand variations, the amplitude of resilience is
significantly reduced for TNs with sizes over 20%. Therefore, the reliability of the network is greatly
improved, and, even in emergency situations, water supply is not harmed.



Water 2018, 10, 693 9 of 14

Water 2018, 10, x 9 of 14 

 

 

Figure 9. Resilience for a 24 h period in the Fossolo network. 

As resilience shows the capacity to meet demands during emergency situations, pipe bursts 

were simulated. To this end, an emitter coefficient was added to each node to simulate a leak flow 

that is caused by a pipe burst of 10% of the total inflow. The case of two ruptures occurring at the 

same time was not simulated. Figure 10 shows the behavior of resilience, according to the size of the 

TN and the node where the pipe burst occurred. It can be seen that bursts occurring in nodes 20 to 25 

are more relevant for system resilience. These nodes are located in a central area of the network, 

where the TN diameters are gradually reduced, since the flow is also reduced. Thus, an additional 

flow in this area will significantly increase the headloss of the system. Although pipes that are far 

from the reservoir have smaller diameters, their flows are very low. So, a demand increase does not 

increase their headloss too much. On the other hand, pipes close to the reservoir are well sized, and 

have enough capacity to support an additional demand. Finally, it is noticeable that for TNs above 

20% of the pipes, resilience is less affected by a pipe burst. This can be confirmed when comparing 

Figure 11a, where the pressure zones for the highest consumption period are shown for the initial 

scenario, and with TNs of 20% and 60% of the pipes with no leakage; and, Figure 11b, where a pipe 

burst on node 22 occurred. The rehabilitation of the TN significantly increased the pressure in the 

entire network. In addition, when the pipe burst is simulated, the pressure drop is reduced, and the 

minimum value of 10 m is maintained, which is not achieved in the standard scenario. 

 

Figure 10. Resilience reduction according to TN size and the location of a pipe burst. 

Figure 9. Resilience for a 24 h period in the Fossolo network.

As resilience shows the capacity to meet demands during emergency situations, pipe bursts were
simulated. To this end, an emitter coefficient was added to each node to simulate a leak flow that
is caused by a pipe burst of 10% of the total inflow. The case of two ruptures occurring at the same
time was not simulated. Figure 10 shows the behavior of resilience, according to the size of the TN
and the node where the pipe burst occurred. It can be seen that bursts occurring in nodes 20 to 25
are more relevant for system resilience. These nodes are located in a central area of the network,
where the TN diameters are gradually reduced, since the flow is also reduced. Thus, an additional
flow in this area will significantly increase the headloss of the system. Although pipes that are far
from the reservoir have smaller diameters, their flows are very low. So, a demand increase does not
increase their headloss too much. On the other hand, pipes close to the reservoir are well sized, and
have enough capacity to support an additional demand. Finally, it is noticeable that for TNs above
20% of the pipes, resilience is less affected by a pipe burst. This can be confirmed when comparing
Figure 11a, where the pressure zones for the highest consumption period are shown for the initial
scenario, and with TNs of 20% and 60% of the pipes with no leakage; and, Figure 11b, where a pipe
burst on node 22 occurred. The rehabilitation of the TN significantly increased the pressure in the
entire network. In addition, when the pipe burst is simulated, the pressure drop is reduced, and the
minimum value of 10 m is maintained, which is not achieved in the standard scenario.
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3.2. Balerma Irrigation Network

The second case study considers a larger system, the Balerma Irrigation Network [26]. It has
454 pipes and 443 consumption nodes. Four reservoirs supply the system. Therefore, in each of their
outlet pipes, a PAT was installed for pressure control and energy recovery, with a total of six machines,
as shown in Figure 12. The minimum pressure is also set to 10 m. Based on the results that were
obtained in the Fossolo network, three different sizes for the TN were studied: 20%, 60%, and 90% of
the total number of pipes, since these were the sizes that exhibited significant parameter improvement.
These scenarios are shown in Figure 13, where the red lines represent the TN and the blue squares the
water sources.
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The results that are presented in Figure 14 show that, for the Balerma case, a TN size increase
does not significantly improve energy production and resilience. This occurs due to five consumption
nodes that are located near PAT #1. Their high elevations limit the head of PATs #1 and #2, which
are responsible for the majority of the flow that is supplied. Thus, the energy production is highly
affected by this behavior. However, using a TN with a size of 20% of the pipes is economically feasible,
and produce a slightly improvement on network resilience (Figure 14c).
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4. Conclusions

Pipe cost represents the major component in the design of WDNs. However, for long-term
operation, minimum investment in pipes can be economically ineffective, since reinforcements can
be necessary to meet growing demands. In addition, a system that is capable of operating only with
minimum pressure values is not sufficiently robust to surpass emergency situations, such as pipe
bursts or firefighting, causing water shortage in some areas. To avoid this problem, WDN resilience is
an important parameter to be considered, since it reflects the network capacity to cope with a variety
of events. However, it is hard to quantify its importance, since these emergency situations occur
occasionally, and it is up to the managers to choose an adequate solution. The methodology that is
proposed in this paper explicitly quantifies the benefit of resilience improvement through an energy
recovery possibility, stating its importance as a technical and economical parameter. During normal
operation, PATs operate to perform pressure control, while, in emergency scenarios, the flow can be
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driven through a by-pass to regulate pressure at critical points. For existing networks, rehabilitation
only of the TN is an alternative to improve resilience, since TN pipes are the most relevant for the
system. The case studies presented show the importance of TNs for resilience. While considering a TN
of only 20% of the pipes significantly improved the performance of the system. In addition, the energy
recovery produced benefits that surpass the additional investment necessary, thus being an attractive
alternative for WDN design. Besides, this procedure can be applied to any WDN operating by gravity,
and the benefits obtained will depend on its topography and demand, i.e., the available power for
energy recovery. In some cases, this approach can lead to unfeasible conditions due to low power
availability, and subjective parameters, such as the supply security, have to be considered to value
the resilience.
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