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Abstract: Hydrologic scientists and water resource managers often focus on different facets of flow
regimes in changing climates. The objective of this work is to examine potential hydrological changes
in the Upper Boise River Basin, Idaho, USA in the context of biophysical variables and their impacts
a key variable governing administration of water resources in the region in an integrated way.
This snowmelt-dominated, mountainous watershed supplies water to a semi-arid, agriculturally
intensive, but rapidly urbanizing, region. Using the Envision integrated modeling framework, we
created a hydrological model to simulate hydrological response to the year 2100 using six alternative
future climate trajectories. Annual discharge increased from historical values by 6–24% across all
simulations (with an average 13% increase), reflecting an increase in precipitation in the climate
projections. Discharge peaked 4–33 days earlier and streamflow center of timing occurred 4–17 days
earlier by midcentury. Examining changes in the date junior water rights holders begin to be curtailed
regionally (the Day of Allocation), we found that the it occurs at least 14 days earlier by 2100 across
all simulations, with one suggesting it could occur over a month earlier. These results suggest that
current methods and policies of water rights accounting and management may need to be revised
moving into the future.

Keywords: climate change; runoff regime; snowmelt; water management; water rights; Day of
Allocation; flood control; water supply

1. Introduction

Climate change exerts a significant control on global hydrological regimes by influencing the
timing, magnitude, phase, and seasonal variability in precipitation [1–5]. Changes in temperature
further influence how that precipitation moves through a watershed by affecting snowmelt timing, soil
moisture, and evapotranspiration rates [6,7]. While there is general consensus among scientists that
the Earth is warming and will continue to do so, there remain significant uncertainties regarding the
impacts of global warming on the water cycle and how those changes will be distributed regionally in
the future [8,9].

Significant changes in the water cycle can have serious consequences for water users and
management across many sectors. It is estimated that more than two billion people currently live in
highly water-stressed regions [10], with this number projected to increase in the future [11]. Agriculture
is vulnerable to changes in hydrological regimes, especially in regions that rely on surface water
resources for irrigation and in rain-fed systems [9]. Flooding could intensify, putting stress on current
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water management infrastructure as well as lessening the effectiveness of hydropower generation as
runoff arrives earlier [12]. Despite the seriousness of the potential impacts of hydrological changes
across sectors, the effectiveness of current water management systems, practices, and policies under
changing hydrological regimes is not well understood.

Many previous modeling studies have investigated how water resources will respond to climate
change in snowmelt-dominated systems [13–16]. However, results from such studies are not always
presented in a way that is usable to water managers and users. Here we provide an example of how
hydrological modelers can generate results that may provide additional meaning for management
decisions. Managers of these systems tend to focus on the ways in which climate variability and change
will challenge existing water management protocols and practices. For example, in the American
West, there are often hierarchies of water rights users who may be affected differently by projected
changes in water availability [17]. Providing predictions more applicable to water users requires more
in-depth and location-specific knowledge of water management and distribution but has the potential
to provide more relevant information to a wider group of audiences.

Snowmelt-dominated systems, particularly those in the western U.S., are especially vulnerable
to climate change [6,7,18]. Significant reservoirs, in the form of snow, develop at times (i.e., winter)
and locations (i.e., high elevations) where that water cannot be used to grow crops and produce
hydroelectricity. This snowpack at high elevations provides a natural reservoir that holds water in
reserve and, ideally, slowly releases it into the spring and summer, into downstream agricultural
areas. A complex system of water rights and management has been developed, and reservoir and
canal systems engineered to store springtime runoff, mitigate flooding, and direct it to other locations
when there is a demand for irrigation. This current system of water management infrastructure and
protocols are set up to account for the historical range of hydrological variability; however, it may
not be adequate to adapt to future hydrological regimes [19]. With sufficient changes in the timing
and magnitude of water delivery, as is projected with climate change, current management practices
may be inadequate to meet the dual needs of flood control and late-season irrigation demand [6].
However, it is uncertain to what extent current management practices may be stressed under future
hydrological regimes or when water management agencies can expect existing practices and policies
to begin coming into conflict with the reality of altered runoff regimes.

The overarching objective of this study is to better understand and quantify how climate change
will impact future water resources and water management in the context of metrics that managers
monitor and use to implement policy. We perform our study in the Upper Boise River Basin, Idaho,
USA, an ideal location because it is a relatively undisturbed high mountain watershed that is managed
to provide water resources to an agriculturally-intensive and rapidly urbanizing region. We explore this
connected biophysical and social system by combining a surface water hydrological model with diverse
climate projections to project potential changes in future regional hydrological regimes. Furthermore,
we translate our model outputs into a metric that is directly applicable to downstream water users and
managers. Our specific research objectives are to:

1. Identify a range of climate projections and assess how they affect hydrological parameters such
as center of timing of streamflow, volume of annual water delivery, and snowpack levels through
the end of the century; and

2. Identify how these changes in hydrological regimes impact an associated metric that characterizes
water storage and is used to enforce water rights accounting policies.

2. Methods

2.1. Study Area

The Upper Boise River Basin (UBRB) is located in southwest Idaho (Figure 1) and supplies water
for downstream users in the populated Boise metropolitan region. This watershed encompasses an area
of 6935 km2 with elevation ranging from approximately 930 to 3000 m. It is bounded by the Sawtooth
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range in the east, the Payette River Basin to the north, and the Snake River Plain to the southwest.
We delineated the study area by combining three Hydrologic Unit Code (HUC) 8 watersheds: the
North and Middle Forks Boise (U.S. Geological Survey streamflow station 17050111), the South
Fork Boise (U.S. Geological Survey streamflow station 17050113), and Boise-Mores (U.S. Geological
Survey streamflow station 17050112). Due to the large variation in topography throughout the study
area, regions shift from semi-arid grasslands and shrublands in the lowlands to coniferous forests
in the highlands. In the UBRB, the dominant land covers are forest (43.0%), shrubland (34.6%) and
grassland (20.9%), with sparse human development within the watershed. The climate in this region is
a continental Mediterranean climate (Köppen Dsb) with cold winters, warm summers, and the majority
of precipitation falling in winter as snow. The overall average precipitation is ∼800 mm, with averages
ranging from ∼400 mm at low elevations to over 1300 mm at high elevations [20].

Figure 1. Overview of the study area with major land cover types and locations of SNOTEL stations
and gauge locations.

The UBRB is the primary source of water for the downstream Treasure Valley region,
which contains the state’s three largest cities (Boise, Nampa, and Meridian) and roughly 40% of
the state’s total population. The Treasure Valley is an agriculturally intensive region and contains
approximately 1300 km2 of farmlands, many of which rely on irrigation water from the UBRB. Like
many other snowmelt-dominated watersheds in the West, the UBRB is heavily managed via three
large storage reservoirs to fulfill the needs of flood control and downstream uses, especially for direct
consumption in the Treasure Valley. Similar to other western states, water rights in this region follow
the Prior Appropriation Doctrine, also known as “first in time–first in right.” This doctrine states that
the earliest beneficial users (i.e., senior water rights) retain their full water right, and those that came
later (i.e., junior water rights) may retain their water rights as long as they do not infringe on those
that came beforehand. As such, many junior water rights are curtailed during low water years, as total
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surface water rights in the Treasure Valley surpass 14,000 ft3/s, far exceeding the natural flow of the
Boise River.

Previous studies indicate that the UBRB has already begun to respond hydrologically to climate
change, noting an increase in summer streamflow temperatures [21], earlier timing of streamflow [22],
lengthened growing season [23], and declining extreme low flow discharges [24]. Additionally, there
have been previous modeling studies that have used this basin to anticipate changes in hydrology under
climate change [14,25]. However, both of the aforementioned studies used an older generation of global
climate models as their climate input and calibrated their models to streamflow alone. This study
extends those previous works by making use of climate projections from the 5th Coupled Model
Intercomparison Project (CMIP5) [26], calibrating the hydrological model to multiple hydrological
metrics, and producing results that may provide additional meaning to water users.

2.2. Modeling Framework

Here we employ the Envision framework, a multiagent-based, spatially explicit modeling
framework, to model how regional hydrology may change with climate. Envision was created
to explicitly simulate the coupled dynamics of human and natural environmental systems [27]. It does
this by providing a core set of utilities to represent landscapes in spatially explicit ways and a software
framework for component models of natural systems interact with human actions that occur at
places and times specified by a user or a more complex model of human intervention. To this end,
the modeling framework and software infrastructure of Envision support the integration of a variety of
social and biophysical models in a spatiotemporally dynamic way. It is freely available and users can
extend and enhance model capabilities by adding additional models as plugins. It has been extensively
used recently in a wide variety of studies, from understanding urbanization impacts on streamflow [28]
to projecting climate change impacts of land cover and land use [29], and even to understand when
fire occurrence and size is ’surprising’ [30]. Additionally, it has been used to integrate water rights to
spatially allocate irrigation in the agriculturally intensive region below the UBRB [31].

In this study, we use Envision version 6.197 and utilize the Flow extension to model future
hydrology under various climate scenarios. In the following sections, we provide an overview of the
modeling structure and the inputs needed for the various components.

2.2.1. Spatial Coverage in Envision

In Envision, owing to the heritage of the framework for simulating coupled human-natural
systems, the most refined spatial elements where model algorithms are applied are referred to as
Integrated Decision Units (IDUs). An IDU is meant to represent a contiguous portion of the landscape
with relatively constant physiographic (e.g., vegetation cover, soil type, etc.) and socio-political
(e.g., land ownership, zoning, land use, etc.) characteristics. The size and geometry of these polygons
are dependent on the type of modeling being performed and the geospatial datasets required as
input to those models. As such, there is no universally accepted method for creating IDU coverage.
In this study, we used three datasets to form the IDU geometry: surface management agency, land
cover, and HUC 12 stream catchments (Table 1). As such, the IDU coverage will preserve boundaries
between HUC 12 catchments, cognizant land management agencies, as well as boundaries between
vegetation classes.

The datasets were processed in ArcMap 10.1. To shorten Envision’s computational time,
we coarsened the land cover dataset from 30 to 100 m in increments of 10 m. This allowed a substantial
reduction in computational time required to create the IDU domain without a significant loss is
gradients of vegetation cover, particularly those associated with contrasting vegetation cover on South-
and North-facing hillslopes. We used a nearest neighbor algorithm to resample land cover types to
more accurately capture the original distribution of coverage in the land cover dataset. The other
two datasets were polygon geospatial datasets that required very little processing besides renaming
attributes to be consistent with the Envision framework requirements.
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Table 1. Data sources used for spatial coverage in Envision. IDU, Integrated Decision Unit; ET,
Evapotranspiration; HUC, Hydrologic Unit Code; HBV, Hydrologiska Byråns Vattenbalansavdelning;
HRU, Hydrologic Response Unit.

Input Data (Resolution) Data Sources Used in

Surface Management Agency Bureau of Land Management IDU
Land Cover (30 m) National Landcover Database (2011) IDU, ET
Streams & Catchments (HUC12) NHD Plus V2 IDU, HBV
Elevation (30 m) National Elevation Dataset HRU

We created our IDU coverage by intersecting the three aforementioned datasets, creating 31,625
polygons. We extracted the average elevation for each IDU and also assigned an elevation class from
1–4, corresponding to 0–1500, 1500–2000, 2000–2500, and >2500 m, respectively, to allow examination of
results by elevation band. Although the boundaries between these elevation bands are arbitrary, there
are enough IDU polygons within each band to provide meaningful comparisons between elevation
bands. Additionally, to aid in analysis and querying we created a three-tiered hierarchy of land cover
classification ranging from general (e.g., Natural Vegetation) to more specific (e.g., Evergreen Forest),
which was formed by grouping NLCD classifications that are similar (Figure 2).

Figure 2. Land use/land cover tree developed for Envision. The tree allows for modeling algorithms
to be applied at different hierarchy levels, from more general to more specific land types. The finest
categories on the right correspond to the NLCD land classification system.

2.2.2. Hydrological System Model

An extension in Envision called Flow provides flexibility in modeling hydrology and the use of
different model representations of hydrological processes. Flow operates on contiguous collections
of IDUs that behave in a similar hydrological manner. Each collection of IDUs is referred to as
a Hydrologic Response Units (HRUs) [14,32]. We created the HRU coverage by grouping contiguous
polygons with identical land cover at the intermediate level (i.e., middle column) level in Figure 2,
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identical elevation class, and were located in the same HUC-12 catchment. This aggregation process
resulted in resulted in 9465 HRUs.

In this study, we used a modified version of the HBV (Hydrologiska Byråns Vattenbalansavdelning)
rainfall-runoff model [33] for surface hydrology. HBV is a commonly used conceptual model
[34–37] but has been modified by Envision’s developers to be semi-distributed, operating
at the HRU level. Each HRU is conceptualized as a linked reservoir with five layers of
storage: snowpack, lakes, soil, upper groundwater, and lower groundwater (Figure 3). Runoff
from each HRU is routed to streams using the flowlines associated with the HUC 12
catchments from a modified version of the US National Hydrography Dataset developed
by http://www.horizon-systems.com/nhdplus/nhdplusv2_home.php (NHD Plus V2, Table 1).
The water balance in each HRU is described by the following equation:

P− ET −Q =
d
dt

[SP + SM + UZ + LZ + lakes] (1)

where P is precipitation (mm/day), ET is evapotranspiration (mm/day), Q is runoff (mm/day), SP is
snow storage (mm), SM is soil moisture storage (mm), UZ is upper groundwater storage (mm), LZ is
lower groundwater storage (mm), and lakes refers to lake storage (mm). A more thorough description
of the HBV model can be found in other papers [37,38] and a more detailed description of Flow can be
found on Envision’s website (http://envision.bioe.orst.edu/).

Figure 3. Flowchart of the different hydrological processes and reservoirs within the Flow model in
Envision, modified from [31].

Evapotranspiration (ET) is calculated via a modified Penman-Monteith approach described in
the Food and Agriculture Organization’s Irrigation and Drainage paper 56 (FAO56) where a crop
coefficient is applied to the ET of a reference plant [39] and was later developed specifically for
Idaho [40] using the following equation:

ET = ETr · Kc (2)

Horizon Systems, Inc.
http://envision.bioe.orst.edu/
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where ET = evapotranspiration, ETr = reference evapotranspiration (alfalfa, for Idaho), and Kc = crop
coefficient.

We used this equation and applied crop coefficient curves that either matched our land cover
type directly or estimated crop coefficient curves based upon similarities of crops to land cover types
(Table 2). Crop coefficients were obtained from AgriMet and [40], with a few modified land cover
coefficients from [41].

Table 2. Land cover type in Envision and the associated crop used to calculate evapotranspiration.

Land Cover Crop Substituted for Land Cover Source

Forest 3rd year poplar × 3 Agrimet, Inouye [41]
Shrubland Sagebrush Allen and Robison [40]
Grassland Bunch grass Allen and Robison [40]
Wetlands Poplar × 3 Agrimet, Inouye [41]
Developed Lawn × 0.21 Agrimet, Inouye [41]
Agricultural Alfalfa (mean) Agrimet

2.3. Climate Inputs

We used statistically downscaled climate data using the MACA (Multivariate Adaptive
Constructed Analogs) method version 1.0 for both historic and future simulations [42]. This data has
a spatial resolution of 4 km across the continental U.S. and is available daily for 1950–2100. Downscaled
data is available for 20 Global Climate Models (GCMs) from CMIP5 for both Representative
Concentration Pathway (RCP) 4.5 and 8.5 scenarios. RCPs are a consistent set of projections that
are named according to their additional radiating forcing level at 2100, such that RCP 4.5 equates to
+4.5 W/m2 radiative forcing relative to pre-industrial values by the end of the century [43].

For future simulations, we selected GCMs based upon two criteria. First, we halved our GCM
selection to models that performed relatively well when ran over the historical period in the Pacific
Northwest region [44], meaning they produced less relative error when compared across several
metrics. Secondly, we selected GCMs that captured the range of variability between models as it
related to changes in precipitation and temperature (Figure 4). We selected three climate models:
CanESM2 (hotter, wetter), CNRM-CM5 (warmer, slightly wetter), and GFDL-ESM2M (less warm,
drier), and ran each one for RCP 4.5 and 8.5 scenarios, which resulted in six total simulations of
future climate (Figure 5). Table 3 provides a naming convention for these six simulations to ease in
discussing results and implications. For historical simulations from 1980–2014, we used a historical
climate dataset, METDATA [45], which was developed using data from the North American Land
Data Assimilation System Phase 2 (NLDAS-2) [46] and from the Parameter-elevation Regressions on
Independent Slopes Model (PRISM) [20].

Table 3. Naming convention for the six simulations used in this study.

GFDL-ESM2M CNRM-CM5 CanESM2
(Warm) (Warmer) (Warmest)

RCP 4.5 A-45 B-45 C-45
RCP 8.5 A-85 B-85 C-85
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Figure 4. Change in climate variables from 1979–2000 to 2040–2069 for MACA downscaled GCMs [42].
Blue and red points represent RCP 4.5 and 8.5 scenarios, respectively. The larger icons represent the
GCMs selected for this study.

Figure 5. Temporal projections for annual mean temperature and precipitation for the six simulations
used in this study. Temperature increases in all scenarios, but precipitation is more variable.

The downscaled variables Envision requires for Flow are daily maximum, minimum, and average
temperature, precipitation amount, specific humidity, daily downward shortwave radiation, and
wind speed. To format the variables for Envision, the following procedure was followed: (1) subset
data to the specified region, (2) convert units and rename variables where needed, (3) compute
average temperature as the average between minimum and maximum temperature, (4) calculate
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overall wind speed from the eastward and northward components provided by MACA, and (5) subset
into annual files. Scripts created for pre-processing MACA climate data are available online at
https://github.com/asteimke/MACA_EnvisionClimate.

2.4. Calibration and Validation

HBV is a semi-conceptual model, and as such, parameters required as input to the model are
obtained through calibration because most parameters cannot be physically measured [37]. Numerous
combinations of parameter values can yield equally good results (i.e., the equifinality issue) [47,48],
which makes it difficult to select the best parameter set. To combat this issue, some studies [41,49]
build an objective function to find an adequate parameter set based on the type of information
they want to yield from the model (e.g., streamflow volume, timing, snowpack, etc.). Typically,
the calibration-validation procedure takes the form of a data-denial experiment. The model is run over
a calibration period to select best parameter sets and then re-run over a validation period to ensure that
the selected parameter set performs well during this period for which data was not used to calibrate
the model.

Fourteen parameters are included within the HBV model and govern rates of exchange between
reservoirs. We held five of them constant, while the remaining nine were calibrated. CFR and CWH are
insensitive parameters and were held constant as is often done in HBV applications [50]. While many of
the parameters are conceptual and cannot be measured, three of them are based on physical properties,
so we fixed those parameters to better represent the reality of our study area. We used the Global
Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) dataset [51] and took the average of
values for the study area. We used the following datasets from IGBP-DIS: soil field capacity, soil
profile available water capacity, and soil wilting point for the parameters FC, LP, and WP, respectively
(Table 4). In each model run, we randomly selected the remaining nine parameters from a uniform
distribution between ranges of possible values (Table 4) defined based on previous studies [31,41].

https://github.com/asteimke/MACA_EnvisionClimate
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Table 4. Parameters for Flow and the ranges/values considered for calibration.

Routine Parameter Description Units Range Value

Snow Routine

TT Threshold temperature ◦C −0.5–2.0 1.335
CFMAX Degree-day factor mm◦C−1 day−1 1.0–6.0 1.489
SFCF Snowfall correction factor - 0.7–1.2 0.568
CFR Refreeze coefficient - - 0.05
CWH Water holding capacity of snowpack - - 0.1

Soil and Evaporation Routine

FC ∗ Max depth of water in soil water reservoir mm - 399.7
LP ∗ Soil moisture value where actual ET = PET mm - 247.2
WP ∗ Wilting point in soil for ET to occur mm - 156.2
BETA Shaping coefficient - 1.0–6.0 2.015

Groundwater and Response Routine

PERC Percolation coefficient day−1 0.1–2.0 1.272
UZL Threshold for K0 to outflow mm 1.0–400.0 365.4
K0 Recession coefficient day−1 0.1–1.0 0.339
K1 Recession coefficient day−1 0.01–0.5 0.079
K2 Recession coefficient day−1 0.001–0.15 0.004

∗ values obtained from ORNL DAAC SDAT.
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We ran the model for 1000 simulations at a daily time step over the years 1988–2000
(12 years + 1 spin-up year). We selected this time interval for calibration because it encompasses
a reasonably long time period and includes both wet and dry years. We compared model output
to historical stream discharge records from three long-term USGS gaging stations and snowpack
observations from nine SNOTEL (SNOw TELemetry) stations, omitting all leap days from these
datasets (Table 5). For each run, we calculated the Nash-Sutcliffe Efficiency (NSE) [52], log NSE, and a
volume error (VE) using the following equations:

NSE = 1− ∑T
t=1

(
Qt

obs −Qt
sim

)2

∑T
t=1

(
Qt

obs −Qobs
)2 (3)

log NSE = 1− ∑T
t=1

(
ln Qt

obs − ln Qt
sim

)2

∑T
t=1

(
ln Qt

obs − ln Qobs
)2 (4)

VE =
∑t

t=1
(
Qt

obs −Qt
sim

)
∑t

t=1
(
Qt

obs
) (5)

where Qobs is the observed value and Qsim is the simulated value at each daily time step.

Table 5. Data sites used for calibration and validation. See Figure 1 for locations of gauges.

Type Name Drainage Area (km2) Record Length Site ID

G
au

ge

(a) Boise River nr Twin Springs 2154.9 1911–present 13185000
(b) SF Boise River nr Featherville 1660.2 1945–present 13186000
(c) Mores Creek abv Robie Creek 1028.2 1950–present 13200000
(d) Boise River at Lucky Peak ∗ 6571 1895–present LUC

Type Name Elevation (m) Record Length Site ID

SN
O

TE
L

Atlanta Summit 2310 1981–present 306
Camas Creek 1740 1992–present 382
Dollarhide Summit 2566 1981–present 450
Graham Guard Station 1734 1981–present 496
Jackson Peak 2155 1981–present 550
Mores Creek 1859 1981–present 637
Prairie 1463 1987–present 704
Trinity 2368 1981–present 830
Vienna Mine 2731 1979–present 845

∗ not an actual gauge, but a calculated daily average of runoff at this location if dams were not present. Obtained
from the US Bureau of Reclamation.

NSE coefficients range from −∞ to 1, with 1 indicating a perfect fit of the model to the observed
data, and a value of NSE > 0 indicating the model is a better predictor than the historically observed
mean. Typically, a model is deemed satisfactory if the NSE is larger than 0.5 [53]. The logarithmic
form of the NSE also ranges from −∞ to 1, but is more sensitive to low flow and still reacts to peak
flows [54]. The volume error provides insight into whether the model overestimates (VE < 0) or
underestimates (VE > 0) total volume, with a value closest to 0 being ideal.

We created an objective function to select the best-performing parameter set and was developed
based on work by [41]:

Obj =
1
3
(NSEG) +

1
3
(logNSEG) +

1
3
(NSES)− 0.2 · |VEG| (6)

where NSEG is the Nash-Sutcliffe Coefficient of discharge weighted by an areal average of the gauges,
VEG is the volume error for the gauges weighted by an areal average, and NSES is the averaged
Nash-Sutcliffe Coefficient for SWE (snow water equivalent) for all SNOTEL sites.
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The objective function ideally is as close to 1 as possible, as we wish to maximize NSE and
minimize volume bias. The top 1% best performing parameter sets were run over the eight-year
validation period (2001–2008) and the set that performed on average the best in both calibration and
validation years was chosen for our model. Results of the calibration/validation exercises are reported
in the Results section of this manuscript.

2.5. Evaluating Climate Change Impacts

To assess the potential impact of climate change on hydrological regimes, we examined three
broad metrics: streamflow, snowpack, and water management. A more detailed description of methods
for these metrics is described here.

2.5.1. Streamflow

While Envision has the capability to examine discharge values anywhere along its stream network,
we focused here on the aggregation of streamflows for the basin. In all cases, unless mentioned
otherwise, streamflow results are for the unregulated discharge on the Boise River occurring at the
location of Lucky Peak Dam’s outlet, i.e., the pourpoint of the watershed (Figure 1). This modeled
streamflow, as well as daily values for the three major tributaries, can be obtained online [55].

To assess climate change impacts on streamflow, we looked at changes in the amount and timing
of discharge. An additional metric we used was the center of timing (CT) of streamflow, which is the
date when half of the annual volume of water during the water year has arrived at a specified location.
We calculated the CT for historical data and future simulations with the following equation [56]:

CT =
∑ (tiQi)

∑ Qi
(7)

where ti is the time in days from the start of the water year (1 October) and Qi is the discharge for
that date.

2.5.2. Snowpack

To assess climate impacts on the basin’s snowpack, we looked at averaged values over three
elevation zones: low (1500–2000 m), medium (2000–2500 m), and high (2500+ m) zones. These zones
cover 43.4%, 25.8%, and 6.9% of the area of interest, respectively. We do not show results for elevations
less than 1500 m as the lowest SNOTEL station to aid in calibration is the Prairie site at 1463 m. Within
these three zones, we examine the dates and magnitudes of when SWE is at its maximum, as well the
April 1 SWE amount. Water managers have historically used the amount of SWE on this date as an
indicator for water availability in the upcoming year, as it has correlated well with maximum SWE at
many SNOTEL sites in the West historically [57].

2.5.3. Water Management

Since 1986, water managers annually declare a Day of Allocation (DOA) in the Lower Boise
River Basin for the purpose of water rights accounting during the irrigation season (April–October).
This day is declared on or after the date of maximum reservoir fill and once natural flow is less
than irrigation demand (Memo from IDWR Technical Hydrologist Liz Cresto to IDWR Director Gary
Spackman, 4 November 2014, Subject: Accounting for the distribution of water to the federal on-stream
reservoirs in Water District 63). The DOA occurs after peak runoff and has been shown historically to
typically occur once the natural flow of the Boise River at Lucky Peak reaches below 4000 ft3/s [58],
or 113.3 m3/s (Figure 6), which is roughly equivalent to the diversion demand of the river. It is
beneficial for farmers if the DOA occurs later in the season because after the DOA is declared water
rights begin to be curtailed, starting with the junior-most water rights holders. While the term DOA is
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unique to three major river basins in Idaho (i.e., Boise, Payette, and Upper Snake river basins), many
western states have similar methods for appropriating water as the irrigation season begins.

Figure 6. (a) Relationship between the day natural flow at Lucky Peak reaches below 4000 ft3/s and
the date the Day of Allocation is declared, modified from [58]. (b) Our modeled historical Day of
Allocation using the same method as (a). Dashed line is 1:1 in both plots.

To predict how the DOA may change in our modeled scenarios, we assume that diversion rights
will continue to be approximately 113.3 m3/s. We model our DOA date by finding the last day during
peak runoff during the irrigation season that flow is greater than 113.3 m3/s and select the day after.
We then manually observe the hydrographs and the DOA selected to ensure we are capturing a date on
the downfalling limb of peak runoff and not a later season event. If a later season event was modeled,
then we manually select the date on which modeled flow falls below 113.3 m3/s during the recession
limb of spring runoff. We ran the model during the historical period to investigate how well the model
reproduces historical DOA using this definition, which provides confidence in our interpretation of
DOA changes in modeled future scenarios.

3. Results

3.1. Calibration and Validation

We calibrated and validated the model using historical records from three USGS gauges and nine
SNOTEL sites. The parameter set that performed best had an objective function score of 0.63 and 0.62
for calibration and validation periods, respectively (Table 6). We averaged the NSE for each gauge by
its respective drainage area, which resulted in a NSE of 0.71 and 0.70 for calibration and validation,
respectively. However, it should be noted that Mores Creek on its own achieved a lesser NSE of 0.58,
which is potentially due to this smaller watershed exhibiting some major differences from the other
two (notably lower elevation, less precipitation, and less steepness).

Table 6. Calibration and validation results for the chosen parameter set for this study.

Calibration Validation
NSEG log NSEG VEG NSES Obj. NSEG log NSEG VEG NSES Obj.

0.71 0.61 −0.03 0.59 0.63 0.70 0.66 −0.06 0.52 0.62
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Among all gauges, we see relatively good agreement between the model simulations and observed
flow for the historic period (Figure 7), although the model frequently under predicts the magnitude
of peak flows at all gauge sites and over predicts baseflow at Mores Creek. While the unregulated
flow for the Boise River at Lucky Peak (Table 5) was not used to calibrate the model, we used this
as an additional verification dataset to ensure accuracy of the model. With the chosen parameter
set, we achieved a NSE at this site of 0.74 and VE of −0.01 averaged over the entire calibration and
validation period, providing additional confidence in our model.

Figure 7. Observed and simulated streamflows during the historical period from 1980 to 2014. See
Figure 1 for locations of sites. The model does a good job at simulating historical flows, but under
estimates magnitude of peak flows and over estimates baseflow at Mores Creek.

3.2. Streamflow

3.2.1. Annual Discharge

In all future climate scenarios, we see an increase in the median annual discharge from the
Boise River (Figure 8). By midcentury (2040–2069), all climate scenarios showed an increase in
annual discharge over historical (1950–2009) averages, with an average increase of 13% and ranges
of increase from 6–24%. RCP 8.5 climate scenarios showed a greater rate of increase over RCP 4.5
scenarios. Because our hydrological model did not perform well historically in accurately capturing
the magnitude of peak discharges, we do not have adequate confidence to predict future magnitudes
in peak or low flows.
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3.2.2. Timing of Discharge

While we see some changes in the volume of annual discharge, streamflow is also projected to
arrive at significantly different times than in the historical past. However, these arrival times vary
greatly between different climate models.

In most future climate scenarios, the date of peak discharge occurs earlier in the season, with an
increase in early winter flooding events (Figure 9). In extreme climate cases (i.e., C-85), the average
peak discharge occurs approximately 45 days earlier in the period 2040–2060 relative to 1980–2009. In a
conservative climate model (i.e., A-45), peak discharge may only be on average about 5 days earlier by
midcentury.

To get an understanding of the shift in seasonality and variance between climate scenarios, we can
look at the multi-decadal averaged hydrographs between two endmember climate models predicting
the least and most amount of change from historical averages (Figure 10). With the coolest climate
scenario (A-45), there is little discernible deviation from the historical average hydrograph. However, if
we look at the warmest climate scenario (C-85), we see obvious differences in the average hydrograph,
where by 2050–2070 the average peak of the hydrograph is over a month and a half earlier. Overall,
this warmest scenario shows a shift in seasonality through time, where we see flows occurring earlier
in the season with an additional increase in early-season, mid-winter discharge events.

Figure 8. Average annual discharge of the UBRB. Values for 1980–2009 are observed. In most scenarios,
we see an increase in overall discharge throughout the century. Boxes represent upper and lower
quartiles and lines inside are the median.
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Figure 9. Date when peak discharge occurs for the Boise River at Lucky Peak. Values for 1980–2009 are
observed. Overall, we see peak discharge date moving substantially earlier in five scenarios.

Figure 10. Hydrographs averaged over 2-decadal timespans for scenarios predicting the least amount
of change (A-45) and the greatest amount of change (C-85) from historical.
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3.2.3. Center of Timing

The historical average (1980–2009) center of timing (CT) of streamflow for the UBRB is 22 April.
In our simulations, we see this date shift earlier in most of our climate scenarios (Figure 11). Three
scenarios (C-45, B-45, and A-85) behave similarly and begin deviating from the historical range of
variability between 2040 and 2050, showing a CT date that is 13–17 days earlier on average between
2070 and 2099. Both C-85 and B-85 begin to deviate from historical averages around 2030 and exhibit
an average a CT date 27–30 days earlier than the historical average during the 2070–2099 period. A-45
remains relatively similar to historical ranges through the century, although its CT date shifts a few
days earlier, resulting in fewer occurrences of exceeding the historical 75th percentile of CT date.

Figure 11. Center of timing of streamflow for historic and future simulations. Dashed lines show the
upper and lower quartile ranges from 1980–2009.

3.3. Snowpack

3.3.1. April 1 SWE

Our results (Figure 12) show a substantial decrease in April 1 SWE in five of the climate scenarios,
with lower elevations essentially experiencing no April 1 SWE by midcentury. Higher elevations
remain less affected across all RCP 4.5 scenarios but begin substantially decreasing around 2050 in B-85
and C-85 where they experience virtually no April 1 SWE from 2080–2100. Under the A-45 scenario,
1 April SWE experiences variability, but has no discernible downward trend.

3.3.2. Dates and Amounts of Maximum SWE

The previous section suggests that April 1 SWE will, at some point in the future, cease to be a
good indicator of maximum SWE. In terms of evaluating potential climate change impacts on SWE in
the context of water supply, therefore, it is necessary to examine additional metrics. Specifically, we see
the date of maximum SWE happening earlier across most scenarios (Figure 13). Both C-85 and B-85
show maximum SWE occurring more than two months earlier on average by the end of the century.
Three scenarios, A-85, C-45, and B-45 behave similarly with maximum SWE date happening between
38 and 42 days earlier than historically observed averages. A-45 produces little change in timing by
the end of the century (7 days earlier on average).

The magnitudes of maximum SWE may change as well (Figure 14). Within mid-elevation zones
(2000–2500 m), we see a drastic decrease in the occurrence of annual amounts above the historical 75th
percentile in five of our climate scenarios. Furthermore, from 2050 onward, we see that 80% (C-85) and
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84% (B-85) of the time the maximum SWE is falling below the historical 25th percentile. As with many
of the metrics previously mentioned, A-45 shows very little change from historical trends.

Figure 12. 10-year moving average percentage of April 1 SWE from historical simulated averages
(1980-2009) for low, medium, and high elevation zones, corresponding to 1500–2000, 2000–2500, and
2500+ m, respectively.

Figure 13. 10-year moving average of dates of maximum SWE for three elevation zones. Values for
1980–2009 are simulated with MACA METDATA.
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Figure 14. Maximum SWE amount (mm) for mid-elevations (2000–2500 m). Values for 1980–2009 are
simulated with MACA METDATA. Dashed lines show upper and lower quartile ranges for 1980–2009.

3.4. Water Management

Day of Allocation

The developed model reasonably reproduces the DOA in the historical period (R2 = 0.90), although
it over-predicted the date on average 4.8 days later (Figure 6). Thus, the defined metric for the DOA
provides a reasonably robust vehicle to analyze how the DOA may shift under different climate
scenarios. Our results show the DOA occurring much earlier under four of our scenarios (Figure 15),
ranging from 11 to 33 days earlier on average by the end of the century. Scenarios A-45 and B-45
resulted in little to no change in the trend of DOA. While the DOA remains variable on an interannual
basis, we do not see significant changes in variability of DOA through time (Table 7).

Figure 15. Simulated future (2010–2099) and historical (1986–2014) Day of Allocation with a 7-year
moving average. Shaded area is ±0.5σ of 7-year moving average values.
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Table 7. Simulated mean Day of Allocation (DOA) and standard deviation (italicized, in parentheses)
over three future time intervals. Historical (1986–2014) average DOA is 6/19.

Time Period A-45 B-45 C-45 A-85 B-85 C-85

2010–2039 6/22 (12.0) 6/21 (20.0) 6/10 (24.3) 6/19 (17.1) 6/20 (20.6) 6/10 (19.0)
2040–2069 6/20 (17.3) 6/20 (15.3) 6/7 (16.8) 6/15 (13.1) 6/15 (17.2) 5/30 (23.5)
2070–2099 6/23 (15.1) 6/18 (16.1) 5/29 (24.0) 6/8 (14.9) 5/27 (25.6) 5/17 (23.5)

4. Discussion

4.1. Trends in Future Hydrological Regimes

We calibrated our model using metrics that included historic snowpack levels, daily streamflow,
logarithmic transformation of streamflow, and streamflow volume. Choosing multiple metrics to
select the best parameter set provides some additional confidence that the model is simulating key
attributes of historical hydrological regimes and, therefore, strengthens confidence in the robustness of
our interpretations of future climate change impacts on hydrological regimes predicted by the model.

We have shown that a variety of hydrological regime characteristics within the UBRB could
exhibit significant changes, depending on which climate model and RCP scenario is used. However,
certain trends are consistent across several considered climate scenarios and are consistent with other
projections [13,16,41]. Our results suggest an increase in annual water discharge, but with significantly
altered timing, with flows arriving much earlier than historically. Our modeled results also show
a decrease in the total amount of snowpack, an earlier melting date, and earlier dates of peak snowpack.
In order to reconcile how annual discharge can increase while the snowpack is consistently smaller
in volume and more ephemeral in time, we examined the seasonality of the precipitation input to
the model. This allows us to better understand whether observed changes in discharge volume are
primarily related to changes in the seasonality of input precipitation, changes in the seasonal dynamics
of snowpacks, or some combination of both. Typically, however, the precipitation exhibits increases
across all seasons rather than large shifts between seasons in precipitation. Accordingly, this may
indicate that the basin could begin transitioning from being snowmelt-dominated to a regime that is
mixed rain- and snow-dominated watershed moving forward.

4.2. Management Implications

Our modeled scenarios support previous studies [59,60] that April 1 SWE is not likely to remain
a reliable metric for estimating maximum SWE (and therefore snow water storage) in the future for
water resource prediction and management. This work suggests declines in the amount of SWE on
April 1 and a maximum SWE date over a month earlier than historically observed in five of the six
simulations. Rather than choosing a static date to estimate peak SWE across a vast region, managers
may need to more closely monitor the relationship between hydrological regimes and the timing of
peak SWE in their regions, potentially necessitating increased investment in monitoring and modeling
of snow conditions.

There is little evidence to conclude that we will experience future water shortages from the UBRB
in an absolute sense, as most models suggest at least a small increase in annual discharge. However, we
will likely experience hydrological shifts that are outside of our current range of variability. All climate
scenarios show peak discharge occurring earlier in the year. This is problematic for reservoir managers
who primarily manage dams to provide storage for flood mitigation. Managers might have to release
more ’usable’ water from reservoirs in preparation for these events, which potentially could equate to
shortages later in the irrigation season. Such outcomes could be viewed as an "operational deficit" that
arises because of a mismatch between the release of water from storage for flood mitigation and the
timing of water allocation as codified in water rights laws.

At the same time, in this region agricultural land is increasingly transitioning to urban areas [61],
which could indicate that future water demand may be substantially different from the past. With
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warmer climates, farmers might plant earlier in the season, which would change the timing of water
demand. Recent modeling efforts have shown that current water rights are not always able to support
irrigation demand [31,62]. Agricultural water use efficiency, however, is likely to increase with
technological advances like genetically modified crops, which could change spatiotemporal patterns
of water demand. A more comprehensive examination of how, when, and where water is being used
downstream and how that may change in the future will help managers understand to what extent
regional water infrastructure is vulnerable and the potential policies that might help to mitigate effects.

Our results show that under most climate scenarios, the Day of Allocation occurs much earlier
than it has historically, with two models showing the date moving by over a month earlier. If this
projection becomes reality, then there is an earnest need for exploring potential conflicts between water
users in the future as curtailments may come increasingly early and impact more water rights holders
than in previous decades. It may be necessary, for instance, to incentivize farmers to transition to more
efficient irrigation practices (e.g., switching from flood to drip irrigation) and to diversify with crops
that require less water, or expand other solutions like water banking and water markets. If junior water
rights holders are curtailed over a month earlier without any mitigation practices set in place, it may
result in substantial repercussions to Idaho’s agricultural sector. These effects are compounded if other
mountain water supply basins exhibit similar changes to hydrological regimes.

4.3. Study Limitations

It is worth noting that this study did not simulate reservoir operations. There are three dams
present in the study area that are located close to the outlet of the basin. For purposes of simplicity,
the present work focuses on evaluating the ramifications of climate change on natural flows in the
UBRB and capturing reservoir operations is outside the scope of this study. A significant challenge
in future work will arise from the need to develop plausible scenarios by which water managers
from federal agencies, irrigation districts, environmental groups, and utility companies can create
strategies to adapt to potential changes in hydrological regimes similar to those simulated here. Given
the complexities in both biophysical and social responses to climate change, such studies will likely
need to be region- and context-specific.

An additional source of uncertainty in this study lies in the land cover data used in the
hydrological model, which was treated as static. Specifically, the land cover dataset used represents
a snapshot estimated based on Landsat reflectances from 2011. Vegetation along ecotones is sensitive to
changes in climate, and there are likely to be additional large-scale vegetation and land cover changes
that occur after wildfire events or through land management actions. Future modeling studies should
incorporate plausible shifts in vegetation to understand the sensitivity of changes in hydrological
regimes to associated changes in land cover as well as climate change. This might be best accomplished
using a physically-based model, rather than the conceptual model used in this study, to be able to
better capture complex interactions between climate, hydrology, vegetation dynamics, and changing
land cover.

5. Conclusions

In this study, we used an integrated modeling framework, Envision, to simulate future hydrology
in a mountainous watershed that supports an urban and agriculturally intensive region below it. We
calibrated the hydrological model to metrics of both streamflow and snowpack, and it performed well
under historical conditions. We ran the model to the year 2100 under six alternative simulations (three
GCMs and two RCP scenarios) to analyze future possible hydrological regimes, focusing primarily
on the timing and magnitude of the accumulation, retention, and release of water from seasonal
snowpacks and the associated streamflow.

Our results suggest that overall annual streamflow will increase, and five of six simulations
suggest hydrological regimes that will deliver runoff substantially earlier than historically observed.
This could lead to operational water shortages later in the season as water managers balance release of
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water from storage in reservoirs to mitigate flooding hazards with retention of water for supplying
irrigation in the warm, dry summers. Without changes in existing policies, these hydrological regimes
could have repercussions to late-season irrigation demand, hydropower operations, recreational flows,
and municipal water supply.

Mountainous, snowmelt-dominated watersheds have already begun responding to climate
change, which will almost certainly continue in the future. The degree to which the runoff response of
these watersheds changes in association with climate change is uncertain, and will depend heavily on
the nature of the change in the climatic forcing variables. Increasingly sophisticated comparisons with
climate model predictions and observations, as well as regionally focused and contextual modeling
of coupled hydrological and social systems, will improve our ability to constrain how hydrological
regimes will change in the future. This may increase the efficacy of efforts to respond to changes and
potential conflicts between potentially competing demands for water.
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