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Abstract: Urban flood control requires real-time and spatially detailed information regarding the
waterlogging depth over large areas, but such information cannot be effectively obtained by the
existing methods. Video supervision equipment, which is readily available in most cities, can record
urban waterlogging processes in video form. These video data could be a valuable data source for
waterlogging depth extraction. The present paper is aimed at demonstrating a new approach to
extract urban waterlogging depths from video images based on transfer learning and lasso regression.
First, a transfer learning model is used to extract feature vectors from a video image set of urban
waterlogging. Second, a lasso regression model is trained with these feature vectors and employed
to calculate the waterlogging depth. Two case studies in China were used to evaluate the proposed
method, and the experimental results illustrate the effectiveness of the method. This method can be
applied to video images from widespread cameras in cities, so that a powerful urban waterlogging
monitoring network can be formed.
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1. Introduction

Because of the rapid urbanization and extreme storms in recent decades, urban floods have
become one of the most frequent and serious disasters for cities at the global scale [1,2]. Notably, 233
of the 633 largest cities around the world are threatened by urban floods, with more than 660 million
inhabitants affected [3]. Urban floods usually cause loss of life and serious economic damage [4–6].
For example, the flood event in Beijing on 21 July 2012, led to 79 deaths and an economic loss of
11.64 billion yuan according to Beijing’s Flood Control and Drought Relief Office [7]. To address urban
floods and mitigate their damage, real-time and spatially detailed waterlogging depth information
with wide coverage is required [1,8,9].

Currently, there are three main types of methods for urban flood depth extraction, which can
be classified according to the data sources used, e.g., water level sensors, remote sensing, and social
media and crowdsourcing data. Traditional methods use water level sensors as the data sources [10].
However, because of the high costs of water level sensors, limited numbers of waterlogging points can
be monitored. Therefore, it is difficult to obtain urban flood depths with wide coverage across a city.
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Floods with wide coverage can be monitored using remotely sensed data acquired by satellites
or other aircrafts [11,12]. However, satellite-based remote sensing images are affected by clouds and
vegetation canopies and often have low resolutions or long revisit cycles. Therefore, it remains difficult
to obtain spatially detailed and real-time urban flood information from satellite-based remote sensing
data. As a state-of-the-art approach to remote sensing, unmanned aerial vehicles (UAVs) can provide
spatially detailed information for the detection of flood areas [13,14]. However, there are still problems
with UAV-based methods, such as airspace supervision, safe operation in rainy weather, and power
issues, which make it difficult to obtain real-time urban flood depth information over broad areas.

Social media and crowdsourcing data have recently been proposed as a new data source for
extracting urban flood information [15,16]. However, the necessary data may not be immediately
available during flood events, and their data quality limits the accuracy of the monitoring.

Storm-water runoff models can be used to predict urban waterlogging depths [17–21]. However,
such models usually require a large amount of data that are often difficult to obtain (e.g., detailed data
on sewer systems and observations) [17]. Additionally, urban flooding is a fast process, with a time
scale as small as tens of minutes, while these models usually require considerable computing time.
Currently, storm-water runoff models are mainly used for planning and evaluation purposes.

Because of the limitations of the current methods of obtaining waterlogging depth, it is necessary
to utilize other potential data sources. One of the most attractive data sources is the large amount
of video surveillance data acquired by widely distributed traffic and security cameras in cities [22].
For example, the number of cameras in the urban area of Beijing is approximately 1.15 million, with an
average density of 71 per square kilometer. Video supervising equipment is almost ubiquitous
in cities and can record the entire process of urban flooding. These large video data sets have
ultrahigh spatiotemporal resolutions and wide coverage in cities. Extracting the information of
urban flood depth from these video data could be a potential and cost-effective way to supplement the
existing approaches.

Extracting urban waterlogging depth information from video images can be defined as a computer
vision task. With a process flow similar to that of other fundamental computer vision tasks, such as
classification, object detection, and segmentation, extracting feature vectors from images is a key step
in the process flow. Recently, transfer learning has gained considerable attention due to its success in
automatically learning features from images. The features obtained by transfer learning often contain
information that is more complex than traditional computer vision information, such as histograms
of oriented gradients (HOGs) and color histograms [23]. The features can be effectively used for
classification, regression, and clustering [24–26]. For example, transfer learning was used to extract
feature vectors from satellite images, and then a regression model was built between the feature vectors
and poverty [25]. Therefore, extracting urban flood depth from video images based on the feature
vectors obtained by transfer learning has a great potential.

This paper aims to propose a method of extracting the information of urban flood depth from
video images using transfer learning. Section 2 presents the detailed design of the methodology.
Section 3 uses two case studies to evaluate the effectiveness of the proposed method. The discussion is
presented in Section 4, and the conclusions and future work are presented in Section 5.

2. Method

As shown in Figure 1, the proposed method consists of a training phase and a testing phase in
sequence. In the training phase, a transfer learning model is used as the feature extractor to capture
the feature vectors from video images. Then, a regression model is trained on the basis of the extracted
feature vectors and the corresponding observed depth values. In the testing phase, the feature vectors
are derived from the testing image set by the same transfer learning model that was adopted in the
training phase. Then, these feature vectors are input into the regression model, which is trained to
calculate the waterlogging depth of urban floods.
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2.1. Extracting Feature Vectors from Video Images Using Inception V3

Transfer learning usually uses a pretrained convolutional neural network (CNN) as an
initialization or a fixed feature extractor for the task of interest with a limited number of labelled
images [27]. In this study, Inception V3 (Version1.0, Google Brain, Mountain View, CA, USA) [28],
a pretrained CNN based on ImageNet, was used to extract image features from video images. Inception
V3 is composed of sequentially connected layers, and its architecture is given in Table 1. The images
were first resized to 299 × 299 pixels, and then the resized images were input into the first layer
of Inception V3 to extract features through a specific operation. Next, each layer takes the features
extracted by the previous layer as an input to obtain more complex features. After the operations of
these layers, Inception V3 can transform the original images into high-level abstract features, which
can be used for classification, regression, clustering, and so on. For more details of Inception V3, please
refer to reference [28].

Table 1. The architecture of Inception V3. The output size of each module is the input size of the next
one. The three dimensions of “input size” are width, height, and channel dimension.

Type of Layer Patch Size/Stride or Remarks Input Size

Convolutional 3 × 3/2 299 × 299 × 3
Convolutional 3 × 3/1 149 × 149 × 32

Convolutional padded 3 × 3/1 147 × 147 × 32
Pool 3 × 3/2 147 × 147 × 64

Convolutional 3 × 3/1 73 × 73 × 64
Convolutional 3 × 3/2 71 × 71 × 80
Convolutional 3 × 3/1 35 × 35 × 192
3 × Inception As in Figure 5 of [28] 35 × 35 × 288
5 × Inception As in Figure 6 of [28] 17 × 17 × 768
2 × Inception As in Figure 7 of [28] 8 × 8 × 1280

Pool 8 × 8 8 × 8 × 2048
Linear Logits 1 × 1 × 2048

Softmax Classifier 1 × 1 × 1000

Following the standard pipeline of the previous works [29,30], we removed the last fully connected
layer (i.e., the linear layer) and the softmax layer of Inception V3 and then treated the rest as a fixed
feature extractor. The bottleneck layer of Inception V3, a 2048-dimension feature vector, was considered
a global feature representation of the video image. Each video image from both the training image set
and the testing image set was used as an input for this feature extractor to generate a feature vector.

In this study, TensorFlow(Version1.2.1, Google Brain, Mountain View, CA, USA), an open-source
software library developed by Google Brain, was selected to establish a transfer learning model based
on Inception V3.
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2.2. Calculating the Waterlogging Depth by Lasso Regression

Lasso regression was adopted to calculate the waterlogging depth using extracted feature vectors.
Lasso regression is suitable for situations in which the number of features is greater than that of
observations [31,32]. The lasso regression model is based on the following equation:

β∗ = argmin
β

 n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

+ λ
p

∑
j=1

∣∣β j
∣∣ (1)

where xi (i = 1, 2, . . . , n, n is the number of observations) is the independent variable, yi (i = 1, 2, . . . , n,
n is the number of observations) is the dependent variable, β0 is the intercept, βj (j = 1, 2, . . . , p, p is the
number of features) represents the regression coefficient, and λ is the tuning parameter that regulates
the penalty. Thus, the lasso regression model can be presented in the following form:

yi = β∗
0 + β∗

1xi1 + β∗
2xi2 + · · ·+ β∗

pxip (2)

Here, β∗
0 is the intercept of the lasso regression, and β∗

1, β∗
2, . . . , β∗

p are the regression coefficients.
In this study, the number of features is greater than the one of observations. The lasso model was

used to select features. The lasso model can set the coefficients of some features to zero to remove
these features. The number of selected features can be adjusted by tuning the λ value. The k-fold
cross-validation method has usually been used to obtain the optimal λ value [32–34]. For more details
about the k-fold cross-validation technique, we refer the readers to reference [35].

In the training phase, the feature vectors obtained by Inception V3 (as independent variables) and
the waterlogging depths (i.e., the dependent variables) were used to train the lasso regression. In the
testing phase, the feature vectors obtained by Inception V3 were input into the trained lasso regression
model to calculate the waterlogging depth from each image of interest.

In this study, scikits-learn (Version 0.17.1, scikit-learn developers), a free software machine
learning library, was selected to establish the lasso regression model.

2.3. Preparing the Waterlogging Depth Data for Video Images

To train and test a regression, observations (i.e., waterlogging depths) are required. Waterlogging
depths can be estimated by hand according to reference objects in video images [17,36]. The role of the
reference objects is the same as that of water-level gauges. For example, pavement fences, anti-collision
barrels, post boxes, and even vehicles could be used as reference objects. The waterlogging depth can
be estimated by comparing the heights of the reference objects in flooding and non-flooding periods.
The height differences can be treated as waterlogging depths.

3. Case Study

3.1. Data Set

To evaluate the effectiveness of the proposed method, two video data sets recording the urban
waterlogging process were used. One data set was from a city in Hebei Province, China, and the other
was from a city in Guizhou Province, China. Figures 2 and 3 show some sample images of these two
data sets.
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Video data set 1 was a normal-motion video, and the frame rate of the video was 24 frames per
second (fps). The video was output as images with an interval of 30 s, and each image was given a
frame number. The interval between adjacent serial frame numbers was 720. For example, if the frame
number of one image was 1760, the frame number of the next one was 2480. The video was converted
to 105 JPG images. The original resolution of the video images was 1280 × 720 pixels. These images
were resized to 299 × 299 pixels to meet the input requirements of Inception V3. Each image was
associated with an observed value of the waterlogging depth. These images were randomly divided
into a training set of 85 images (approximately 80% of the data set) and a testing set of 20 images.

Video data set 2 was a fast-motion video, with a frame rate of 24 fps. Each frame of the video
was output as an image, and each image was given a frame number. The interval between adjacent
serial frame numbers was 1. The video was converted to 183 JPG images. The original resolution of the
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video images was 856 × 480 pixels. These images were resized to 299 × 299 pixels to meet the input
requirements of Inception V3. Each image was associated with an observed value of the waterlogging
depth. These images were divided randomly into a training set of 148 images (approximately 80% of
the data set) and a testing set of 35 images.

All images were input into Inception V3 to extract feature vectors. The average computational
times for the feature vector extraction from an image were 0.990 s and 0.957 s for videos 1 and 2,
respectively, on a Windows 10 computer (Intel(R) Xeon(R) CPU E3-1535M v5 @ 2.90 GHz with 16 GB
of RAM).

3.2. Results from the Proposed Method

3.2.1. Waterlogging Depth Results for Data Set 1

For data set 1, 85 observations were used to train the lasso model, and the 20-fold cross-validation
was used to obtain the optimal λ parameter. The optimal λ value was 0.000735, and 49 features were
selected. During the training phase, the coefficient of determination R2 and the root-mean-square error
(RMSE) of the modeling results were 0.94 and 0.015 m, respectively (Table 2). During the testing phase,
the coefficient of determination R2 and the RMSE of the predictions were 0.75 and 0.031 m, respectively
(Table 2). The R2 value of data set 1 during the training phase was larger than the value during the
testing phase, and the RMSE value during the training phase was smaller than that during the testing
phase. Figure 4 shows that during the training phase, the overall trend of the results (the blue dots in
Figure 4) agreed well with that of the observed values. During the testing phase, the predictions (the
red dots in Figure 4) were also consistent with the observed values.

Table 2. The coefficient of determination (R2) and the root mean square error (RMSE) values of the
results and predictions of the lasso models for data sets 1 and 2.

Data Set
Training Phase Testing Phase

R2 RMSE (m) R2 RMSE (m)

Data set 1 0.94 0.015 0.75 0.031
Data set 2 0.98 0.025 0.98 0.033
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The computational time required to train the lasso regression model was 18.308 s, and the
computational time required to predict the waterlogging depths of all testing images was 0.031 s, using
the previously described computer system (Table 3).



Water 2018, 10, 1485 7 of 11

Table 3. The computational time of the lasso models for data sets 1 and 2.

Data Set Training Time (s) Testing Time (s)

Data set 1 18.308 0.031
Data set 2 24.286 0.055

3.2.2. Waterlogging Depth Results for Data Set 2

For data set 2, 148 observations were used to train the lasso model, and the 20-fold cross-validation
was used to obtain the optimal λ parameter. The optimal λ value was 0.000821, and 42 features were
selected. During the training phase, the coefficient of determination R2 and the RMSE of the modeling
results were 0.98 and 0.025 m, respectively (Table 2). During the testing phase, the R2 and RMSE of the
predictions were 0.98 and 0.033 m, respectively (Table 2). The R2 value of data set 2 during the training
phase was the same as the value during the testing phase, and the RMSE value during the training
phase was smaller than that during the testing phase. Figure 5 shows good agreement between the
results (the blue dots in Figure 5) of the training phase and the observed values. Figure 5 also shows
satisfactory agreement between the predictions (the red dots in Figure 5) of the testing phase and the
observed values. It was found that the R2 of data set 2 was larger than that of data set 1, which can be
attributed to two reasons: (1) the video image scenes in data set 1 were more complicated. For example,
the movements of vehicles could influence the waterlogging depth. (2) The range of the waterlogging
depth in data set 2 was larger than that in data set 1.
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The computational time required to train the lasso regression model was 24.286 s, and the time
required to predict the waterlogging depths of all testing images was 0.055 s, using the previously
described computer system (Table 3).

4. Discussion

Transfer learning has been applied for feature extraction from images and computer vision, and
the feature vectors obtained by transfer learning can be used to effectively solve image classification
and prediction problems. In this paper, we applied a transfer learning model (Inception V3) to extract
feature vectors from urban waterlogging images. The dimension of the feature vectors extracted by
Inception V3 was 2048, which is larger than the number of observations (105 and 183 in the two cases).
Therefore, ordinary least squares (OLS) regression is not suitable in this case, and lasso regression was
employed to reduce the dimension of the feature vectors. The reduced numbers of dimensions of the
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feature vectors in video data sets 1 and 2 were 49 and 42, respectively, which were smaller than the
numbers of observations.

Although lasso regression can reduce the dimension of feature vectors, overfitting may still
occur if the number of observations is too small or if there is considerable data redundancy. In lasso
regression, λ is a crucial parameter, so it is important to select an optimal λ value. In this paper, the
k-fold cross-validation technique was used to determine this parameter. The λ parameter of the lasso
model affects the number of selected features and may cause underfitting or overfitting problems.
Taking data set 1 as an example, when the λ value was 0.01, the number of selected features was 7, the
R2 value was 0.51 during the training phase, and there was an underfitting problem. When the λ value
was 0.00001, the number of selected features was 128, the R2 value was 1.00 during the training phase,
and there was an overfitting problem. When the λ value of the lasso model was optimal (i.e., 0.000735),
the number of selected features was 49, and the R2 value was 0.94 during the training phase. We thus
think that there was no obvious underfitting or overfitting.

The computational time required to predict the waterlogging depth based on one video
surveillance system is very short, and the real-time waterlogging depth can be obtained. However,
extracting the real-time waterlogging depth from tens of thousands or even hundreds of thousands
of camera videos within a city requires a large amount of computational power. Cloud computing
technology could be used to solve this problem.

Compared with the existing methods, the proposed method has advantages, including low
economic costs, good real-time performance, and satisfactory accuracy. Although the method proposed
has lower accuracy than water-level sensors, whose error can be controlled within 1 cm [9], it is much
cheaper in real applications. Compared with the methods of remote sensing, our proposed method
is timelier and less prone to be affected by cloud and tree coverage [10–12]. The proposed method
is more accurate and reliable than the methods based on social media and crowdsourcing data [13],
it needs less input data (i.e., only the video data as input), and has higher computational efficiency
than the storm-water runoff models.

Currently, the proposed method depends on manual image annotation (i.e., obtaining
waterlogging depth observations according to reference objects in the images). There may be errors in
the process of manual image annotation, which may affect the accuracy of the waterlogging depths.
Moreover, distortions introduced by camera lenses, the resolution, and the metric extent of the field
of view may also affect the accuracy. Another disadvantage is that the learned lasso model may be
inapplicable if the changes in the video scene are too large (e.g., a lasso model trained using the video
images of small floods cannot be used to extract the waterlogging depth of severe floods, and a lasso
model trained using the video images of one location may not be able to extract accurate waterlogging
depths at another location). To ensure that the proposed method is robust, video data from different
locations, seasons, and weather conditions must be collected to train and test the model.

In addition, this study only used videos of the rising phase of floods because of data limitation.
It would be interesting to test the proposed method in the falling phase, if we could gather video data
of the falling phase of floods. We think that the lasso model trained during the rising phase would
succeed in extracting the waterlogging depth in the falling phase, as the video scenes of the rising
phase and the falling phase are similar.

5. Conclusions and Future Work

The existing methods cannot obtain real-time and spatially detailed information of urban
waterlogging depth. In this paper, we propose a new approach to extracting urban waterlogging depths
from video images of cameras, which are almost ubiquitous in cities and record the entire process
of urban flooding, based on transfer learning and lasso regression. First, a transfer learning model
was used to extract feature vectors from a video image set of urban waterlogging. Second, a lasso
regression model was trained with these feature vectors and employed to calculate the waterlogging
depth. This approach was applied in two case studies, and it was found that during the testing
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phase, the RMSEs were 0.031 and 0.033 m, respectively, and the computational time was 0.031 and
0.055 s, respectively. These results showed that the proposed approach has the advantages of both
satisfactory accuracy and fast calculating speed and demonstrated that video images form video
supervision equipment in cities are valuable and alternative data sources to obtain the waterlogging
depth. Because of the low economic costs, it is feasible to apply this approach to cameras of cities to
form a powerful system for urban waterlogging monitoring. In addition, the approach can also be
extended to monitor water levels of lakes, rivers, reservoirs, and other types of water bodies using
video images.

It should be noted that we only used two video data sets because of data availability. If more
data sets become available in the future, the precision and robustness of the method are expected to be
further improved, because the increase in the data volume enhances the performance of statistic-based
models. In the future, we will determine whether the models trained with video images of specific
flood events can be applied to new flood events in different scenarios (e.g., different seasons, day and
night scenes) at the same location and also whether the models trained with video images collected at
specific locations can be applied to other locations with similar scenarios.
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