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Abstract: This study evaluated five models of rainfall temporal distribution (i.e., the Yen and
Chow model, Mononobe model, alternating block method, Huff model, and Keifer and Chu
model), with the annual maximum rainfall events selected from Seoul, Korea, from 1961 to 2016.
Three different evaluation measures were considered: the absolute difference between the rainfall
peaks of the model and the observed, the root mean square error, and the pattern correlation coefficient.
Also, sensitivity analysis was conducted to determine whether the model, or the randomness of
the rainfall temporal distribution, had the dominant effect on the runoff peak flow. As a result,
the Keifer and Chu model was found to produce the most similar rainfall peak to the observed,
the root mean square error was smaller for the Yen and Chow model and the alternating block
method, and the pattern correlation was larger for the alternating block method. Overall, the best
model to approximate the annual maximum rainfall events observed in Seoul, Korea, was found to be
the alternating block method. Finally, the sensitivity of the runoff peak flow to the model of
rainfall temporal distribution was found to be much higher than that to the randomness of the
rainfall temporal distribution. In particular, in small basins with a high curve number (CN) value,
the sensitivity of the runoff peak flow to the randomness of the rainfall temporal distribution was
found to be insignificant.

Keywords: rainfall temporal distribution; annual maximum rainfall event; sensitivity analysis;
rainfall–runoff analysis

1. Introduction

Once the total rainfall depth (i.e., design rainfall) is determined as a design criterion for a given
return period and rainfall duration, it should be distributed temporally, to be applied in rainfall–runoff
analysis. The temporal distribution of design rainfall is an important factor that affects the result of the
rainfall–runoff analysis, and ultimately, the dimension of hydraulic structures. Thus, a proper model
for temporally distributing the total rainfall depth should be selected, by considering the observed
characteristics of the rainfall temporal distribution. The runoff peak flow and peak time are all affected
by this model of rainfall temporal distribution [1].

Rainfall temporal distribution models may be categorized into three groups: The first group
is composed of those derived by analyzing the observed rainfall data. The Huff model, the SCS
(Soil Conservation Service) model by the NRCS (National Resources Conservation Service), the Yen
and Chow model, the Mononobe model, and the Pilgrim and Cordery model are included in this
group [2–6]. The second group is based on the rainfall intensity-duration-frequency (I-D-F) relation.
The alternating block model, Kiefer and Chu model, and Lee and Ho model are among the models
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in this group [7–9]. The remaining models are mostly derived based on stochastic or probabilistic
approaches [10–13].

Selecting one of these models of rainfall temporal distribution for application to hydrological
practices is a matter of choice. For example, a dimensionless temporal distribution based on the Huff
model is provided by the NOAA (National Oceanic and Atmospheric Administration) in the US [14];
this is the same in China, Singapore and South Korea [15–17]. Some countries select the model based on
the I-D-F relation, like the Chicago model in New Zealand and Italy [18,19] and the alternating block
model in Philippines [20]. Hong Kong also used a similar method that uses the rainfall intensity
information for given rainfall durations [21]. The observed temporal distribution of an extreme event
is also directly considered in hydrologic analysis in Japan [22].

Verification of the selected rainfall temporal distribution model is generally carried out by
comparing it with the observed rainfall events [23–27]. For example, Aron et al. (1987) evaluated
the SCS model with the observed rainfall data in Pennsylvania to confirm its applicability [24].
A similar result was also found by Guo and Hargardin (2009) [25]. Nguyen et al. (2010) compared
the eight models of rainfall temporal distribution to select the best one for Quebec [27]. In Korea,
MOCT (Ministry of Construction and Transportation) (2000) conducted a comparison study with the
Yen and Chow model, the Mononobe model, the alternating block model, the Huff model and the
Keifer and Chu model and recommended the use of the Huff model in hydrological practices [28].
MLTM (Ministry of Land, Transport and Maritime Affairs) (2011) also confirmed the recommendation
by MOCT (2000) [29]. Additionally, MLTM (2011) suggested that the Huff model should be derived
by analyzing the rainfall events with durations longer than, or equal to, six hours [29]. It was also
suggested to consider only those rainfall events whose rainfall peaks are located in the most frequent
quantiles. The second or third quantile is the most frequently selected in design practice.

However, the Huff method is known to over-smooth the rainfall distribution, even though
the concept of the most frequent quantile is applied. Compared to the other models of rainfall
temporal distribution, the runoff peak from the Huff model is generally lower by 10% or more [30–33].
This problem becomes even more severe when the rainfall duration is short [34]. The effect of
infiltration is also different, depending on the quantiles selected. The effect of infiltration is the
largest for the first quantile of the Huff model, and the smallest for the fourth quantile of the model.
The difference is directly reflected in the runoff peak flow and peak time. In fact, MLTM (2011) also
advised choosing the third quantile, to avoid possible confusion in the selection of the most frequent
rainfall quantiles [29].

This study also focused on the evaluation of the models of rainfall temporal distribution. The five
models considered in MOCT (2000) and MLTM (2011) [28,29] were the Yen and Chow model,
the Mononobe model, the alternating block model, the Huff model and the Keifer and Chu model
were also considered. For the comparison, only the annual maximum rainfall events were used in
this study, as the rainfall distribution model is mostly used for hydrological practices. The annual
maximum rainfall events used in this study are those selected from Seoul, Korea from 1961 to
2016, based on bivariate frequency analysis [35]. The model and observed rainfall distribution
were compared by considering the location of the rainfall peak and the randomness of the rainfall
distribution. The sensitivity of the runoff peak flow to the model and randomness of the rainfall
temporal distribution were also analyzed. The question was addressed of whether the model or the
randomness of the rainfall temporal distribution had the dominant effect on the runoff peak flow.
Finally, as a result, the best model for the rainfall temporal distribution was suggested.

2. Models of Rainfall Temporal Distribution

2.1. The Yen and Chow Model

Yen and Chow (1980) proposed a triangular-shaped temporal distribution model for the design
rainfall [6]. For a basin with the design rainfall depth R (mm) and rainfall duration T (h), the rainfall
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temporal distribution (design hyetograph) is made as a triangle of area R and height h = 2R/T (mm/h).
The peak time of rainfall can vary, which is quantified by the storm advancement coefficient.
The coefficient of the storm advancement (r) is defined as the ratio between the rainfall peak time
and the rainfall duration. If r = 0.5, the rainfall peak is located at the center of the rainfall event,
which is called a centered type. If r < 0.5, the rainfall event is called an advanced type, and if r > 0.5,
a delayed type.

2.2. The Mononobe Model

Mononobe proposed a model to distribute the design rainfall depth by analyzing the rainfall
data observed in Korea [4]. This method is based on the following Equation (1), which shows the
cumulative rainfall distribution up to time t:

Rt =
RT
T

(
T
t

)n
t (1)

where RT is the design rainfall depth (mm), Rt is the cumulative rainfall depth (mm) up to time t,
and T is the rainfall duration (h). The constant n is assumed to be 2/3, in general. As Equation (1) is
the cumulative rainfall depth, the rainfall intensity data to make the rainfall temporal distribution
is derived as the difference between the current and previous time cumulative rainfall depth.
After locating the rainfall peak, the next largest rainfall intensity is located alternately around the
rainfall peak in turn.

2.3. The Alternating Block Method

The alternating block method is a method to make the rainfall temporal distribution
(design hyetograph) using the rainfall intensity-duration-frequency (I-D-F) curve. After dividing
the rainfall duration T (h) by the ∆t time-interval, the rainfall intensities for the rainfall durations ∆t,
2∆t, 3∆t, . . . are estimated from the rainfall I-D-F curve. By calculating the product of the rainfall
intensity and the duration (i.e., the rainfall depth) for each rainfall duration, the cumulative rainfall
distribution can be derived. The rainfall intensity data can then be obtained as the difference between
the successive cumulative rainfall depths. After locating the rainfall peak at the center, the next largest
rainfall intensity is located alternately to the right and left of the rainfall peak in turn, similar to the
centered type Mononobe model.

2.4. The Huff Model

Huff (1967) analyzed the rainfall data collected over small basins in Illinois with a basin area of
less than 400 mi2, and proposed a model of rainfall temporal distribution [3]. This model was to
choose the proper quantile by considering the frequency of the rainfall peak over the rainfall duration.
Then, using only those rainfall events with peaks located at the same quantile, the rainfall temporal
distribution is derived as an average rainfall distribution. This resulting rainfall temporal distribution
is smooth to reflect the average rainfall distribution with time, which does not exhibit the burst
characteristics of observed storms. Usually, the rainfall temporal distribution for 10, 20, . . . , 90 percent
cumulative probabilities of occurrence are derived with the percentage of total storm rainfall for
10 percent increments of the storm duration. The 50 percent histogram represents a cumulative rainfall
pattern that should be exceeded in about half of all storms. The 90 percent histogram can be interpreted
as a storm distribution that is equaled or exceeded in 90 percent or less of all storms.
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When deriving the rainfall temporal distribution model, the observed rainfall events are
transformed into dimensionless ones by the total rainfall depth and rainfall duration, i.e.,

PT(i) =
T(i)

T
× 100 (2)

PR(i) =
R(i)

R
× 100 (3)

where PT(i) is the percentage of time T(i) over the rainfall duration T, and PR(i) is the percentage of
the cumulative rainfall depth R(i) up to the time T(i) over the total rainfall depth R during the rainfall
duration T. Generally, 10 time-intervals are considered (i.e., i = 1, . . . , 10).

2.5. The Keifer and Chu Model

Keifer and Chu (1957) developed a synthetic hyetograph of the instantaneous intensity method
type for use in sewer design for Chicago [8]. The Keifer and Chu model is also based on the rainfall
I-D-F curve. That is, similarly to the alternating block method, the rainfall depth around the rainfall
peak for the rainfall duration td is assumed to be the same as that from the rainfall I-D-F curve.
However, the rainfall intensity in the Keifer and Chu model is the instantaneous value changing
continuously over the rainfall duration. That is, the difference of the Keifer and Chu model from
the alternating block method is that the rainfall intensity is now considered to vary continuously
throughout the storm. Hence, it is also called the instantaneous intensity model. The rainfall intensities
before and after the rainfall peak time (ia and ib, respectively) are expressed as follows:

ia =
c
[
(1 − e)(ta/r)e + f

][
(ta/r)e + f

]2 (4)

ib =
c
{
(1 − e)[tb/(1 − r)]e + f

}{
[tb/(1 − r)]e + f

}2 (5)

where ta is the alternating time before the rainfall peak time, tb is the alternating time after the rainfall
peak time, and r is the coefficient of storm advancement; and c, e, f are coefficients that vary with
the return period. Also, these alternating rainfall intensities before and after the rainfall peak are
assumed to make a curve.

3. Data and Model Fitting

3.1. Data

This study considered the annual maximum rainfall event data collected in Seoul, Korea, derived
by Park and Yoo (2012) [36]. These annual maximum rainfall events were selected based on a bivariate
frequency analysis of all the independent rainfall events that occurred in a given year. In Park
and Yoo (2012), this bivariate frequency analysis was repeated every year from 1961 to 2010 [36],
and in this study, additionally from 2011 to 2016. As a result, this study could consider 56 annual
maximum rainfall events that covered the period from 1961 to 2016. Figure 1 compares the rainfall
histogram of those annual maximum rainfall events. All of these 56 rainfall events are different from
each other. Most of them have one rainfall peak, but some have two. Also, the location of the peak
varies a lot from the beginning to the end of the rainfall event. This diversity indicates that the rainfall
distribution model may not easily be evaluated with the observed rainfall events.
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Figure 1. Cont.
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Figure 1. Histograms of annual maximum rainfall events observed from 1961 to 2016 in Seoul, Korea.

Table 1 compares the selected annual maximum rainfall events with their rainfall durations, mean
rainfall intensities, and total rainfall depths. Table 1 shows that the range of rainfall duration was wide,
from 1 to 104 h. The largest total rainfall depth 630 mm was recorded in 2011, and the smallest one was
just 30 mm in 2007. The mean rainfall intensity also showed a wide range from 2.7 mm/h in 1981 to
38.9 mm/h in 2004. The mean rainfall duration was estimated to be 24 h, the mean rainfall intensity
11.4 mm/h, and the mean total rainfall depth 154.7 mm.
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Table 1. Characteristics of the annual maximum rainfall events collected from 1961 to 2016 in
Seoul, Korea.

Year
Rainfall
Duration

(h)

Rainfall
Depth
(mm)

Rainfall
Intensity
(mm/h)

Year
Rainfall
Duration

(h)

Rainfall
Depth
(mm)

Rainfall
Intensity
(mm/h)

1961 3 55.9 18.6 1989 12 82.7 6.9
1962 18 62.0 3.4 1990 35 352.2 10.1
1963 2 45.8 22.9 1991 35 138.1 3.9
1964 6 127.4 21.2 1992 9 129.5 14.4
1965 27 87.0 3.2 1993 3 75.0 25.0
1966 65 361.7 5.6 1994 4 68.4 17.1
1967 4 43.1 10.8 1995 93 331.8 3.6
1968 17 156.7 9.2 1996 16 116.5 7.3
1969 4 83.7 20.9 1997 13 126.3 9.7
1970 20 191.8 9.6 1998 25 359.7 14.4
1971 8 132.8 16.6 1999 75 500.3 6.7
1972 25 394.5 15.8 2000 2 42.9 21.5
1973 18 59.5 3.3 2001 22 180.3 8.2
1974 18 87.0 4.8 2002 54 227.9 4.2
1975 17 112.1 6.6 2003 41 159.5 3.9
1976 53 226.3 4.3 2004 1 38.9 38.9
1977 52 168.2 3.2 2005 18 52.8 2.9
1978 44 244.3 5.6 2006 80 281.3 3.5
1979 4 88.0 22.0 2007 2 30.0 15.0
1980 18 116.0 6.4 2008 44 192.2 4.4
1981 58 156.2 2.7 2009 10 129.8 13.0
1982 22 80.2 3.6 2010 10 83.5 8.4
1983 1 31.4 31.4 2011 104 630.0 6.1
1984 39 317.5 8.1 2012 4 76.5 19.1
1985 3 66.0 22.0 2013 2 45.0 22.5
1986 8 106.2 13.3 2014 4 42.5 10.6
1987 29 323.8 11.2 2015 29 119.5 4.1
1988 14 67.8 4.8 2016 3 58.0 19.3

3.2. Model Fitting

All of the rainfall temporal distribution models considered in this study—the Yen and Chow
model, Mononobe model, alternating block method, Huff model, and Keifer and Chu model—were
fitted to each of the annual maximum rainfall events observed in Seoul, Korea. Six rainfall events were
excluded in this application, as their durations were less than three hours. The third quantile was
considered for the Huff model, which is recommended in Korea [29]. The third quantile is also the
most probable quantile of the observed annual maximum rainfall events.

Somewhat different information was used for the fitting of each rainfall temporal distribution
model. For example, the Yen and Chow model and Mononobe model require the total rainfall depth,
but the alternating block method and Keifer and Chu model require the rainfall intensity from the
rainfall I-D-F curve. The estimated return period of a rainfall event is also needed to handle the rainfall
I-D-F curve. In this study, the rainfall I-D-F curve developed for the Seoul rain gauge station was used
for this purpose [29]. For example, the return period of the annual maximum rainfall in 1984 was
estimated to be about 11 years, and that in 2001 to be about three years.

With the estimated return period along with the total rainfall depth and rainfall duration,
the rainfall temporal distribution models could be fitted for each annual maximum rainfall event.
For example, Figure 2 shows the fitting results of the models to the annual rainfall events in 1984 and
2001. This figure shows that, basically, the peak time of a model is not coincident with that of the
observed. This result is quite natural, considering the randomness of the peak time. Concerning the
rainfall peak, the Huff model derived a smaller rainfall peak than the observed, which was also the
same for the Yen and Chow model. The rainfall peak of the alternating block method and that of the
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Keifer and Chu model were found to be quite similar to the observed, while that of the Mononobe
model was found to be much higher than the observed.
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4. Evaluation of the Rainfall Temporal Distribution Models

4.1. Evaluation Methods and Evaluation Measures

In this part of the study, the rainfall temporal distribution models were evaluated by comparing
them to the observed annual maximum rainfall events in Seoul, Korea. This study considered three
different cases for the evaluation. The first case (Case 1) was to compare the model and the observed
rainfall event as it is. The second case (Case 2) was to compare the model and observed rainfall event,
after reconciling the rainfall peak time of the specific model to the observed. That is, by moving the
rainfall temporal distribution of the model in parallel, it is possible to fix the rainfall peak time of
the model to the observed. The third case (Case 3) was to compare the model and observed rainfall
event, after rearranging the observed rainfall temporal distribution to be most similar to the model.
In this case, the randomness of the observed rainfall temporal distribution is removed, to make its
temporal distribution most approximate that of the specific model.

In fact, the rearrangement of the rainfall temporal distribution of the third case may cause a
distortion of the autocorrelation structure of an observed rainfall event [37]. However, after the
rearrangement, mean autocorrelation coefficients of observed rainfall events and rainfall temporal
distribution models were found to be similar to each other. That is, the mean autocorrelation
coefficient of all the rainfall events considered in this study was about 0.35, but became about 0.65
after the rearrangement. The mean autocorrelation coefficient of the five rainfall temporal distribution
models considered in this study was estimated to be about 0.56. The effect of randomness in the rainfall
temporal distribution will also be evaluated in Section 5.3 with an emphasis on the runoff calculation.

Three different evaluation measures were considered in this study. The first measure was the
absolute difference between the rainfall peaks of the model and the observed (DRpeak), which is defined
as follows:

DRpeak =
∣∣Sp − Op

∣∣ (6)

where Sp is the rainfall peak of the model, and Op is the observed. The second measure is the root
mean square error (RMSE). This RMSE can be assumed as the standard deviation of the differences
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between the model and the observed rainfall temporal distribution. The RMSE is calculated using the
following equation:

RMSE =

√√√√√ n
∑

i=1
(Si − Oi)

2

n
(7)

where Si is the rainfall intensity at time i of the model, and Oi is the observed rainfall intensity at time i.
Finally, the third measure is the pattern correlation coefficient (R). This pattern correlation

coefficient is a correlation coefficient to measure the similarity of the pair data. The pattern correlation
coefficient is calculated as follows:

R =

n
∑

i=1

(
Si − S

)(
Oi − O

)
√

n
∑

i=1

(
Si − S

)2
√

n
∑

i=1

(
Oi − O

)2
(8)

where S and O represent the means of the model and the observed rainfall temporal distribution.

4.2. Evaluation Results

As mentioned in the previous section, three different cases were considered for the evaluation of
the rainfall temporal distribution models. Figure 2 is for Case 1 for the annual maximum rainfall
events observed in 1984 and 2001. Case 2 and Case 3 are presented in Figures 3 and 4, respectively.Water 2018, 10, x  9 of 22 
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Table 2 summarizes the evaluation results with the annual maximum rainfall events in 1984 and
2001. For each model, DRpeak should be estimated to be the same for Cases 1, 2 and 3. Additionally, a
positive (or negative) sign was given to the value of DRpeak to distinguish the higher (or lower) rainfall
peak of a model from the observed. As the rainfall peak of the Yen and Chow model and the Huff
model was mostly smaller than the observed, a negative sign was given to the estimates of DRpeak.
On the other hand, a positive sign was given to the results of the Mononobe model application.
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The RMSEs for the application of the alternating block method and the Keifer and Chu model
were estimated to be smaller than for the other model applications. As can be expected, the RMSE
for Case 1 was the largest, and that for Case 3 was the smallest. This result was also the same for the
pattern correlation coefficient. The highest value of the pattern correlation coefficient was obtained
in the application of the alternating block method and the Keifer and Chu model, and the lowest
value in the application of the Mononobe model. Overall, among the five models considered in this
study, the alternating block method and the Keifer and Chu model were found to be most similar to
the observed.

Table 2. Evaluation results of rainfall temporal distribution models with the maximum rainfall events
observed in 1984 and 2001.

Evaluation
Measure Year Case Yen and

Chow Mononobe Alternating
Block

Keifer
and Chu Huff

DRpeak
1984 - −29.8 67.8 33.0 29.0 −28.5
2001 - −42.7 24.4 −4.0 −10.0 −41.3

RMSE

1984
1 9.45 16.13 11.73 13.17 11.47
2 9.51 12.86 6.57 8.44 9.48
3 8.30 12.20 6.32 7.53 8.13

2001
1 14.28 21.34 16.27 14.34 15.79
2 14.05 11.89 10.55 4.81 14.62
3 13.33 9.93 6.57 3.35 13.05

R

1984
1 0.58 0.45 0.56 0.58 0.24
2 0.59 0.70 0.83 0.86 0.61
3 0.77 0.73 0.88 0.90 0.79

2001
1 0.46 0.14 0.33 0.52 0.19
2 0.45 0.73 0.73 0.92 0.50
3 0.64 0.82 0.93 0.99 0.50
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To summarize the evaluation results for all annual maximum rainfall events, DRpeak and RMSE
were standardized. That is, the DRpeak was divided by the observed rainfall peak (Opeak) of the rainfall
event to create the standardized SDRpeak, and the RMSE was divided by the mean rainfall intensity
(I) to make the standardized SRMSE. That is,

SDRpeak =
DRpeak

Opeak
(9)

SRMSE =
RMSE

I
(10)

Table 3 summarizes the SDRpeak, SRMSE, and R for all 50 annual maximum rainfall events by
their mean and standard deviation. Similarly to the DRpeak, the SDRpeak of each rainfall event was
estimated to be the same for all cases, but the SRMSE and R were estimated differently for each case.
The sign of SDRpeak was determined by following the same rule as for DRpeak.

Table 3. Evaluation results of rainfall temporal distribution models with all the annual maximum
rainfall events considered in this study (mean value along with standard deviation inside the bracket).

Evaluation
Measure Case Yen and

Chow Mononobe Alternating
Block

Keifer and
Chu Huff

SDRpeak - −0.499 0.706 0.548 0.473 −0.467
(0.240) (0.593) (0.453) (0.419) (0.245)

SRMSE

1
1.337 1.894 1.810 2.012 1.398

(0.592) (0.731) (0.793) (1.000) (0.572)

2
1.242 1.299 1.296 1.592 1.189

(0.628) (0.629) (0.717) (0.986) (0.616)

3
0.955 0.914 0.754 1.135 1.039

(0.557) (0.310) (0.386) (0.794) (0.544)

R

1
0.268 0.208 0.238 0.304 0.170

(0.337) (0.264) (0.259) (0.266) (0.350)

2
0.508 0.733 0.732 0.610 0.541

(0.304) (0.173) (0.196) (0.252) (0.285)

3
0.751 0.804 0.877 0.743 0.629

(0.171) (0.126) (0.100) (0.201) (0.207)

As a result, the SDRpeak shows that the Yen and Chow model and the Huff model tend to
underestimate the rainfall peak, while the Mononobe model tends to overestimate. Among the five
models considered in this study, the Keifer and Chu model produced the most similar rainfall peak to
the observed. On the other hand, the smallest SRMSEs were estimated for the Yen and Chow model and
the alternating block method. The value of R was larger for the alternating block method, but smaller
for the Yen and Chow model and the Huff model. In particular, in Case 3, the alternating block method
showed the smallest SRMSE and largest R, which indicates that it is the most similar model to the
observed rainfall temporal distribution.

5. Sensitivity of the Runoff Peak to the Rainfall Temporal Distribution

5.1. Preparation of the Rainfall–Runoff Model

In this part of the study, the sensitivity of the runoff peak to the rainfall temporal distribution was
evaluated. The sensitivity analysis was repeated two times; once on the models of the rainfall temporal
distribution, and once on the randomness of the rainfall temporal distribution. Here, the randomness of
the rainfall distribution indicates the transformation of the rainfall temporal distribution from Case 3 to
Case 2 or Case 1. In contrast to the very well-organized design for rainfall based on the rainfall
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temporal distribution model, the observed rainfall event shows very random organization of the
rainfall intensity values over the rainfall duration.

This study used the 1-h unit hydrograph (UH) for the rainfall–runoff analysis. The UH
was derived using the Clark instantaneous unit hydrograph (IUH), whose two parameters—the
concentration time Tc and storage coefficient K—were assumed to be the same. Three different UHs
were derived with the concentration time 1, 3, and 5 h. The basin area was also assumed to be linearly
proportional to the concentration time. Figure 5 compares the three UHs. In particular, it shows that
the peak flow is not proportional to the basin area.
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The infiltration loss was considered in the rainfall–runoff analysis by the NRCS-CN (National
Resources Conservation Service-Curve Number) method [38]. Three different CN values of 60, 80 and
100 were considered, to consider the different land cover and soil characteristics. The higher the CN
value, the larger the effective rainfall amount. The CN 100 indicates no infiltration, while the CN value
0 indicates no effective rainfall.

5.2. Sensitivity to the Rainfall Temporal Distribution Models

Each model considered in this study derives a different rainfall temporal distribution, which
is also related to the shape of the runoff hydrograph. Additionally, the infiltration characteristics
(i.e., CN), as well as the runoff characteristics (i.e., Tc and K), will also change the shape of the runoff
hydrograph. To evaluate this difference caused by applying a different model of rainfall temporal
distribution, this study performed the rainfall–runoff analysis with different basin and infiltration
characteristics. The annual maximum rainfall event that occurred in 1997 was considered as an
example case. This rainfall event was continued for 13 h, and the mean rainfall intensity was 9.7 mm/h.
The return period of this rainfall event was estimated to be two years.

With the mean rainfall intensity and the rainfall duration of the rainfall event in 1997, five different
rainfall temporal distributions were derived. Also, by considering three different CN values and three
different UHs, a total of nine combinations could be prepared for each model of rainfall temporal
distribution. That is, for each UH, 15 combinations of rainfall distributions and CNs were prepared.
Table 4 summarizes these combinations for the rainfall–runoff analysis.
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Table 4. Combinations of five rainfall temporal distribution models, three CN values and three Tc (=K)
values considered in this study.

Model CN Tc = K (h)

Yen and Chow
60 1Mononobe

Alternating Block 80 3

Keifer and Chu
100 5Huff

First, Figure 6 compares the 15 histograms of effective rainfall with the different rainfall temporal
distributions and CNs. As can be expected, the effect of the CNs is concentrated in the early part of
the rainfall, but the effective rainfall peak was also decreased a bit with higher CN. Second, Figure 7
compares the runoff hydrographs derived by applying the 1-h UH. This figure shows that the runoff
hydrographs were considerably affected by the CN value and the UH. The runoff hydrographs were
all derived as would be expected.
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rainfall event in 1997.

The key result of Figure 7 lies in the effect of the model of rainfall temporal distribution. First, the
Yen and Chow model and the Huff model produced a far smaller peak flow than the other models.
In particular, the sensitivity of the peak flow to the model of rainfall temporal distribution was higher
for the case with small Tc and K. For the case with larger Tc and K, the sensitivity to the model
was found to be much smaller. The peak flow derived by applying the Mononobe model was the
highest, but was also similar to that of the Keifer and Chu model.
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The above results can also be evaluated quantitatively from the point of the sensitivity of the peak
flow to the model of rainfall temporal distribution. For this purpose, the following measure, a ratio of
the peak flow of a model to the mean of all five models (Ratiopeak), was introduced:

Ratiopeak =
Opeak

Opeak
(11)

where Opeak is the peak flow of a model, and Opeak is the mean of the peak flows of the five models of
rainfall temporal distribution. Figure 8 summarizes the results in box plots.

This figure shows that the sensitivity of the peak flow to the model of rainfall temporal distribution
became much larger in a small basin (where the concentration time is short). The inter-quantile range
estimated for the case of Tc = 1 h was estimated to be more than three times of that for the case of
Tc = 3 or 5 h. On the other hand, the difference between the two cases of Tc = 3 h and Tc = 5 h was
very small. As the rainfall distribution was made at hourly intervals, the effect of the rainfall peak on
the peak flow seems to be direct for the case of Tc = 1 h. On the other hand, in the case of longer Tc,
the storage effect significantly dampened the effect of the rainfall peak.

CN also seemed to have a significant effect on the peak flow, even though that effect was not as
high as that of the concentration time. As the CN value increased, the inter-quantile range of the box
plot increased, which was also obvious for the cases of Tc = 3 h and Tc = 5 h. For the case of
Tc = 1 h, the effect of CN seemed to be minimum. This result indicates that as the basin area
increases, the sensitivity of the peak flow to the model of rainfall temporal distribution becomes
smaller. More generally, the effect of rainfall distribution on the rainfall–runoff model for a small basin
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with small Tc and K can be very limited. On the other hand, in a large basin with larger Tc and K,
the effect of CN could be seen more clearly.
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5.3. Preparation of the Rainfall–Runoff Model

The result in Section 4 shows that the alternating block method produced the most similar rainfall
temporal distribution to the observed. However, this result was limited, as the comparison was
carried out with the redistributed observed rainfall. That is, the comparison did not consider the
randomness of the observed rainfall distribution. Thus, in this part of the study, the sensitivity of the
peak flow to the randomness of the rainfall temporal distribution was evaluated. As an example case,
the same rainfall event in the previous section was considered.

First, a total of 10 rainfall temporal distributions were randomly generated using the rainfall
distribution derived by applying the alternating block method (Figure 9). Except for the original
distribution (H1), all the others seem more realistic, and similar to the observed. The same
rainfall–runoff analysis was also repeated for each combination of Tc, K and CN. That is, nine different
combinations of Tc, K, and CN were considered in the rainfall–runoff analysis for one rainfall temporal
distribution. Figure 10 compares the resulting runoff hydrographs.

The hydrographs in Figure 10 show several important factors to be considered in the analysis of
the result. First, when evaluating the sensitivity to the randomness of the rainfall distribution, the
effect of Tc (or the size of the basin area) is not that important. This result can be seen more clearly
in the case of CN = 100. Second, particularly for the rainfall distribution with its peak at the rainfall
beginning, the effect of CN is important. This is obvious, as most of the infiltration occurs at the
beginning of a rainfall. However, if we consider only the rainfall events with their peaks on the second,
third or fourth quantile, which is believed to result in some severe floods, the effect of CN may be
excluded in the analysis of the result. Finally, it should be mentioned that the runoff peak time is
directly related to the rainfall peak time. Thus, in this study, only the runoff peak flow was analyzed.
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Under the above assumptions regarding considering the rainfall distributions with their peaks
in the second, third, or fourth quantile, we derived the following results. First, the highest peak flow
was produced for the rainfall distribution H1, i.e., the original distribution. Other random rainfall
distributions produced more or less the same peak flow. This result could be seen more clearly for
the case of CN = 100. That is, under the condition of saturated soil, a very well-organized rainfall
distribution like the model of rainfall temporal distribution can produce higher peak flow than a
random distribution.

However, under the condition of smaller CN values, this effect of well-organized rainfall
distribution became smaller. For the case of CN = 60, no obvious high peak flow could be found for
any case of concentration times. All the small peak flows were generated by the rainfall distribution
with their peak in the first quantile (i.e., H5 and H7). This result was also the case for CN = 80. Overall,
the sensitivity of the peak flow to the randomness of rainfall temporal distribution seemed to be small.
This result can also be confirmed by the box plots (Figure 11) of the Ratiopeak defined by Equation (11).

The box plots in Figure 11 show several important features of the randomness of the rainfall
distribution and its effect on the runoff peak flow. First, when the CN was high (i.e., CN = 100 in
this study), for Tc = 1 h, no sensitivity of the peak flow to the randomness of the rainfall temporal
distribution was found. For the case of Tc = 3 h and Tc = 5 h, the result was a bit higher, but still
only a small sensitivity was found. On the other hand, when the CN was small, the sensitivity of
the peak flow to the randomness of the rainfall temporal distribution was found to be very high.
This was basically because the effect of infiltration on the effective runoff became significant. However,
as Tc increased, this sensitivity became smaller.
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Overall, it could be concluded that when the CN is small, the effect of the randomness of the
rainfall temporal distribution on the runoff peak flow was found to be significant. The infiltration,
rather than the rainfall temporal distribution, played an important role in controlling the runoff peak
flow. Thus, when the effect of the infiltration was small (or the CN value was high), the sensitivity of the
runoff peak flow to the rainfall temporal distribution became insignificant. This situation was able to be
obtained in urban basins or saturated basins.

Additionally, it is also important to compare the sensitivity to the randomness and the model of
rainfall temporal distribution. By comparing Figures 8 and 11, it can be easily concluded that the
sensitivity of the runoff peak flow to the model of rainfall temporal distribution was much higher.
With regard to the flooding condition, i.e., under the condition of high CN values in urban basins
and saturated natural basins, the sensitivity of the runoff peak flow to the randomness of the rainfall
temporal distribution was insignificant. Even when the CN values were small, the sensitivity of the
runoff peak flow to the randomness of the rainfall temporal distribution was minimal, unless the
rainfall peak was located in the first quantile.

6. Summary and Conclusions

Although rainfall temporal distribution models are generally used in hydrological practice,
it is not easy to select the best model among the many models available. This is basically because,
as the model shows, the observed rainfall distribution is rather random, not systematic, which prevents
valid comparison. This study focused on this point, and evaluated five models of rainfall temporal
distribution (i.e., the Yen and Chow model, the Mononobe model, the alternating block method,
the Huff model, and the Keifer and Chu model), with the annual maximum rainfall events selected
from Seoul, Korea, from 1961 to 2016. Three different evaluation measures were considered in this
study, namely the absolute difference between the rainfall peaks of the model and the observed
(DRpeak), the root mean square error (RMSE), and the pattern correlation coefficient (R). Additionally,
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the DRpeak was standardized by dividing it by the observed rainfall peak (SDRpeak), and RMSE by the
mean rainfall intensity (SRMSE).

Three different cases were considered for the comparison of the model and the observed rainfall
temporal distribution. The first case (Case 1) compared the model and the observed rainfall event as it
was. The second case (Case 2) compared the model and the observed rainfall event, after reconciling
the rainfall peak time of the model to the observed. The third case (Case 3) compared the model
and the observed rainfall event after rearranging the observed rainfall temporal distribution to be
most similar to the model. Finally, the sensitivity of the runoff peak flow to the model and to
the randomness of the rainfall temporal distribution was analyzed. This analysis was carried out to
determine whether the model or the randomness of the rainfall temporal distribution had the dominant
effect on the runoff peak flow.

As a result, the SDRpeak showed that the Yen and Chow model and the Huff model significantly
underestimated the rainfall peak, while the Mononobe model overestimated it. Of the five models
considered in this study, the Keifer and Chu model produced the most similar rainfall peak to the
observed. On the other hand, the smallest SRMSEs were estimated for the Yen and Chow model and
the alternating block method. The value of R was larger for the alternating block method, but smaller
for the Yen and Chow model and the Huff model. In particular, in Case 3, the alternating block method
showed the smallest SRMSE and largest R, which indicated that it was the most similar model to the
observed rainfall temporal distribution. Overall, the model that best mimicked the annual maximum
rainfall events observed in Seoul, Korea, was found to be the alternating block method.

The sensitivity analysis showed that the sensitivity of the runoff peak flow to the model of rainfall
temporal distribution was much higher than to the randomness of the rainfall temporal distribution.
In particular, under the condition of high CN values in urban basins and saturated natural basins,
the sensitivity of the runoff peak flow to the randomness of the rainfall temporal distribution was
found to be insignificant. Even in the case where the CN values were small, the sensitivity of the runoff
peak flow to the randomness of the rainfall distribution was found to be minimal, unless the rainfall
peak was located in the first quantile.

Based on the above findings, it could be concluded that, for the estimation of the runoff peak flow,
the proper selection of the rainfall temporal distribution model is important. This conclusion was also
supported by the result that the sensitivity to the model of rainfall temporal distribution was found to
be much higher than the sensitivity to the randomness of the rainfall temporal distribution. Particularly
in a small basin with high CN values, the importance of using a proper model of rainfall temporal
distribution cannot be underestimated. This conclusion is important as it shows that any rainfall
temporal distribution model may not satisfactorily mimic the observed rainfall event. A hydrological
design based on any selected rainfall temporal distribution model could thus be far from the real world.
To minimize the difference between the modeling and the real world, the selection of the most probable
model may well be the most important factor. However, simply the comparison of the observed and
model rainfall temporal distribution is not enough. A more systematic approach, as suggested in this
study, can help to find the best model.
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