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Abstract: Snow contributes one of the main water sources to runoff in the arid region of China. A
clear understanding of the spatiotemporal variation of snowfall is not only required for climate
change assessment, but also plays a critical role in water resources management. However,
in-situ observations or gridded datasets hardly meet the requirement and cannot provide precise
spatiotemporal details on snowfall across the region. This study attempted to apply the Weather
Research and Forecasting (WRF) model to clarify the spatiotemporal variation of snowfall and the
ratio of snowfall to total precipitation over Xinjiang in China during the 1979–2015 period. The
results showed that the snowfall increased in the southern edge of the Tarim Basin, the Ili Valley,
and the Altay Mountains, but decreased in the Tianshan Mountains and the Kunlun Mountains.
The snowfall/precipitation (S/P) ratio revealed the opposite trends in low-elevation regions and
mountains in the study area. The S/P ratio rose in the Tarim Basin and the Junggar Basin, but
declined in the Altay Mountains, the Tianshan Mountains, and the west edge of the Junggar Basin.
The study area comprises two major rivers in the middle of the Tianshan Mountains. Both the runoff
magnitude increase and earlier occurrence of snowmelt recharge in runoff identified for the 1980s
were compared with the 2000s level in decreasing S/P ratio regions.

Keywords: snowfall to precipitation ratio; WRF model; arid region; Xinjiang; water resources
management

1. Introduction

Snow plays an important role in balancing radiation and generating streamflow in arid and
semi-arid regions. It regulates the energy balance and hydrological cycle, which exerts a large influence
on atmospheric circulation and the climatic system [1]. An increase in temperature will reduce the
fraction of precipitation that falls as snowfall, shorten snow cover duration in the cold season, bring
early timing of snowmelt in spring, and increase snowmelt intensity [2,3]. Recent model simulations,
satellite-derived records, and in-situ observations demonstrated that the snow cover extent experienced
a strong negative trend in North America and Eurasia, particularly in spring time [4–7], which is
consistent with an increase in the mean winter temperature in the Northern Hemisphere. In addition,
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the changes in the fraction of snowfall to precipitation alter snow dynamics and runoff amount [8,9],
leading to more rain-on-snow floods [10,11]. Thus, a combined indicator, defined as the ratio of
snowfall to total precipitation (S/P), has been developed to represent the simultaneous change of
snowfall and precipitation for the sake of clarifying dynamics of snow with distinct characteristics on
a regional scale [9,12,13].

Many efforts have focused on the variability of the S/P ratio along with the rising temperature. For
instance, Huntington et al. [14] found a significant reduced trend of the S/P ratio in New England from
1949 to 2000. Similar trends of the winter total snowfall-water-equivalent (SWE) and S/P ratio in the
United States were also confirmed during the period from 1949 to 2004 [15], but there was no significant
change in the S/P ratio for the Canadian Arctic, except for the summer [16]. Serquet et al. [17] analyzed
the S/P ratio at 76 meteorological stations in Switzerland for up to 100 years and discovered a clear
decreasing trend, especially at lower elevations. The same trend was found in the middle altitude of
1500 to 2500 m in the Tianshan Mountains [13]. Yang et al. [18] and Littell et al. [19] found that the S/P
ratio significantly decreased at the end of 21st century in the Tianshan Mountains and Alaska. Long
term change in the S/P ratio over time is of importance to the extent that it influences the magnitude
and timing of spring runoff and recession to summer baseflow. As a consequence, it is important to
expound the distinct regional variation of snowfall and S/P ratio in pursuit of realizing the change
of snowfall and precipitation under climate change. However, studies on long-term and large-scale
variations of snowfall and S/P ratio are insufficient, such as in the arid region of China, where snowfall
is an important water source and observations are scarce.

Situated far from oceans, the arid region in western China has a typical continental climate marked
by generally low precipitation, high evaporation potential, wide temperature fluctuations, and strong
winds [20,21]. Mountainous precipitation, water from snowmelt, and glacier-melt are the main water
sources in this region, which are highly sensitive to climate change [22]. During the last five decades,
the rise in annual temperature in this region was greater than that of China’s national average, and
has been in a state of high variability since 1997 [23]. A higher warming rate was also observed in
the Tianshan Mountains [24,25]. Such variation would greatly influence the snowfall regimes and
change the supplying patterns of runoff in both spring and summer in the arid region [26]. As a good
indicator of climate change, the S/P ratio also has a significant influence on annual runoff [8]. Thus,
effectively monitoring the snowfall and S/P ratio would make clear sense for local climate change and
water resources management.

The distribution of precipitation has been mainly statistically assessed on the basis of observed
data. However, due to the scarcity of meteorological stations in spatial distribution and the complex
topography in Xinjiang, China, the dataset from observations (including the gridded dataset from the
extrapolation by in-situ observation) does not represent the local climate feature well, nor provide
spatiotemporal details of precipitation over the region, especially in the high altitude where stations
are not installed. Furthermore, quality problems in time series data resulting from observation metric
and systematic errors of the equipment during conventional meteorological observation are serious,
particularly in the cold season. The under-catch errors in precipitation gauge records can be as large as
50–100% at a high latitude [27–29]. Dynamical downscaling is therefore an inevitable alternative in
order to characterize the spatiotemporal variation of snowfall and S/P ratio, especially in the region
with a large vertical gradient from basin to mountain and a lack of observations. Some studies have
reported that precipitation patterns simulated by the Weather Research and Forecasting (WRF) model
were highly accurate at different spatial scales, including high-elevation and complex topography
regions [30–35]. Consequently, the WRF model could provide the most accurate available estimation
of the mesoscale precipitation distribution [33], enabling research on long-term variation of snowfall
and the S/P ratio over complex terrain. This study attempted to employ the outputs of the WRF model
to: (1) investigate the ability of the WRF model to reproduce the temporal and spatial distribution of
the S/P ratio over the region, (2) characterize the regional variation pattern of both snowfall and the
S/P ratio over complex topography and a large vertical gradient region, and (3) reveal the changes in
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hydrological processes in the study area and discuss the implications on water resources based on (1)
and (2). The results could help to assess the impact of regional climate change on snowfall and provide
information for water resources management in arid regions.

2. Data and Methodology

2.1. Study Area

This study focuses on Xinjiang, a typical arid region in northwestern China. The region is located
within the range of 34◦25′–48◦10′ N and 73◦40′–96◦18′ E, with an area of about 1.66 × 106 km2, and is
characterized by its highly vulnerable water resources and fragile environment. Complex topographic
and geomorphologic features build mountains, plains, and basins in this region. The elevation of
this region ranges from below sea level with 161 m a.s.l. to as high as 7906 m a.s.l. (Figure 1). The
annual mean precipitation is less than 200 mm. Due to diverse and extreme terrains in the region,
the spatial and temporal distributions of precipitation are rather heterogeneous. The river runoff in
Xinjiang is generated in the mountainous region and mainly depends on glacier-melt, snowmelt, and
precipitation. The study area comprises two major rivers in the middle of the Tianshan Mountains:
the Manas River in the north slope and the Kaidu River in the south slope. The Kaidu River Basin
is gauged at Bayanbulak (2458 m a.s.l.) for monitoring runoff, where the area above Bayanbulak
is 18,725 km2 [36]. The Manas River Basin is gauged at Kensiwate (940 m a.s.l.) for monitoring
runoff, where the area above Kensiwate is 4637 km2, which consists of 608 km2 with glacier [37]. The
area above both gauges is little influenced by human activities. The summer precipitation accounts
for about 60–80% of total annual precipitation in both rivers [22]. Annual runoffs over the period
1958–2007 were 9.18 × 108 m3 and 12.37 × 108 m3 for the Kaidu River Basin and Manas River Basin,
respectively [22,38]. Snowmelt water is the main recharge source in both rivers in spring. Maximum
monthly discharge occurs in July at Bayanbulak gauge and in August at Kensiwate gauge, when runoff
is generated by snowmelt, glacier-melt, and rainfall.
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Figure 1. Study area. (a) Distribution of meteorological stations, (b) annual precipitation (mm),
(c) annual temperature (◦C).

2.2. WRF Model Set Up

The WRF model used in this study runs at a resolution of 12 km across western China. The
simulation domain covers 73.447◦–127.017◦ E, 26.855◦–53.585◦ N. The model contains a large number
of physical processes, and their parameterizations are as follows: the top of atmosphere has been set to
50 hpa, with 31 layers along the vertical direction. The base period of the climatic simulation started
from 06:00:00 BJT 1 January 1979 (8 h earlier than the UTC) and ended at 23:00:00 BJT 31 December
2015, with a 3-h interval for outputs. The initial lateral boundary condition was forced using the
NCEP/DOE dataset, and the sea surface temperature was obtained from the ERA-Interim dataset.
Other parameterization included the Kain-Fritsch Cumulus Scheme [39], the Rapid Radiation Transfer
Model (RRTM) for longwave radiation [40], the Dudhia shortwave radiation model [41], the WRF
Single-Moment 3-Class microphysics model, the Noah Land Surface Model (Noah LSM) [42], and the
Yonsei University model for the planetary boundary layer (YSU) [43].

2.3. Meteorological and Streamflow Datasets

Before further analysis was carried out for the S/P ratio in this study, bias analysis between
simulated results and in-situ observations, as well as the distribution of CN05.1, a dataset extrapolated
with 2480 meteorological stations across the whole of China in terms of the Thin Plate Spline (TPS)
method, was implemented. Fifty-one stations of in-situ observations in Xinjiang, China, selected from
a total of 793 stations in the China Meteorological dataset version 3.0 (http://www.escience.gov.cn),
were collected to evaluate the performance of the WRF model. In addition, the CN05.1 dataset was
applied for spatial validation of the model outputs. The dataset contains daily precipitation and daily
temperature at the resolution of 0.25 degree from 1961 to 2015. The accuracy analysis on WRF outputs
showed small differences over eastern China with dense observation stations, but larger differences
over western China, where there were less stations [44,45].

Daily discharge data for the Bayanbulak and Kensiwate gauges are available for the period of
1979 to 2011. The daily data were checked for homogeneity and continuity, and then monthly sums of
daily data were used for analyzing the changes in water resources in the study area.

2.4. Snowfall Calculation

In this study, snowfall was calculated from precipitation. Based on the study from Dai [46], the
conditional frequencies of snowfall (F) can be calculated using a hyperbolic tangent function. Snowfall
occurs when the temperature-dependence exceeds 50%. Therefore, a sigmoidal hyperbolic tangent
curve was used to fit the observations of snow conditional frequency per 0.3 ◦C Ta bin from −10 ◦C to
10 ◦C in this study.

F = a[tanh(b(Ta − c))− d] (1)

http://www.escience.gov.cn
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where Ta is the temperature, and parameters a, b, c, and d are calculated by least squares fitting
observations. This method was estimated in the North Hemisphere for rain-snow partition [47]. The
parameters were fitted best as −49.7648, 0.3146, 1.6540, and 0.9786 in the study area during the cold
season (from October to April, respectively).

2.5. Assessment of Performance of the WRF Model

Bias (BIAS) and root mean square error (RMSE) were used to evaluate the performance of the
WRF model before further analysis. BIAS measures the average tendency of the simulated data with
observations [48], while RMSE measures the deviation between the simulated data and observations.
For the BIAS, positive values indicate model overestimation bias, and negative values indicate model
underestimation bias.

BIAS =
n

∑
i=1

(Yobs
i −Ysim

i ) (2)

RMSE =

√
1
n

n

∑
i=1

(Yobs
i −Ysim

i )
2 (3)

where Yobs and Ysim are the in-situ observations and simulated data, respectively. The optimal value of
BIAS and RMSE is 0.0, with low values indicating accurate model simulation.

2.6. Trend Analysis

The Mann-Kendall (MK) test was employed to detect the trends of snowfall and its ratio to total
precipitation in this study. This test has been widely used in hydro-meteorological time series analysis
as a non-parametric statistical test [49,50]. Compared with parametric statistical tests, non-parametric
tests are more suitable to analyze the monotonic trends for non-normally distributed data [49]. To
reduce the effect of autocorrelation, all data went through pre-whitening before the MK test [49].

3. Results

3.1. Performance of the WRF Model

Table 1 reveals the mean BIAS and RMSE of monthly total precipitation and mean temperature
between WRF outputs and observations of the selected 51 stations in Xinjiang. The simulated
temperature agreed well with observations. The model displayed a cold bias in summer, but warm
bias in spring, winter, and annual mean. Overestimation in precipitation was more frequently noted
in all seasons, and especially occurred in high elevation areas such as the Altay Mountains and the
Tianshan Mountains. The distribution of RMSE was similar to that of bias, with the largest value in
high altitude regions.

Table 1. Bias and RMSE over Xinjiang for annual and seasonal mean temperature and precipitation
between WRF simulation and observation. A stands for annual, MAM for March-April-May, SON for
September-October-November, and DJF for December-January-February.

Temperature Bias
(◦C month−1)

RMSE
(◦C month−1)

Precipitation Bias
(mm month−1)

RMSE
(mm month−1)

A 0.33 2.44 7.54 15.56
MAM −2.02 3.51 11.12 16.85
SON 0.81 2.51 5.65 13.01
DJF 1.16 4.00 11.45 17.22

Figure 2 shows the spatial distribution patterns of two datasets for climatology snowfall during
the cold season. Both the outputs of WRF and the gridded dataset (CN05.1) shared similar distributions.
High snowfall mainly occurred in the mountainous areas, such as the Tianshan Mountains, the Kunlun
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Mountains, and the Altay Mountains, while low values took place in the Tarim Basin and the Junggar
Basin. Although the snowfall in both datasets had very similar distributions in the context of amount,
the WRF output was higher than that of CN05.1. The result of WRF was overestimated in the alpine
area, especially in the Tianshan Mountains, the Kunlun Mountains, and the Altay Mountains.
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Figure 2. Spatial distributions of climatology snowfall during the cold season (mm). (a) is CN05.1,
(b) is WRF.

3.2. Climatology and Changes of Snowfall over Xinjiang

Figure 2b shows the spatial distribution of climatology snowfall during the cold season over
Xinjiang from 1979 to 2015. High snowfall mainly occurred in the mountainous areas, such as
the Tianshan Mountains, the Kunlun Mountains, and the Altay Mountains, while low values were
exhibited in the Tarim Basin and the Junggar Basin. The spatial distribution of changes in snowfall
during 1979–2015 is shown in Figure 3. Changes were defined as the linear regression slope. The
snowfall varied in different regions, although the snowfall revealed no significant decreasing trend in
Xinjiang during last decades. Significantly decreasing trends were found in the high-elevation regions
of the Kunlun Mountains, and the middle and south slope of the Tianshan Mountains. However,
dramatic increases occurred in the Altay Mountains, as well as in the Ili Valley and low-elevation
regions of the Kunlun Mountains. There also existed a slightly increasing trend in the Junggar Basin.
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3.3. Climatology and Changes of S/P Ratio over Xinjiang

Figure 4 displays the spatial distribution of climatology and changes in the S/P ratio during the
cold season from 1979 to 2015 over Xinjiang. The distribution of S/P ratio is similar to that of snowfall,
with high values occurring in the Mountains and high-elevation regions, but low values observed in
basins and valleys. The value of the S/P ratio was near 1 at an elevation above 3500 m, where the
temperature is often below 0 ◦C. The S/P ratio slightly increased during the past decades in Xinjiang.
Based on the results of the Mann-Kendall test, the S/P ratios estimated by the WRF model did not
show a significant change at a level of 0.10 in the study area. As illustrated in Figure 4b, the changes
of S/P ratio also varied in different regions, which was similar to the distribution of the changes of
snowfall. The ratio had a rising trend in low-elevation regions, such as the Tarim Basin and the Junggar
Basin, but a decreasing trend in relative high-elevation regions, such as the Tianshan Mountains, the
Altay Mountains, and the western edge of the Junggar Basin.
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3.4. Changes in Hydrological Processes in the Tianshan Mountains

The runoff time series between the 1980s and 2000s from two hydrological stations at the two river
basins in the Tianshan Mountains are shown in Figure 5. The annual runoff significantly increased
from 1979 to 2011 by 17.4% and 20.4% in Manas River Basin and Kaidu River Basin, respectively.
The runoffs in the two river basins all exhibited decreasing trends in spring, but increasing trends in
summer and autumn. For both river basins, insignificant trends were found in the runoff during winter.
In addition, an earlier melt was found in the Bayanbulak station at Kaidu River Basin. Compared with
the 1980s, about five days in advance were observed in Bayanbulak stations in the 2000s.
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4. Discussion

4.1. Performance of WRF

The WRF outputs were evaluated with in-situ observation and the CN05.1 dataset on point-scale
and spatial distribution, respectively. The bias values of temperature ranged from −2.02 ◦C to 1.16 ◦C
in the WRF simulations, which was more consistent with the observations from −0.5 ◦C to 4 ◦C of
Tang et al. [32]. It is noted that WRF generally overestimated precipitation compared with in-situ
observations, especially in the alpine region and lake area. It indicated that the simulated precipitation
in this study was very reliable in the basins and low-elevation regions, while the overestimation
leading to more uncertainty occurred in high-elevation regions. This uncertainty may result from
various sources, not only by overestimation of the model, but also possibly from the underestimation
of in-situ observations that were caused by the snowdrift and sublimation in the alpine area. The
underestimation of rain gauges caused by measurement errors for solid precipitation has frequently
exceeded 50% in alpine areas [51,52]. On the other hand, some studies reported that the WRF model
produced strong wet biases in precipitation over China, with overestimation exceeding 150% against
in-situ observations in some regions [30,32,53,54]. However, the simulation from WRF was close to the
snowfall records which were required for the maintenance of glaciers in the Karakoram Mountains
(above 4 km a.s.l.) [33].

The distribution of in-situ observations is uneven over the study area, especially in alpine regions.
Therefore, the observation datasets might increase the uncertainty and representativeness of data in the
study area. The same problem existed in observation-based gridded rainfall data (CN05.1). Although
more than 2400 stations were used to extrapolate the data across China in the CN05.1 dataset, stations
were still not enough in the western China for efficient extrapolation. The gridded rainfall data is also
too coarse to capture the orographic precipitation patterns, due to the complex topography of Xinjiang.
Previous studies documented that the WRF model performed reasonably at rainfall predicting of
a single precipitation event [30], as well as the climatological precipitation pattern and interannual
precipitation variability with a fine resolution [33,55]. In this study, the results of WRF and CN05.1
have similar distributions in snowfall amount, and the WRF model could achieve higher-resolution
grids data (12 km in this study) than the CN05.1 dataset, and capture more details of spatial snowfall
features. Additionally, based on dynamic processes, the WRF model can exhibit precipitation events
in areas that lack in-situ observations. As a result, WRF output prevailed over in-situ observations
and CN05.1 in characterizing the long-term spatiotemporal distribution of snowfall and the S/P ratio,
and offered a convincing basis for analysis of the long-term and large-scale variation of snowfall,
particularly over large vertical gradient and complex topography regions.

4.2. Spatiotemporal Variations of Snowfall and S/P Ratio

A decreased S/P ratio could be explained by snowfall decreases that were proportionally larger
than decreases in rainfall, constant snowfall, and increasing rainfall, or increases in both, but larger
increases in rainfall than snowfall. However, an increasing S/P ratio may be caused by increasing
snowfall or decreasing rainfall. Although changes in snowfall more closely paralleled the pattern of
S/P ratio trends, the total precipitation had a weak correlation with the S/P ratio [15]. In addition,
the relative changes in snowfall and precipitation contributed together to the variation of the S/P
ratio [13]. According to Figures 3b and 6a, the variations of snowfall and precipitation were similar,
but had different magnitudes, in the study area. The precipitation mainly occurred as snowfall at an
elevation above 3500 m.

In this study, the trends of the S/P ratio were the opposite for the low-elevation regions and
mountains. The decreasing variability of the S/P ratio was because of the decline in precipitation more
than that of snowfall in the relative high-elevation Tianshan Mountains. Additionally, although both
snowfall and precipitation increased at the western edge of the Junggar Basin, the S/P ratio exhibited
a downward trend. This could be because increasing snowfall would offset a portion of decreased
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snowfall that was caused by the warming temperature in this region (see Figure 6b). The fall of the S/P
ratio in the Tianshan Mountains was also reported in a previous study by Guo and Li [13]. The rise in
S/P ratio was caused by the increase in both the snowfall and precipitation, but was larger for snowfall
than precipitation in the Tarim Basin. However, the S/P ratios have also changed a little at elevations
above 3500 m, where the temperature is often far below 0 ◦C, such as the Kunlun Mountains.
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4.3. Water Resources Management in Different Regions Based on Current Findings

The Manas River Basin and Kaidu River Basin are located in the decreasing S/P ratio regions. The
correlation coefficients between the S/P ratio and runoff were −0.52 (p < 0.05) and −0.65 (p < 0.05)
in the Manas River Basin and Kaidu River Basin, respectively. This negative correlation indicated
that the larger runoff was associated with the lower S/P ratio during the cold season, with a larger
impact on the runoff of the Kaidu River Basin. Under climate change, the change in snowfall and S/P
ratio has implications for the water resources, which poses a serious challenge to the water resources
management authorities.

In the decreasing S/P ratio regions, by the 2000s, both the changes in runoff magnitude and shift of
intra-annual patterns in runoff were found in the river basins in the Tianshan Mountains with respect to
the 1980s level. More rainfall than snowfall in late winter and spring implies an increase in temperature,
which may influence the peak river runoff and promote the risks of early snowmelt in spring in the
decreasing S/P ratio regions [10,11,56]. For the snowmelt-recharged river, the runoff of the Kaidu River
showed an earlier occurrence of maximum snow melt and glacial recharge. However, for the glacial
melt-recharged river, the runoff of the Manas River showed an increasing trend when comparing the
1980s with the 2000s level. Both the changes in runoff magnitude and shift of intra-annual patterns
in runoff were in line with the decreasing S/P ratio. On the other hand, in the increasing S/P ratio
regions, the runoffs of headwaters of the Tarim River significantly increased over the past decades in
winter, spring, and summer [57]. In addition, strong fluctuation in river runoffs from the three main
water systems of the Tarim River were observed during the past decades [58]. However, the runoff
from Tarim River is expected to increase in the period 2010–2039, but reduce in 2070–2099 with the
shrinking of glaciers [59].

As a result, it is important to allocate the annual water resources in the decreasing S/P ratio
regions, including the Tianshan Mountains, which can reduce the influence on farm land and grass
land. By contrary, more snowfall in winter would trigger more floods in spring and summer in the
increasing S/P ratio regions, which occurred in the Tarim Basin and the region to its east. Although
flooding could cause damage to agricultural development and the rural residential area, it would also
provide water resources for these regions where precipitation hardly contributed throughout the year,
and play an important role in maintaining ecosystem stability in these regions.
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5. Conclusions

In this study, the WRF model outputs were used to dynamically downscale and evaluate the
long-term variation of snowfall and S/P ratio in Xinjiang, China. The results showed that the snowfall
displayed complex spatial patterns concerning its long-term variation, with an increase in the southern
edge of the Tarim Basin, the Ili Valley, and the Altay Mountains, but a decrease in the Tianshan
Mountains and the Kunlun Mountains. The S/P ratio experienced an increasing trend in low-elevation
regions, such as the Tarim Basin and the Junggar Basin, but the opposite trends were identified in
relatively high-elevation regions, such as the Altay Mountains, the Tianshan Mountains, and the
western edge of the Junggar Basin. However, the S/P ratios have also changed a little at elevations
above 3500 m, where the temperature is often far below 0 ◦C, such as the Kunlun Mountains. The
increasing runoff was in line with the decreasing S/P ratio in Kaidu River Basin and Manas River
Basin, due to the negative correlation between the S/P ratio and the runoff during the cold season. It
is important to allocate the annual water resources in the decreasing S/P ratio regions, because both
the runoff magnitude and intra-annual patterns in runoff were changed in this region. Validation of
WRF outputs proved that the outputs agreed fairly well with in-situ observations and the CN05.1
dataset. The model captured most details of the precipitation distribution and the results can be
used for assessing the impacts of climate change on snowfall and water resources. However, since
the uncertainty exists in the evaluation of simulating precipitation at high altitude and a complex
topography area, more parameterization schemes and boundary conditions are also needed for
investigating the regional climate change in complex topography areas. A series of sensitivity studies
are also needed to improve the accuracy of the simulations. In addition, it is necessary to couple a
physically-based hydrological model with the WRF model for the estimation of runoff changes.
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