Removal Processes of Carbamazepine in Constructed Wetlands Treating Secondary Effluent: A Review
Abstract
:1. Introduction
2. CBZ Removal Performance in CWs
2.1. Configuration of CWs
2.2. Macrophytes
2.3. Substrate
2.4. Operation Parameters
2.4.1. Operation Mode
2.4.2. Temperature
3. CBZ Removal Mechanism in CWs
3.1. Substrate Adsorption
3.2. Macrophyte Uptake
3.3. Photolytic Degradation
3.4. Microbial Degradation
4. Enhancement of CBZ Removal with CWs
4.1. Hydraulic Model of CWs
4.2. Modification of CW Substrates
4.3. Integrated or Combined CWs
4.3.1. CWs Combined with Photocatalytic Oxidation
4.3.2. CWs Integrated with Microbial Fuel Cells (MFCs)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Human Pharmaceuticals in Wastewater Treatment Processes. Crit. Rev. Environ. Sci. Technol. 2005, 35, 401–427. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int. 2012, 40, 2012–2229. [Google Scholar] [CrossRef] [PubMed]
- Simazaki, D.; Kubota, R.; Suzuki, T.; Akiba, M.; Nishimura, T.; Kunikane, S. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Res. 2015, 76, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Nieto, E.; Corada-Fernández, C.; Hampel, M.; Lara-Martín, P.A.; Sánchez-Argüello, P.; Blasco, J. Effects of exposure to pharmaceuticals (diclofenac and carbamazepine) spiked sediments in the midge, Chironomus riparius (Diptera, Chironomidae). Sci. Total Environ. 2017, 609, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.P.; Brar, S.K.; Tyagi, R.D.; Picard, P.; Surampalli, R.Y. Carbamazepine in municipal wastewater and wastewater sludge: Ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry. Talanta 2012, 99, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Bahlmann, A.; Brack, W.; Schneider, R.J.; Krauss, M. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Res. 2014, 57, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Thelusmond, J.; Kawka, E.; Strathmann, T.J.; Cupples, A.M. Diclofenac, carbamazepine and triclocarban biodegradation in agricultural soils and the microorganisms and metabolic pathways affected. Sci. Total Environ. 2018, 640–641, 1393–1410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geiben, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and genotoxic evaluation of six antibiotics on nontarget organisms. Sci. Total Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, B.; Paxeus, N.; Lo Giudice, R.; Pollio, A.; Garrica, J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Saf. 2003, 55, 359–370. [Google Scholar] [CrossRef]
- Tadkaew, N.; Hai, F.I.; McDonald, J.A.; Khan, S.J.; Nghiem, L.D. Removal of trace organics by MBR treatment: The role of molecular properties. Water Res. 2011, 45, 2439–2451. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Clara, M.; Strenn, B.; Gans, O.; Martinez, E.; Kreuzinger, N.; Kroiss, H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 2005, 39, 4797–4807. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Nakamichi, S.; Habibullah-Al-Mamun, M.; Tani, K.; Masunaga, S.; Matsuda, H. Occurrence and ecological risk of pharmaceuticals in river surface water of Bangladesh. Environ. Res. 2018, 165, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef] [PubMed]
- Vergili, I. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J. Environ. Manag. 2013, 127, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Chtourou, M.; Mallek, M.; Dalmau, M.; Mamo, J.; Santos-Clotas, E.; Salah, A.B.; Walha, K.; Salvadó, V.; Monclús, H. Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Saf. Environ. Prot. 2018, 118, 1–9. [Google Scholar] [CrossRef]
- Frédéric, O.; Yves, P. Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere 2014, 115, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Hai, F.I.; Li, X.; Price, W.E.; Nghiem, L.D. Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions. Bioresour. Technol. 2011, 102, 10386–10390. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vymazal, J. Horizontal sub-surface flow and hybrid constructed wetlands for wastewater treatment. Ecol. Eng. 2005, 25, 478–490. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H. Effects of pollutant speciation in treatment wetlands design. Ecol. Eng. 2003, 20, 1–16. [Google Scholar] [CrossRef]
- Matamoros, V.; Bayona, J.M. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ. Sci. Technol. 2006, 40, 5811–5816. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Caselles-Osorio, A.; García, J.; Bayona, J.M. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Sci. Total Environ. 2008, 394, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global development of various emerged substrates utilized in constructed wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Vystavna, Y.; Frkova, Z.; Marchand, L.; Vergeles, Y.; Stolberg, F. Removal efficiency of pharmaceuticals in a full scale constructed wetland in East Ukraine. Ecol. Eng. 2017, 108, 50–58. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M.; Sadreddini, S.; Zhu, J.; Tuan, N.A. Removal of pharmaceutical compounds in tropical constructed wetlands. Ecol. Eng. 2011, 37, 460–464. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.M.; Liu, Y.; Ng, W.J.; Tan, S.K. Application of constructed wetlands for wastewater treatment in developing countries—A review of recent developments (2000–2013). J. Environ. Manag. 2014, 141, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Gersberg, R.M.; Hua, T.; Zhu, J.; Tuan, N.A.; Tan, S.K. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates. Chemosphere 2012, 87, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Garcı, J.; Bayona, J.M. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res. 2007, 42, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, G.; Ng, W.J.; Tan, S.K. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total Environ. 2014, 468–469, 908–932. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Arias, C.; Brix, H.; Bayona, J.M. Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Res. 2009, 43, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Rodríguez, Y.; Bayona, J.M. Mitigation of emerging contaminants by full-scale horizontal flow constructed wetlands fed with secondary treated wastewater. Ecol. Eng. 2017, 99, 222–227. [Google Scholar] [CrossRef]
- Reyes-Contreras, C.; Matamoros, V.; Ruiz, I.; Soto, M.; Bayona, J.M. Evaluation of PPCPs removal in acombined anaerobic digester-constructed wetland pilot plant treating urban wastewater. Chemosphere 2011, 84, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Garcia, J.; Bayona, J.M. Behavior of Selected Pharmaceuticals in Subsurface Flow Constructed Wetlands: A Pilot-Scale Study. Environ. Sci. Technol. 2005, 39, 5449–5454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Gersberg, R.M.; Zhu, J.; Hua, T.; Jinadasa, K.B.S.N.; Tan, S.K. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland. Environ. Pollut. 2012, 167, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Dordio, A.J.; Carvalho, P.; Teixeira, D.M.; Dias, C.B.; Pinto, A.P. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresour. Technol. 2010, 101, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Feng, G.; Gao, X.; Sun, C.; Guo, J.; Zhu, Z. Removal of pharmaceutically active compounds (PhACs) and toxicological response of Cyperus alternifolius exposed to PhACs in microcosm constructed wetlands. J. Hazard. Mater. 2016, 301, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Hijosa-Valsero, M.; Matamoros, V.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Bécares, E.; Bayona, J.M. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res. 2010, 44, 3669–3678. [Google Scholar] [CrossRef] [PubMed]
- Hijosa-Valsero, M.; Reyes-Contreras, C.; Domínguez, C.; Becares, E.; Bayona, J.M. Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. Chemosphere 2016, 145, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, A.; Torres-Bojorges, A.X.; Zurita, F. Carbamazepine removal in three pilot-scale hybrid wetlands planted with ornamental species. Ecol. Eng. 2017, 98, 410–417. [Google Scholar] [CrossRef]
- Ávila, C.; Pelissari, C.; Sezerino, P.H.; Sgroi, M.; Roccaro, P.; García, J. Enhancement of total nitrogen removal through effluent recirculation and fate of PPCPs in a hybrid constructed wetland system treating urban wastewater. Sci. Total Environ. 2017, 584–585, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Kahl, S.; Nivala, J.; Afferden, M.V.; Müller, R.V.; Reemtsma, T. Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators. Water Res. 2017, 125, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Pi, N.; Ng, J.Z.; Kelly, B.C. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes. Sci. Total Environ. 2017, 601–602, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Dordio, A.V.; Belo, M.; Martins Teixeira, D.; Palace Carvalho, A.J.; Dias, C.M.; Picó, Y.; Pinto, A.P. Pinto Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresour. Technol. 2011, 102, 7827–7834. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.N.; Basto, M.C.P.; Almeida, C.M.R. Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresour. Technol. 2012, 116, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lou, J.; Lee, Z.M.P.; Maspolim, Y.; Gersberg, R.M.; Liu, Y.; Tan, S.K.; Ng, W.J. Characterization of bacterial communities in wetland mesocosms receiving pharmaceutical-enriched wastewater. Ecol. Eng. 2016, 90, 215–224. [Google Scholar] [CrossRef][Green Version]
- Ramle, N.A.; Rahim, S.A.; Anuar, N.; EI-Hadad, O. Solubility of carbamazepine co-crystals in ethanolic solution. AIP Conf. Proc. 2017, 1879, 040001. [Google Scholar]
- Vanek, T.; Podlipna, R.; Fialova, Z.; Petrova, S.; Soudek, P. Uptake of xenobiotics from polluted waters by plants. Environ. Pollut. 2010, 16, 431–444. [Google Scholar]
- Ayoub, H.; Roques-Carmes, T.; Potier, O.; Koubaissy, B.; Pontvianne, S.; Lenouvel, A. Iron-impregnated zeolite catalyst for efficient removal of micropollutants at very low concentration from Meurthe river. Environ. Sci. Pollut. Res. 2018, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dalahmeh, S.; Ahrens, L.; Gros, M.; Wiberg, K.; Pell, M. Potential of biochar filters for onsite sewage treatment: Adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm. Sci. Total Environ. 2018, 612, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Styszko, K.; Szczurowski, J.; Czuma, N.; Makowska, D.; Kistler, M.; Uruski, L. Adsorptive removal of pharmaceuticals and personal care products from aqueous solutions by chemically treated fly ash. Int. J. Environ. Sci. Technol. 2018, 15, 493–506. [Google Scholar] [CrossRef]
- Ungureanu, C.P.; Favier, L.; Bahrim, G.; Amrane, A. Response surface optimization of experimental conditions for carbamazepine biodegradation by Streptomyces MIUG 4.89. New Biotechnol. 2015, 32, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Bessa, V.S.; Moreira, I.S.; Tiritan, M.E.; Castro, P.M.L. Enrichment of bacterial strains for the biodegradation of diclofenac and carbamazepine from activated sludge. Int. Biodeterior. Biodegrad. 2017, 120, 135–142. [Google Scholar] [CrossRef]
- Van de Moortel, A.M.; Meers, E.; De Pauw, N.; Tack, F.M. Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water Air Soil Pollut. 2010, 212, 281–297. [Google Scholar] [CrossRef][Green Version]
- Li, A.; Cai, R.; Cui, D.; Qiu, T.; Pang, C.; Yang, J.; Ma, F.; Ren, N. Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4. J. Environ. Sci. 2013, 25, 2281–2290. [Google Scholar] [CrossRef]
- Imfeld, G.; Braeckevelt, M.; Kuschk, P.; Richnow, H.H. Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 2009, 74, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Hua, T.; Gersberg, R.M.; Zhu, J.; Ng, W.J.; Tan, S.K. Carbamazepine and naproxen: Fate in wetland mesocosms planted with Scirpus validus. Chemosphere 2013, 91, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, R.; Raffaele, M.; Nicklas, P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 2003, 50, 1319–1330. [Google Scholar] [CrossRef]
- Calisto, V.; Domingues, M.R.M.; Erny, G.L.; Esteves, V.I. Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Res. 2011, 45, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Roddick, F.A.; Fan, L. Direct and indirect photolysis of seven micropollutants in secondary effluent from a wastewater lagoon. Chemosphere 2017, 185, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Shon, H.K.; Cho, J. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites. J. Hazard. Mater. 2014, 276, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mack, J.; Bolton, J.R. Photochemistry of nitrite and nitrate in aqueous solution: A review. J. Photochem. Photobiol. A 1999, 128, 1–13. [Google Scholar] [CrossRef]
- Almeida, A.; Calisto, V.; Domingues, M.R.M.; Esteves, V.I.; Schneider, R.J.; Soares, A.M.V.M.; Figueira, E.; Freitas, R. Comparison of the toxicological impacts of carbamazepine and a mixture of its photodegradation products in Scrobicularia plana. J. Hazard. Mater. 2017, 323, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M.T. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ. Pollut. 2017, 227, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Pei, H.; Hu, W.; Shao, Y.; Li, Z. How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresour. Technol. 2014, 157, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Knight, R.L.; Kadlec, R.H.; Ohlendorf, H.M. The use of treatment wetlands for petroleum industry effluents. Environ. Sci. Technol. 1999, 33, 973–980. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Valsero-Blanco, M.C.; Bayona, J.M.; Bécares, E. Statistical modelling of organic matter and emerging pollutants removal in constructed wetlands. Bioresour. Technol. 2011, 102, 4981–4988. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-Pour, A.; Verma, M.; Surampalli, R.Y. Biotransformation of carbamazepine by laccase-mediator system: Kinetics, by-products and toxicity assessment. Process Biochem. 2018, 67, 147–154. [Google Scholar] [CrossRef]
- Taheran, M.; Naghdi, M.; Brar, S.K.; Knystautas, E.J.; Verma, M.; Ramirez, A.A.; Surampalli, R.Y.; Valero, J.R. Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar. Sci. Total Environ. 2016, 571, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Hai, F.I.; Dosseto, A.; Richardson, C.; Price, W.E.; Nghiem, L.D. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresour. Technol. 2016, 210, 108–116. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jelic, A.; Cruz-Morató, C.; Marco-Urrea, E.; Sarrà, M.; Perez, S.; Vicent, T.; Petrovi, M.; Barcelo, D. Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Res. 2012, 46, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Cui, B.; Wu, X.; Meng, G.; Liu, H.; Si, J. Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. Int. Biodeterior. Biodegrad. 2016, 110, 69–78. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Sci. Total Environ. 2017, 584–585, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Mena, E.; Rey, A.; Beltrán, F.J. TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chem. Eng. J. 2018, 339, 369–380. [Google Scholar] [CrossRef]
- Kosjek, T.; Andersen, H.R.; Kompare, B.; Ledin, A.; Heath, E. Fate of carbamazepine during water treatment. Environ. Sci. Technol. 2009, 43, 6256–6261. [Google Scholar] [CrossRef] [PubMed]
- Monsalvo, V.M.; Lopez, J.; Munoz, M.; de Pedro, Z.M.; Casas, J.A.; Mohedano, A.F.; Rodriguez, J.J. Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chem. Eng. J. 2015, 264, 856–862. [Google Scholar] [CrossRef][Green Version]
- Bunte, C.; Prucker, O.; König, T.; Rühe, J. Enzyme containing redox polymer networks for biosensors or biofuel cells: A photochemical approach. Langmuir 2010, 26, 6019–6027. [Google Scholar] [CrossRef] [PubMed]
- Oon, Y.-L.; Ong, S.-A.; Ho, L.-N.; Wong, Y.-S.; Dahalan, F.A.; Oon, Y.-S.; Lehl, H.K.; Thung, W.-E. Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour. Technol. 2016, 203, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Doherty, L.; Zhao, X.; Zhao, Y.; Wang, W. The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland. Ecol. Eng. 2015, 79, 8–14. [Google Scholar] [CrossRef]
- Fang, Z.; Song, H.-L.; Cang, N.; Li, X.-N. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour. Technol. 2013, 144, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Kong, F.; Zheng, H.; Cao, D.; Ren, Y.; Yin, J. Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chem. Eng. J. 2011, 168, 572–576. [Google Scholar] [CrossRef]
- Fang, Z.; Song, H.; Yu, R.; Li, X. A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products. Ecol. Eng. 2016, 94, 455–463. [Google Scholar] [CrossRef]
Size | Removal Efficiencies | Initial CBZ Concentrations | Type of CWs | Design Parameters | Reference |
---|---|---|---|---|---|
Full-scale | 38.00% | 13.80 μg/L | HSSF-CW | Area: 400.00–500.00 m2; Substrate: N.A.; Macrophytes: N.A.; HRT: N.A.; Operation mode: batch | [33] |
21.00% | 1900.00 ng/L | HSSF-CW | Area: 18,000.00 m2; Substrate: gravel; Macrophytes: Phragmites australis; HRT: N.A.; Operation mode: continuous | [34] | |
0.00–18.00% | 0.71–5.60 μg/L | Hybrid CWs | SF-CW: Area: 75.00 m2; Substrate: gravel; Macrophytes: Juncus effusus; HRT: 55 h; Operational mode: batch HSSF-CW: Capacity: N.A.; Substrate: gravel; Macrophytes: Juncus effusus; HRT: 55 h; Operational mode: batch | [35] | |
Mesocosm-scale | 5.00% | 25.00 μg/L | HSSF-CW | Capacity: 0.93 m × 0.59 m × 0.52 m; Substrate: gravel; Macrophytes: Phragmites australis; HRT: N.A.; Operational mode: batch | [25] |
16.00–26.00% | 4.70 μg/L | HSSF-CW | Capacity: N.A.; Substrate: gravel; Macrophytes: Phragmites australis; HRT: N.A.; Operational mode: batch | [36] | |
26.70–28.80% | 25.00 μg/L | HSSF-CW | Capacity: 1.20 m × 0.60 m × 0.60 m; Substrate: gravel; Macrophytes: Typha angustifolia; HRT: 2 or 4 days; Operational mode: batch | [28] | |
27.00–28.00% | 25.00 μg/L | HSSF-CW | Capacity: 1.20 m × 0.60 m × 0.60 m; Substrate: gravel; Macrophytes: Typha angustifolia; HRT: 2 or 4 days; Operational mode: batch | [37] | |
24.00–28.00% | 25.00 μg/L | HSSF-CW | Capacity: 1.20 m × 0.60 m × 0.60 m; Substrate: gravel; Macrophytes: Typha angustifolia; HRT: 2 or 4 days; Operational mode: batch | [37] | |
88.20–96.70% | 2.50 μg/mL | VSSF-CW | Capacity: 0.60 m × 0.50 m × 0.40 m; Substrate: LECA; Macrophytes: Typha angustifolia; HRT: N.A.; Operational mode: batch | [38] | |
60.00–70.00% | 0, 10, 30, 100 and 500 μg/L | VSSF-CW | Capacity: 0.60 m × 0.50 m × 0.60 m; Substrate: ceramsite and gravel; Macrophytes: C. alternifolius; HRT: 1 days.; Operational mode: batch | [39] | |
15.00–48.00% | 1.36–1.52 μg/L | Hybrid CWs | SF-CW: Capacity: 1.30 m × 0.80 cm × 0.50 cm; Substrate: gravel; Macrophytes: Typha angustifolia and Phragmites australis; HRT: 2.1 days, 5.1 days, 2.9 days; Operational mode: batch HSSF-CW: Capacity: N.A.; Substrate: gravel; Macrophytes: Phragmites australis; HRT: 2.5 days; Operational mode: batch | [40] | |
18.00–95.00% | 0.30–1.50 μg/L | Hybrid CWs | SF-CW: Capacity: 1.30 m × 0.80 m × 0.50 m; Substrate: gravel; Macrophytes: Typha angustifolia and Phragmites australis; HRT: 2.1 days, 5.1 days, 2.9 days; Operational mode: batch HSSF-CW: Capacity: N.A.; Substrate: gravel; Macrophytes: Phragmites australis; HRT: 2.5 days; Operational mode: batch | [35] | |
0.00–59.00% | 0.99 μg/L | Hybrid CWs | SF-CW: Capacity: 1.30 m × 0.80 m × 0.50 m; Substrate: gravel; Macrophytes: Typha angustifolia and Phragmites australis; HRT: 2.1 days, 5.1 days, 2.9 days; Operational mode: batch HSSF-CW: Capacity: N.A.; Substrate: gravel; Macrophytes: Phragmites australis; HRT: 2.5 days; Operational mode: batch | [41] | |
10.12–13.30% | 25.00 μg/L | Hybrid CWs | Capacity: N.A.; Substrate: ground tezontle; Macrophytes: Zantedeschia aethiopica, Iris sibirica, and Typha latifolia; HRT: 3 days; Operational mode: batch | [42] | |
8.00–56.00% | 4.00–24.00 ng/L | Hybrid CWs | Capacity: HSSF-CW: 1.00 m × 2.00 m × 0.30 m; VSSF-CW: 1.00 m × 1.50 m × 1.30 m; SF-CW: 1.00 m × 2.00 m × 0.50 m; Substrate: gravel; Macrophytes: Phragmites australis; HRT: 21 days; Operational mode: batch | [43] | |
2.00% | 3.00 μg/L | HSSF-CW | Area: 5.60 m2; Substrate: gravel; Macrophytes: Phragmites australis; HRT: 2 days; Operation mode: batch | [44] | |
2.00% | 3.00μg/L | VSSF-CW | Area: 6.20 m2; Substrate: gravel; Macrophytes: Phragmites australis; HRT: 2 days; Operation mode: batch | [44] |
Compound | Chemical Structure | Physicochemical Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MW 1 | Sw 2 | pKa 3 | Kd 4 | Log Kd | Log Kow 5 | Log Dow 6 | Log Koc 7 | H 8 | ||
CBZ | | 236.28 | 17.70 | 13.90 | 1.20 | 0.09 | 2.45 | 2.77 | 3.59 | 1.08 × 10−10 |
DiOH-CBZ | | 270.10 | N.A. | −1.5 | 0.94 | N.A. | 0.81 | N.A. | 1.50 | N.A. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Hu, Z.; Zhang, Y.; Zhuang, L.; Zhang, J.; Li, J.; Hu, H. Removal Processes of Carbamazepine in Constructed Wetlands Treating Secondary Effluent: A Review. Water 2018, 10, 1351. https://doi.org/10.3390/w10101351
Chen X, Hu Z, Zhang Y, Zhuang L, Zhang J, Li J, Hu H. Removal Processes of Carbamazepine in Constructed Wetlands Treating Secondary Effluent: A Review. Water. 2018; 10(10):1351. https://doi.org/10.3390/w10101351
Chicago/Turabian StyleChen, Xinhan, Zhen Hu, Yijin Zhang, Linlan Zhuang, Jian Zhang, Jing Li, and Hongying Hu. 2018. "Removal Processes of Carbamazepine in Constructed Wetlands Treating Secondary Effluent: A Review" Water 10, no. 10: 1351. https://doi.org/10.3390/w10101351