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Abstract: Accurate observational data and reliable prediction models are both essential to improve
the quality of precipitation forecasts. The spiraling trajectories of air parcels within a tropical cyclone
(TC) coupled with the large sizes of these systems brings special challenges in making accurate
short-term forecasts, or nowcasts. Doppler weather radars are ideal instruments to observe TCs when
they move over land, and traditional nowcasts incorporate radar data. However, data from dozens
of radars must be mosaicked together to observe the entire system. Traditional single-radar-based
reflectivity tracking methods commonly employed in nowcasting are not suitable for TCs as they
are not able to capture the circular motion of these systems. Thus, this paper focuses on improving
short-term predictability of TC precipitation with Doppler weather radar observations based on:
a multi-scale motion vector retrieval algorithm, an optimization technique and a semi-Lagrangian
advection scheme. Motion fields of precipitation regions are obtained by a multi-level motion vector
retrieval algorithm, then corrected and smoothed by the optimization technique using mass and
smooth constraints. Predicted precipitation regions are then extrapolated using the semi-Lagrangian
advection scheme. A case study of Hurricane Isabel (2003) shows that the combination of these
methods may increase reliable rainfall prediction to about 5 h as the TC moves over land.
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1. Overview

1.1. Tropical Cyclone and Precipitation Nowcasting

As tropical cyclones (TCs) approach land, they pose a danger to life and property with their
associated fast winds, storm surges and rainfall. Once they move inland, many of the forecasting
challenges and death stem from heavy rainfall [1,2]. An accurate short-term forecast of 0–6 h of
precipitation from tropical cyclones (TCs) is required by forecasters and decision makers for the
issuance of flash flood warnings and urban drainage management [3]. This kind of short-time
forecasting is called “nowcasting”. The World Meteorological Organization (WMO) defines nowcasting
as “the detailed description of the current weather along with forecasts obtained by extrapolation for a
period of 0–6 h ahead” [4]. Nowcasting incorporates the most recent observations, including those
from radars and satellites, to make an accurate forecast for small regions such as cities. A successful
nowcast that gives an accurate rainfall prediction will significantly reduce the hazardous risk to people
and properties if flood-prone areas can be avoided [5].
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In the United States, the Weather Surveillance Radar-1988 Doppler (WSR-88D), or Next Generation
Weather Radar (NEXRAD), a network of S-band radars, has been operational since 1995. Approximately
160 radars provides non-stop high-resolution weather observation data for precipitating regions
and their trajectories at 0.25–1 km, every 5–10 min [6,7]. Thus, the weather radar network is an
important data source in weather forecasting, including nowcasting. In general, radar data can be
used in nowcasting in two different ways: predicting only based on weather radar data (radar-only
nowcasting), or predicting using a numeric weather prediction (NWP) model with radar observations
digested by data-assimilation procedure. Radar-only nowcasting is usually based on object tracking
and extrapolation methods in image processing technologies. It analyzes a time series of radar
products, usually reflectivity data, plotted as digital images, and identifies and extracts the tracks of
coherent cloud structures from one image to the next. Then, extrapolation is done by moving pixels on
the last image following the extracted track from the image series. Because using image processing
techniques ignores physical rules in the atmosphere, radar-only nowcasting cannot produce a reliable
prediction for days into the future in NWP models. In contrast, radar-assimilated model nowcasting
does not suffer from this problem because it uses physical (deterministic) equations to solve clouds’
thermodynamic processes to predict their future status, and that prediction is expected to be more
reliable [8]. For example, the recently-developed RAPid refresh model (RAP) digests weather radar
observations through a data-assimilation system, and it can produce a fast prediction up to 18 h into
the future nationwide with updates every 60 min [9]. Although theoretically, using an NWP model that
assimilates radar observations to issue forecasts should surpass using radar observations only, it cannot
replace radar-based nowcasting yet. Firstly, using numeric weather models in nowcasting is heavily
limited by the quality of observational data. Since NWP models are sensitive to initial conditions,
setting up accurate initial conditions is critical in short-term forecasting. Thus, additional quality
control procedures are required for radar-data assimilation besides normal radar data quality control
techniques (e.g., removing ground clutters, non-meteorological echoes, sun strobes) [10], while those
high-quality data may not be available in an emergent situation [3]. Secondly, radar-only nowcasting
requires significantly less computational resources than NWP models. Modern NWP models require
thousands of CPUs to reach a spatial resolution of 1 km on a nationwide domain, and 1 km is also
a resolution limit for many NWP models due to computing resources and/or the timeliness of the
forecast. In contrast, data from current operational WSR-88D radars can be obtained at a spatial
resolution up to 250 m, and extrapolating radar observations requires less than one hundred CPUs
with this finer resolution [11]. Finally, radar reflectivity is not an explicit measurement of liquids in the
atmosphere; rather, it is an aggregated reading contributed by both the total solid or liquid volume of
hydrometeor drop size. Because hydrometeor drop size contributes exponentially to the reflectivity
echo strength, a few large drops can produce the same reflectivity reading as many small rain drops,
whose actual total liquid volume is smaller than the later. When an NWP model must assume a drop
size distribution to calculate “simulated reflectivity” [12] before comparison with observed reflectivity,
such drop size distributions are sampled from field experiments under non-extreme conditions [13].
This means that the “simulated reflectivity” may not produce results equivalent to radar-observed
reflectivity, especially in convective and extreme weather scenarios, including TCs [14]. Thus, although
the concepts and theories in the NWP models are more advanced than extrapolation-based methods,
radar-only nowcasting is still applied operationally in many countries and cannot be replaced by
NWP models.

1.2. State-of-the-Art Radar-Based Nowcasting Methods

Traditional radar-only-based (radar-based hereafter) nowcasting is mostly based on observations
from a single radar. Tracking radar echo by correlation (TREC) is the first kind of radar-based
nowcasting method, proposed by [15]. It calculates correlation coefficients between successive images
of radar echoes and uses the maximum values to obtain the motion vectors of different regions. TREC is
an image processing algorithm that is purely-based on image sequences and completely ignores scale
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and dynamical equations of motion for a weather system. To overcome these drawbacks and improve
accuracy, multiple refined methods have been proposed after TREC. The work in [16] added a spatial
filter to obtain the internal motion at a smaller scale. The work in [17] proposed the continuity of TREC
vectors (COTREC) scheme to comply with the continuity constraint in the atmosphere. This constraint
helped avoid the strong divergence of echoes that occurs in TREC results, but during calculations,
it unavoidably weakened the retrieved wind field at the same time. The work in [18] showed that
average echo motion speed obtained using COTREC was underestimated by 10% compared with the
speed detected by an aircraft. The work in [19] was the first study to introduce a parameter in both
the TREC and COTREC schemes to take into consideration the growth and decay of individual cloud
regions. Its demonstration through analyses of local thunderstorm cases showed that the inclusion of
a growth parameter led to a better forecast. The work in [20] combined COTREC and a shape analysis
approach to track precipitation events and obtained a more refined motion vector field that reached
a 70% match with ground observations, which was a better performance when compared to using
COTREC only (40–50% matching). Besides the limitation on continuity, TREC occasionally produces a
vector that points to a direction that is contradictory when compared with its surrounding vectors.
This limitation was addressed by [21], who proposed the difference image-based TREC (DITREC)
algorithm by calculating the cross-correlation maximum between differences in precipitating regions
from three consecutive images instead of two images. The work in [8] introduced a blending algorithm
that combines TREC vectors with model-predicted winds to prolong the prediction time up to 3 h.
The work in [22] proposed the multi-scale TREC (MTREC) algorithm that uses TREC in a nested
style: a first pass of TREC calculation with low resolution obtains the synoptic-scale motion, and one
additional pass at high resolution inside each large low-resolution region is used to predict meso-
to local-scale internal motion. They reported that MTREC could produce a reliable 3-h forecast in
typhoon cases with input mosaics of composite reflectivity.

Operationally, TREC and all TREC-derived nowcasting methods are still based on single-radar
scenarios. In the U.S., a single WSR-88D radar station can only cover a circular region with a 230-km
radius when measuring the radial winds. Thus, using observations from a single radar station puts an
upper limit on the spatial scale of observations and, consequently, also on the timescale over which
the forecast is useful. The total time length of useful forecasts reported in the literature is usually less
than 2 h and often less than 1 h [19]. Extending these methods to adopt a large mosaic of radar images
obtained from multiple stations in a network permits forecasters to reveal cloud patterns that are not
observable in single radar scenarios. For example, in a single-radar range, non-linear motions like
rotation in a mesoscale convective system may not be significant due to their limited spatio-temporal
scale, but such rotation can be easily captured in a large domain [16]. Furthermore, it is suggested by
previous research [23] that patterns at about a 1000-km scale tend to be more consistent and predictable
up to one day. Thus, it is more preferable to perform nowcasting at a synoptic scale when data are
available from multiple radar stations and can be mosaicked into a single image.

1.3. Motivation and Goals

We find that research applying TREC and TREC-derived methods mainly reports their
predictability on local heavy and extreme rainfall cases like convective storms, localized thunderstorms
and squall lines that are captured well by a single radar. We only found a single MTREC case-study that
featured a partial view of a small typhoon before landfall using a single radar station. A few researchers
have employed TREC to retrieve winds in landfalling TCs. The authors in [18] performed their analysis
on a Cartesian coordinate system and determined that performance was best when vertical wind shear
was weak. Tropical cyclone cases should be treated separately from other weather systems because
TCs are predominately large and have a strong rotational component to their motion. The linear
extrapolation methods used by most TREC-derived algorithms ignore the tangential component of
motion. Therefore, the predicted motion vectors would break the storm apart. To better account for
the tangential component of a TC’s motion, the work in [24] employed a polar grid centered over the
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circulation center and arc-shaped search areas and correlation cells. The work in [25] developed T
-TREC specifically to analyze the winds of TCs and in addition to analysis on the polar grid, included
an objective algorithm to determine the TC center and estimate the search radius. This improved
representation of the TC’s core reduced bias from 5 m/s reported by Tuttle and Gall to less than 4
m/s. Subsequent research by [26–28] used wind fields derived from the T-TREC method for data
assimilation and demonstrated improved TC precipitation forecasts.

Although convective clouds with relatively strong vertical motion and small horizontal extent
occur in the eye wall and spiral rain bands of TCs, most of the clouds that comprise a TC are
stratiform [29], where vertical motion is relatively weak and the clouds occupy a large horizontal
region. The previous studies employing TREC or its derivatives mostly focused on either convective
or stratiform cases, not the mixed scenario that occurs with a TC. Furthermore, although the average
extent of a TC’s rainfall is 220–240 km on either side of its circulation center [30,31], it is generally
considered that rainfall within a 500-km radius from a TC’s eye is produced by the TC rather than
another type of weather system [32]. This 500-km distance obviously exceeds the detection range
of one radar station. As such rainfall can potentially trigger flooding [33], it is critical to accurately
predict its motion, but the scale of a TC’s rain bands necessitates that multiple radars be employed to
capture the entire system.

Given the radar network’s ability to observe the atmosphere at a horizontal resolution of 0.5–1 km
and temporal resolution of about 5 min, it is a powerful instrument to study and forecast TCs before,
during and after their landfall. Thus, in this study, we aim to extend the capability of the original
single-radar nowcasting method to a large domain and tune the algorithm to consider tangential
motion and mixed cloud types for a TC scenario. We choose TREC as our starting point, then employ
multiple ideas from related methods to adopt it for a TC scenario. It is noticeable that in this study,
we exclusively derive cloud motions by analyzing a sequence of radar images, rather than utilizing
radial Doppler velocity moments. Wind velocity retrieved from Doppler velocity is not equal to the
velocity of cloud motions, and in precipitation areas, the effect of wind velocity is often overridden
by cloud dynamics, which produce the precipitation (e.g., an embed cell in a spiral band of a TC may
show a different direction of wind velocity at its location). For the same reason, in this paper, we use
term “motion vectors” instead of “velocity” to describe computed cloud movements. The rest of the
paper is arranged as follows. Section 2 presents our revised nowcasting scheme for a multi-radar
scenario with special considerations when a TC is observed. To provide a performance evaluation,
Section 3 presents a 10-h nowcast of the precipitation associated with Hurricane Isabel as it moved
over the mid-Atlantic and northeastern U.S. in September of 2003. The last section concludes this study
and presents directions for future research.

2. Methodology

2.1. Overview

As a prediction model, a nowcasting model shares the same features as any general prediction
model: it takes observed data as inputs and generates outputs beyond the observed time period.
As radar-only-based nowcasting lacks many fundamental physical variables to establish a numerical
weather prediction, a general assumption is to treat all clouds in the atmosphere as ideal air parcels
and use a trajectory or dispersion model. In this study, we divide our model into two stages: the
tracking stage and forecast stage. In the tracking stage, trajectories are determined for each cloud.
The tracking method is based on two modified methods: a modified MTREC and a smoothing step
via an optimization technique based on [34]. For MTREC, we use its nested region-tracking scheme;
for the optimization technique, we use a similar mathematical method like in a variational analysis.
The forecasting stage starts immediately after the end of the tracking stage. In the forecast stage,
the identified regions are extrapolated using a semi-Lagrangian trajectory model. For convenience,
reflectivity values taken from weather radars are re-projected into a stack of raster layers at different
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altitudes with equally-sized square cells using the method described in [35]. These raster layers can be
treated as digital images, and each cell containing a reflectivity value is represented as a pixel on an
image; thus, we call them reflectivity images. Clouds and rainfall regions are both represented using
pixels on these reflectivity images. In this study, a rainfall region is defined as those clustered pixels
on the reflectivity images where cell values are larger than 10 dB Z. Although it is ideal to create a
model to track movements for individual storms, as previously mentioned, TCs are mainly composed
of stratiform clouds, and individual storm tracking techniques underperform in this scenario because
cloud boundaries of individual storms are difficult to distinguish [36]. For example, if we define storm
boundaries using a certain reflectivity threshold, two large regions of that reflectivity value may be
connected by a single pixel to produce a single larger region, whereas the desired outcome would
be to split the regions at the location of the single pixel. Thus, we decide to fallback to pixel-based
nowcasting methods, which are utilized in all TREC-derived methods. The method produces a
trajectory for each pixel.

2.2. Basic Method

The basic form of our nowcasting can be written as the following mathematic expressions:

Ẑ(t0 + τ, x) = Z(t0, x− α)− τQ(t0, x− α) (1)

It uses displacement vectors α and observation Z to predict Ẑ with a leading time of τ. Changes of the
rainfall rate are accounted for using a source/sink term Q.

Figures 1 and 2 show the setup and general workflow of the tracking and predicting stages in this
study. In the tracking stage, three motion fields are calculated from four consecutive images: t and
t + 10 min, t + 10 min and t + 20 min, t + 20 min and t + 30 min. Then, one motion field is set to the
mean value of the three fields. This step adopts the DITREC idea of using the last several consecutive
images to avoid disordered vectors. Then, in the next stage, the averaged motion is corrected using an
optimization technique. During the prediction stage, a pixel’s displacement vector α is determined
using a semi-Lagrangian extrapolation scheme [37] over the motion field domain. It is noticeable that
a pixel’s displacement vector α is always from its start point x− α to its end point x, but its actual track
may be a curve because it follows the cyclonic rotation in a TC. Details of these steps are explained in
the following sections.

Figure 1. The procedure of the tracking stage. It takes four consecutive reflectivity images over 30 min
with a 10-min interval. The tracking radar echo by correlation (TREC) motion vector is based on a
nested TREC calculation scheme.
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Figure 2. Workflow of the prediction stage, which this study sets to 8 h with a 10-min time step.

2.3. Calculating Motion Field

The basic method to obtain the displacement vector of a block is TREC. The first step is to calculate
the correlation of two radar reflectivity images as:

R =
∑ Z1(x1)Z2(x2)− ∑ Z1(x1)∑ Z2(x2)

n√
(Z2

1(x1)− n ¯Z1)(Z2
2(x2)− n ¯Z2)

(2)

TREC requires a predefinition of area (e.g., a polygon contains the cloud) and for the defined area
of Z1 in the first reflectivity image, then in the second image, it searches for another area with the same
shape that gives the highest R value, then computes the vector of

−−→
Z1Z2 as the motion vector. Since the

predefined shape may not be rectangular, the TREC method flattens all reflectivity pixels into a 1D
array in the left-to-right, top-to-bottom order. In this study, we simply divide the entire domain into a
fishnet and track each block on the fishnet. Since all predefined shapes are squared blocks, we can skip
the flattening stage and use the 2D normalized cross-correlation between two general digital images
to represent the same correlation R in TREC. Determining the proper size of blocks in a TC scenario
could be difficult. If the block size is too large, it cannot capture the rotational motion of convective
clouds in the eye wall of the TC. If the block is too small, it may lead to chaotic motion vectors because
TREC ignores the fact that the low pressure system is rotating. To overcome this limitation, we employ
the concept from MTREC where large blocks are used to obtain the synoptic-scale motion. The first
step is to divide the entire reflectivity image into a tessellation of large squared blocks, each block
containing 64× 64 pixels. We choose 64× 64 as the biggest block size because we use 3 × 3 km
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resolution in the reflectivity images (i.e., each pixel is 3× 3 km). Then, a large block size is about
200 km (64× 3 km = 192 km), which is suggested in the original MTREC research [22]. In the next
step, each large block is recursively divided into four small blocks in a quad-tree-styled pattern [38] to
obtain finer detail until the level of 8× 8 block-size. At the 64× 64 level, any block that yields R < 0.25
is discarded and filled by averaging its four connected neighbors. At all lower levels, if R < 0.25
occurs, or the obtained motion vector is 30 degrees away from its 1-step upper level vector, it is
replaced by the upper level vector. When using TREC with reflectivity images, R can only be obtained
with a sufficient number of pixels in a region. This is usually not an issue in a single-radar scenario
when a TC is near that radar station, as a TC is usually much larger than a single-radar’s scanning
domain, so it will guarantee a “filled” image. However, in a multi-radar scenario, a large analytical
domain may be selected to enclose the entire TC and related mesoscale interactions for several hours,
leading to large blank areas without sufficient reflectivity pixels to calculate R. Furthermore, some
TCs quickly dissipate after landfall, or their cloud “pieces” may become more fragmented [39] and/or
dispersed [40]. To fill out those blank areas, in the last step, we interpolate the calculated motion
vectors over the analytical domain. To complete this task, we assume wind speed along the analytical
domain boundary is 0, unless there are vectors that were calculated. The motion vector domain is
interpolated into 4 × 4 block-size resolution, which means all 16 pixels inside the 4 × 4 block will
share the same motion vector value. Since all interpolation methods make assumptions about certain
spatial patterns, interpolation will always create some “artificial” patterns. To further improve the
quality of interpolated result, in the next step, we adopt an optimization step to correct the wind field.

2.4. Motion Field Correction

The calculated and interpolated motion vector field from the previous step has the flaw that it
may not follow a basic characteristic of the atmosphere, which is that the atmosphere is continuous
and smooth. To get a realistic motion vector field from the obtained field, we add an optimization step
to smooth the obtained motion field. In this study, we create a function with two penalties, a continuity
penalty JC [17] and a smoothness penalty JS. The cost function to be minimized is:

J(u, v) = J0 + JC + αJS (3)

J0 =
∫

Ω
β(x)[(u− u0)

2 + (v− v0)
2] (4)

u is the x-component of wind, and v is the y-component of the wind over the analytical domain
Ω, where u0 and v0 comprise the calculated motion vector from the previous step. The β(x) is the
background error covariance that reflects the radar data quality at the location of (x, y). For example,
in the area where clutter and partial blockage of the radar beam often occurs, the weight will be lower.
J0 reflects the total differences between the final field and first guess field obtained in the previous
step. The continuity term JC, adopted from COTREC, is used to maintain mass conservation. In this
scenario, we cannot enforce mass conservation everywhere in COTREC for two major reasons: (1) As
COTREC is a single-radar algorithm, motion vectors on its domain boundary are often not zero; thus,
it will allow a precipitation region to come inside and go outside of the domain; while in our scenario,
vectors on boundaries are mostly 0, meaning that we do not expect precipitation to enter or leave
the domain as we have mosaicked a large enough region to completely encompass the TC. (2) A TC
often contains convective clouds with strong updraft and downdraft air flows; thus, across a fixed 2D
altitude, mass may not be conserved. Thus, we impose a weak constraint on mass conservation so that
the total mass in the analytical domain is conserved. This penalty term is:
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JC = λCD2

D =
∂ρu
∂x

+
∂ρv
∂y

λC =
1
Ω
[
∫

Ω
(

∂ρu
∂x

+
∂ρv
∂y

)2dxdy]−1

(5)

Neglecting the compressibility over the analytical domain Ω, ρ will be a constant and can be
discarded in JC. The second term JS is the smooth penalty, adopted from [34,41], reported to be
successful in the Korean radar network [42]. It is defined as:

JS =
∫∫

Ω
[(

∂2u
∂x2 )

2 + 2(
∂2u

∂x∂y
)2 + (

∂2u
∂y2 )

2 + (
∂2v
∂x2 )

2 + 2(
∂2v

∂x∂y
)2 + (

∂2v
∂y2 )

2]dxdy (6)

Finally, JS is scaled by α, a constant factor. A previous study [43] shows that ∇2 J(u, v)’s smallest
eigenvalue is larger than the unit value of 1 (i.e., J(u, v) is positive definite); thus, there exists a global
minimal solution that can be solved by the conjugate gradient method. During the experiments,
we found that since our first guess is close to the global minimal point, thus a quasi-Newton method
like limited-memory Broyden–Fletcher–Goldfarb-Shannon (L-BFGS) usually converges very fast.
Figure 3 shows how the minimized cost function J(u, v) restores an idealized, symmetric circulation
from a large missing patch in the third quadrant. The left panel shows interpolated (green) components
from existing motion vector (blue), and the right panel shows restored components (right) using the
smoothing. It is obvious that the proposed method can restore the original symmetrical pattern in the
circular flow.

Figure 3. The smoothing step corrects the interpolated field (green in the left pane) to a realistic and
symmetric field (red in the right pane). The units of x-axis and y-axis are array indices.

2.5. Advection Scheme

Once the final motion field is obtained, it is taken as unchanged for the entire forecast stage.
TREC-based nowcasting methods usually use linear extrapolation during the entire period [3]. In fluid
dynamics, this is called Eulerian advection, written as:

a = τu(t0, x) (7)

Linear extrapolation assumes all cloud structures keep their newest status and move along
straight lines during the entire forecasting period. Since the assumption of linear movement breaks
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a basic physical fact that the atmosphere is a non-linear system, it cannot realistically account
for nonlinear changes in the atmosphere. As a result, linear extrapolation only produces reliable
predictions for a short amount of time, in which non-linearity can be neglected, often around 30–60 min.
After that, errors become significant [44]. Through experiments, we confirm that linear extrapolation
is not suitable for use in a TC scenario where winds have a tangential component to their motion.
For a simple example, if rotation is neglected in a mature hurricane whose motion vectors are almost
tangential, advecting the vectors linearly will tear the hurricane into pieces, leading to unreliable
results in about 30 min. Later researchers reported using Lagrangian advection [45–47], which is
effectively moving each pixel along its track according to the motion field. The scheme can adopt
rotation and curved tracks, but it has a problem in that the final position of a pixel usually does not fall
exactly on the center of grid cell, but instead overlaps with grid lines. Further, multiple pixels may
partially overlap each other at the destination. Questions arise as to how to properly handle those
unaligned pixels and partially overlapped areas given that rain drop size distribution information
is not available inside each pixel. Hence, we choose to use a semi-Lagrangian scheme to convert a
common extrapolation to an implicit extrapolation.

The semi-Lagrangian scheme is initially presented by [48] and further developed by [49]
and refined by [23]. It is widely applied in trajectory models, for example, it is used in the HYSPLIT
model from the National Oceanic and Atmospheric Administration (NOAA) [50]. In a semi-Lagrangian
scheme, we choose a pixel at time t0 + τ and try to traverse back to t0 with a time step of ∆t in order to
see from whence it comes. Just like the Lagrangian scheme, its source “destination” may not fall on an
exact cell center, and its nearest 8 neighbors within a 6-km buffer zone (two-cell-sized buffer zone)
are selected to interpolate to such a value. Since we start from the endpoint in the semi-Lagrangian
scheme, it is unclear what the momentum of the tracked air parcel is at the very beginning, we need
iterative steps to determine the final displacement vector from its source to current endpoint:

a =
N

∑
i=1

∆tui(ti, xi −
a
2
) (8)

where ∆t is the time step for iteration in which air parcels are advected linearly and u(t, x) is the motion
vector at position x, time t. Since we assume the motion field is static, we have u(t, x) = u(t,0 x).
We found that the semi-Lagrangian scheme can converge very quickly in less than 3 iterations on the
motion field obtained by Equation (3). Figure 4 shows the track for an air parcel from the position
marked with the blue star as it moves inside towards the eye wall simulated by our semi-Lagrangian
scheme. We choose to test it on an ideal stationary cyclone because we would like to avoid the external
factors of the TC’s motion itself and interaction with surrounding weather systems in a real TC case.
The ideal cyclone we set up is based on a climatological parameterization scheme presented by [51],
whose radial wind profile is symmetric, and wind velocity generally decreases from the eye wall.
Each pixel in Figure 4 is 20 km. The stationary cyclone has a circular eye with a radius of 20 km.
We can clearly see that the air parcel comes from the outer bands and spirals into the eye wall. A very
similar implementation can also be found in the mesocyclone detection and extrapolating algorithm from
the Open Radar Product Generator (ORPG) in WSR-88D: The Common Operations and Development
Environment (CODE) [52].

2.6. Determine the Source/Sink Term and Extrapolation

The source/sink term Q in Equation (1) represents the growth and decay of rainfall regions,
which represents a major source of poor nowcasting if ignored [53]. In a Lagrangian or Euler
extrapolation scheme, such growth and decay needs to be calculated over matched blocks between the
last two consecutive images. However, in a semi-Lagrangian scheme, there is no need to trace and
move blocks; it is simpler to calculate the rate of change of Q in each block along time. In this study,
we calculate the average reflectivity change rate during the entire tracking period for mean reflectivity
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at each 4 × 4 block. This rate is also applied to any interpolated source pixels located in an adjacent
4 × 4 block.

Figure 4. Simulated track of an air parcel as it moves in a spiral trajectory into the eye wall of an
idealized stationary hurricane using the semi-Lagrangian scheme. The units of x-axis and y-axis are
array indices.

3. Performance Evaluation

3.1. Data and Methods

The case we present is Hurricane Isabel that made landfall over North Carolina in 2003 (Figure 5) [54].
We choose the Isabel case for the following reasons. First, the TC has a large and clearly-defined
circulation center that allows convective clouds in the eye wall to be analyzed at 3-km resolution.
Secondly, adequate radar reflectivity data are available for 36 h (from 18 September 2003 0900 UTC–19
September 2003 2100 UTC) while the storm was over land, leaving enough range to pick up one
nowcasting event. Third, Isabel became restructured into a cold-cored low pressure system as
it moved within radar range. Nearly half of Atlantic basin TCs experience this rapid change in
structure [55], which causes rainfall regions to fragment and disperse from and dissipate behind
the storm center [40,56]. Testing our model during Isabel’s restructuring process will allow us to
evaluate the performance when a TC experiences changes in organization in both tangential and
radial directions.



Atmosphere 2018, 9, 200 11 of 18

Figure 5. Radar reflectivity at Isabel’s landfall on 1700 UTC 18 September 2003. It is a composite
reflectivity below a 4-km altitude (below the freezing layer). WSR-88D, Weather Surveillance
Radar-1988 Doppler.

We create a time series of reflectivity mosaics from radar stations located within 600 km of
the storm center. After removing non-meteorological echoes, data are gridded at a 3× 3× 0.5 km
spatial resolution and 10-min temporal resolution. In grid cells where multiple reflectivity values
are available, we performed several experiments and determined that using the highest value from
those available is the best solution, as we found that employing a weighted average algorithm leads
to a low bias. This may be due to the fact that some stations have a slightly weaker signal [57].
Cells with missing values are filled using the Cressman interpolation [58]. Traditionally, quantitative
precipitation estimation (QPE) is based on the composite reflectivity using a Z- R relationship [59].
However, recently, the work in [60] pointed out that using composite isothermal reflectivity below
0 °C instead of composite reflectivity in QPE improves the correlation in the Z-R relationship due to
avoiding the overly high reflectivity values generated by melting hydrometeors around the freezing
level [61]. Verification using the North American Regional Reanalysis (NARR) dataset, which has
a reasonable representation of TC position and size over the U.S. [62], shows that the 0°C isotherm
appears between the altitudes of 4.0 and 4.5 km over the entire analytical domain during the study
period. Thus, a composite reflectivity is calculated using data below 4 km. Further, the composite
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reflectivity values are filtered with a low-pass filter with a 5 × 5 moving window. The filtered images
are used for tracking, but we use original images to predict actual reflectivity values. The tracking stage
is 0.5 h (e.g., 1730–1800 UTC), and the forecasting period is 8 h, with a 10-min resolution throughout
the period. After that, we use the smoothing technique to obtain the final field. We set β(x) to I for the
whole domain, which means that data quality is assumed to be the same over the domain. Because the
Level-II data are quality controlled before mosaicking is performed, errors in data due to problems
such as instrument errors are not a concern.

3.2. Results

Figure 6 shows the reflectivity change rate (source/sink term) Q determined during the tracking
stage. Figure 7 shows a zoomed view near the inner core area from the final obtained motion field
serving for forecasting. It is noticeable that the cloud rotation center is different from the eye, which
is due to the velocity composition of Isabel’s movement and cloud rotation. When Isabel is moving
toward northwest, the precipitation area on its left side (i.e., the southwest direction from the eye) will
show the minimal velocity and rotation. In the outer area, it is clear that the field captured the rotation
of Isabel. We also setup a base performance linear extrapolation experiment using traditional TREC
and moving pixels linearly along motion vectors where pixels collocate.

Figure 8 shows the correlation between forecasting results and corresponding observed results.
We find that the semi-Lagrangian advection scheme can produce reliable forecasts out to about 5 h
before it falls to a decorrelation point defined as R = 1

e [63]. The reflectivity correlation drops linearly
in the semi-logarithmic scale. This drop matches that in a previous study by [34], who stated that
a good advection scheme should be able to maintain a consistent accuracy rate over the forecasting
period. In other words, with a consistent accuracy rate, there should be an exponential drop over time,
which shows a general linear relationship in a logarithmic scale. To evaluate the prediction success,
we employ three standard scores used in operational radar-based nowcasting called contingency
tables [64,65]. These scores are calculated by taking point by point comparisons at the prediction time
between the value observed by the radar and the predicted value. If both the measured value and the
predicted value are larger than a threshold, we consider the nowcast to be successful. If the measured
value is larger than the threshold while the predicted value is smaller than the threshold, this is
considered to be a failure. If the measured value is smaller than the threshold while the predicted value
is larger than the threshold, this constitutes a false alarm. We chose to use 24 dBZ as the threshold as it
roughly equals a 0.1-mm h−1 rain rate (about one inch daily) according to Rosenfeld’s Tropical Z-R
relationship [66], while one inch over a day is generally considered a threshold with which to identify
TC-related rainfall [67]. The contingency table contains three indices that are calculated based on three
criteria, probability of detection (POD), false alarm ratio (FAR) and critical success index (CSI) [68].
Their equations are as follows:

POD =
a

a + b
(9)

FAR =
c

a + c
(10)

CSI =
a

a + b + c
(11)

where a is the total pixels of successful nowcasting, b is failed nowcasting and c is false alarms. Figure 9
depicts the three skill scores over the prediction period. A roughly linear trend over time is observed for
these CSI and POD scores, which also indicates a consistent hit rate for each step during the forecasting
period. We also see FAR increase rapidly; this also matches patterns in previous research [23,34].
However, we can see that the semi-Lagrangian scheme outperforms linear extrapolation as the linear
extrapolation can only produce a reliable prediction about 0.5–1 h.
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Figure 6. The source/sink term Q for the prediction period.

Figure 7. A zoomed view for motion vectors in the inner core area with background of reflectivity Z.
For visibility, vectors are shown at 16 × 16 block-size (48 km × 48 km) scale.
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Figure 8. Correlation as defined in Equation (2) between forecast and observation during the
prediction period.

Figure 9. Skill scores during the prediction period. CSI, critical success index; POD, probability
of detection.

4. Summary and Future Study

In this paper, a methodology is presented to forecast a TC’s rainfall distribution up to 8 h into
the future using a high-resolution Doppler radar reflectivity mosaic in a large analytical domain.
The method contains three steps to produce a reliable forecasting time series. First, a nested reflectivity
motion vector retrieval method is designed. It uses the normalized 2D correlation between two
reflectivity images to calculate motion vectors in a quad-tree pattern. Second, a numerical optimization
technique creates a realistic motion field. This technique minimizes a cost function with three
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constraints: the residual of the reflectivity conservation equation, mass conservation over the entire
domain and a smoothing penalty function. Finally a semi-Lagrangian scheme is designed to adopt
three critical factors in nowcasting: mesoscale-sized circulations, momentum of air parcels and growth
and dissipation of precipitation area. The results of the case study examining a landfalling hurricane
with rapidly evolving rainfall regions shows that an acceptable prediction can be extended from the
1–2 h currently available in a single radar application to about 6 h in a multi-radar scenario.

Future research should extend this model from a deterministic model to a statistical model, which
gives both the predicted value and uncertainty at the forecasting stage. This idea was reported in
previous research [69] from a purely statistical aspect. It shows that a quantitative measurement
of uncertainty improves accuracy in a small-scale storm, but a similar study on a large mesoscale
system like a TC does not exist. Besides understanding uncertainty quantitatively for each forecasting
time, measuring uncertainty and error spatially is also a potential topic to extend from this study.
Furthermore, it is valuable to generate background covariance used in the optimization technique
based on historical statistics on each station, rather than assigning a single value of one to all stations,
in order to improve the accuracy of the smoothed motion field.
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