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Abstract: Designed for rainstorms and flooding, hydrosystems are largely based on local rainfall
Intensity–Duration–Frequency (IDF) curves which include nonstationary components accounting for
climate variability. IDF curves are commonly calculated using downscaling outputs from General
Circulation Models (GCMs) or Regional Circulation Models (RCMs). However, the downscaling
procedures used in most studies are based on one specific time scale (e.g., 1 h) and generally ignore
scale-driven uncertainty. This study analyzes the uncertainties in IDF curves stemming from RCM
downscaling ratios for four representative weather stations in the United Kingdom. We constructed
a series of IDF curves using distribution-based scaling bias-correction technology and a statistical
downscaling method to explore the scale-driven uncertainty of IDF curves. The results revealed
considerable scale-induced uncertainty of IDF curves for short durations and long return periods;
however, there was no clear correlation with the mean storm intensity of the IDF curves of different
RCM ensemble members for each duration and return period. The scale-driven uncertainty of IDF
curves, which may be propagated or enhanced through hydrometeorological applications, is critical
and cannot be ignored in the hydrosystem design process; therefore, a multi-scale method to derive
IDF curves must be developed.

Keywords: downscaling ratios; IDF curves; RCM; uncertainty

1. Introduction

Large-scale climate change resulting from anthropogenic driving factors, such as excessive
greenhouse gas emissions and urbanization, are modifying hydrological patterns in many regions
worldwide. It is widely recognized that variations in the hydrologic cycle significantly affect the
ecosystems and water circulation on which human social and economic life depends. In addition to
enhanced climate variability, there is strong evidence that climate change is exacerbating the frequency
and magnitude of extreme hydroclimatic phenomena, especially heavy precipitation events [1,2].
Therefore, studies of extreme hydrological events based on the nonstationary Extreme Value Theory in
a changing environment are increasingly considered as necessary areas of research [1,3–6].

Intended to manage rainstorms and flooding, hydrosystems are generally designed using local
rainfall Intensity–Duration–Frequency (IDF) curves. These curves, which characterize the durations
and intensities of extreme precipitation events as they recur [7], are standard tools in storm water
management systems, flood protection structures, and various other engineering designs involving
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hydrologic flows [8]. IDF curves are evaluated based on the assumption that the frequency, intensity,
and return period of precipitation extremes are independent of any impact resulting from potential
climate change [9]. However, rising concentrations of greenhouse gases in the atmosphere and rapid
urbanization, which could shorten the heavy rainfall regression cycle, are making this assumption
largely untenable. Therefore, the trends in IDF curves calculations are expected to move toward
nonstationary or time-varying models to better respond to the changing environment and properly
and precisely guide water management and hydraulic infrastructure design [1,10].

Given this background, appropriate methods are required to accurately update IDF and reduce
uncertainties when accounting for anthropogenic changes in the atmospheric environment. There
are two types of calculation models that can be used to evaluate variations in the intensity and
duration of precipitation accounting for different recurrences and their uncertainties in a nonstationary
climate. Regarding the first type, several studies have developed nonstationary approaches by
modeling and analyzing trends in historically observed extreme rainfall series using covariates to
build time-varying IDF curves [1,3,11]. Sarhadi and Soulis [3] proposed a nonstationary framework
using a full time-varying generalized extreme value (GEV) distribution, in which temporal trends
and the Southern Oscillation Index were covariates. In addition, Bayesian techniques have been used
to examine the impacts of different and complex forms of nonstationarity on the extreme rainfall
frequency in the Great Lakes area of the United States. Cheng and AghaKouchak [1] calculated
time-dependent IDF curves by integrating a Bayesian-based Markov chain approach, which assumed
the location parameter (µ) as a function of time, into the nonstationary GEV. Yilmaz [11] presented
extreme value models using trend analysis and non-stationarity tests to detect potential influences of
climate change on IDF curves in Melbourne, Australia. However, Agilan and Umamahesh [12] reported
that applying time covariate-based linear trends directly in GEV or other distribution parameters may
increase bias, with significant uncertainties related to the role of the covariates in the estimation of
future rainfall IDF curves.

Apart from trend analysis methods, which develop IDF curves by modeling historical rainfall
time series data, researchers have incorporated outputs from General Circulation Models (GCMs) or
Regional Circulation Models (RCMs) using bias correction and downscaling to simulate non-stationary
IDF curves [10,13,14]. Lehmann [10] integrated RCM outputs into spatial Bayesian hierarchical models
to investigate the characteristics of future extreme rainfall events stemming from numerous climate
change scenarios. Srivastav [14] updated the IDF curves using spatial and temporal downscaling,
combining the changes in the distributional characteristics of the GCM/RCM between the baseline
period and future period to assess the impact of climate change on future extreme precipitation.
Lima [13] proposed a Bayesian beta distribution model to estimate IDF curves based on observed
rainfall series and daily rainfall outputs under climate change scenarios provided by the GCM/RCM.

Although GCM/RCM output-based approaches can better reflect the physical basis than trend
analysis methods, uncertainties are expected to result from the complicated processing steps as well as
the amount and variety of data required. Therefore, the characterization, quantification, and reduction
of the uncertainty of nonstationary IDF curves generated from GCM/RCM methods is necessary [15,16].
Two predominant uncertainties of statistical downscaling include uncertainty resulting from observed
or GCM/RCM data (e.g., observation and measurement errors, choice of climate change scenario,
or internal climate variability results from natural fluctuations) and uncertainty resulting from
the technique or procedure adopted. Several studies have focused on uncertainties associated
with insufficient quantity and quality of GCM/RCM or observation data [16,17]. For example,
Willems et al. [16] used a Bayesian approach to quantify parameter uncertainty and uncertainties
stemming from the use of multiple GCMs. Meanwhile, Nazemi et al. [17] found that the uncertainty of
future IDF curves greatly influenced the choice of the shape parameters in the GEV model, particularly
for large return periods.

Uncertainties caused by the adoption of specific techniques or procedures can be classified
as bias-correction procedures and downscaling techniques. Bias-correction procedures are used
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to eliminate or remove systematic errors in GCM/RCM precipitation results based on observed
precipitation data, whereas downscaling techniques aim to reduce the spatial and temporal coarseness
of GCM/RCM simulation outputs. Kim et al. [18] demonstrated that some reasonable underlying
distributional parametric uncertainty in RCM simulations could be corrected with a comparison
test using bias-correction methods. Fadhel et al. [15] noted that the uncertainty in future IDF
curves originated from the different reference periods used to correct the RCM precipitation
bias, which have significant effects on future climate projections. Conversely, some studies have
referred to the uncertainties associated with techniques involving spatial and temporal downscaling
methodologies [16–19]. For example, Chen et al. [20] found a large uncertainty envelope related to
the choice of using one of six distinct downscaling methods. In addition, Willems et al. [16] indicated
that the uncertainty regarding the influence of downscaling on extreme precipitation data was high
because the properties of extremes did not automatically reflect those of average rainfall.

Most studies have adopted a specific time scale for the temporal downscaling of future
GCMs/RCMs. However, different time scales may lead to different downscaling results, and
there has been little focus on the uncertainty associated with temporal downscaling ratios. If the
uncertainty introduced by temporal downscaling is high, the nonstationary IDF curve calculated from
the downscaled result will be unreliable since it uses only one type of time scale. This raises the
following questions: Does temporal downscaling cause any uncertainty? If so, how much? What areas
of the IDF curves reflect the impact of such uncertainties? To date, few studies have noted these issues;
however, if this assumption holds, it is essential to determine a downscaling method based on a series
of time scales to reduce uncertainty.

Therefore, this study aims to: (1) determine if uncertainties exists when different time scales are
used to implement temporal downscaling and build a series of future IDF curves with the downscaled
model results; (2) quantify the extent and source of any uncertainties by comparing a series of IDF
curves; and (3) analyze the significance of the uncertainties stemming from RCM downscaling ratios.

2. Study Area and Data

Heavy precipitation, which could lead to recurring flood events and cause serious damage to
infrastructure, is of increasing concern in Europe [21]. Many studies have indicated an increase in the
frequency and intensity of heavy rainfall in the United Kingdom (UK) [22,23]. The Met Office operates
more than 200 automatic weather stations across the UK. In this study, we selected four representative
weather stations in the south of England (Heathrow, Wattisham, Shawbury, and Hurn) with long
period (more than 57 years) and high temporal resolution observation data to identify uncertainties
stemming from RCM downscaling ratios in the IDF curves. The locations of the four selected stations
are displayed in Figure 1, and Table 1 shows the mean and standard deviation of the annual maximum
rainfall (mm) for five periods from 1960 to 2016.

The datasets used in this study included historical observation data consisting of temperature,
precipitation, the output temperature, precipitation data from an RCM, and radar data. Table 2
describes the purpose and time periods of the datasets.
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Figure 1. Locations of the four study stations.

Table 1. Mean and standard deviation (in parenthesis) of the annual maximum rainfall (mm) for five
rainfall durations for the period of 1960–2016.

Station
Duration (h)

1 2 6 12 24

Heathrow 15.09
(8.68)

19.09
(9.30)

28.89
(12.65)

34.85
(15.94)

41.95
(18.64)

Wattisham 19.21
(12.51)

24.96
(14.27)

33.40
(16.10)

41.24
(19.78)

50.81
23.48

Shawbury 17.92
(9.77)

23.01
(11.25)

31.91
(14.21)

39.55
(17.54)

50.70
(24.16)

Hurn 22.61
(11.40)

28.13
(13.90)

40.37
(16.82)

51.64
22.74

66.01
(35.08)

Table 2. Datasets used in this study.

No. Dataset Purpose Time Period

1 Observed temperature data Bias correction for RCM temperature data;
Downscaling of RCM precipitation 1960–2016

2 Observed precipitation data
Bias correction for RCM precipitation data;
Obtain historical IDF curves; Downscaling
of RCM precipitation

1960–2016

3 RCM temperature data
(simulated)

Bias correction for RCM temperature data;
Downscaling of RCM precipitation 1960–2016

4 RCM temperature data
(predicted) Downscaling of RCM precipitation 2040–2096

5 RCM precipitation data
(simulated)

Bias correction for RCM precipitation data;
Downscaling of RCM precipitation 1960–2016

6 RCM precipitation data
(predicted)

Downscaling of RCM precipitation; Obtain
future IDF curves 2040–2096

7 Radar data Downscaling of RCM precipitation 2004–2016

The observed temperature and precipitation data were obtained from the Met Office Integrated
Data Archive System Land and Marine Surface Station Data [24,25]. To obtain historical IDF curves
and correct the bias of daily precipitation data simulated by the RCM, we used long-term (1960–2016)
hourly rainfall data from the UK. Figure 2 shows the historical IDF curves for return periods of 2, 5,
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10, 25, 50, and 100 years [8,13] obtained from the annual maximum rainfall series (durations 1–24 h).
There curves were generated with data from the four study stations fitted to the generalized extreme
value (GEV) distribution suitable for modeling extreme rainfall [26] with the parameter locations (µ),
scales (σ), and shapes (ξ) using the maximum likelihood estimation (MLE) method.

Figure 2. Historical Intensity–Duration–Frequency curves for return periods of 2, 5, 10, 25, 50, and 100
years; the curves were obtained from the GEV (generalized extreme value) models fitted to the four
stations’ maximum series.

To construct the future IDF curves, RCM datasets were obtained from the HadRM3 Perturbed
Physics Experiment Dataset (HadRM3-PPE-UK) carried out by the Met Office Hadley Centre (Available
online: http://catalogue.ceda.ac.uk) [27]. This dataset has a spatial resolution of 25 km, a daily
temporal resolution, and offers time-series data from 1950 to 2100. The outputs of RCM were used
to yield precipitations with sub-daily durations through downscaling methods. All 11 ensemble
members of the RCM data for the periods 1960–2016 and 2040–2096 were the same length as the period
of 1960–2016 used in this study. The RCM ensemble members were as follows: Q0 (HadRM3Q0),
Q3 (HadRM3Q3), Q4 (HadRM3Q4), Q6 (HadRM3Q6), Q8 (HadRM3Q8), Q9 (HadRM3Q9), Q11
(HadRM3Q11), Q13 (HadRM3Q13), Q14 (HadRM3Q14), Q16 (HadRM3Q16), and Qk (HadRM3Qk).
Each member was driven by the same historical and SRESA1B emissions, with one unperturbed
member and ten members with different perturbations to the atmospheric parametrizations [27].

The radar data used to temporally downscale the RCM precipitation (from 24 h to 5, 10, 15,
30, and 60 min) spanning 2004–2017 were made available by the UK Met Office through the British
Atmospheric Data Centre, with spatial and temporal resolutions of 1 km and 5 min, respectively.
The residual errors in radar rainfall records have been computed for this case and were removed using
observed rainfall records from the rain gauges [28,29].

3. Methodology

Owing to systematic errors present in the RCM, the original dataset cannot be used to calculate
extreme future rainfall. Therefore, a bias-correction procedure based on observed data is essential
to eliminate systematic errors (i.e., biases). In addition, the RCM rainfall scale (daily) must be
disaggregated to a finer time scale (e.g., hourly) to construct IDF curves. However, most studies
disaggregate the RCM scale to a specific scale without considering the uncertainties that this could
introduce into the IDF. Therefore, in this study, RCM rainfall was downscaled from a daily scale to
multiple hourly or sub-hourly scales to identify scale-driven uncertainties in the IDF curves. More
specifically, RCM rainfall was disaggregated from a daily scale to 5, 10, 15, 30, and 60 min.

http://catalogue.ceda.ac.uk
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However, downscaling daily rainfall to different scales is complicated. The temporal resolution
of the future rainfall data depends on the resolution of the historical rainfall. Although we obtained
rainfall data at only two temporal resolutions (1 h for observed data and 5 min for radar data),
the latter could be upscaled in multiples of 5 min and the future rainfall could be downscaled to
different durations.

To further explore the scale-driven uncertainty of the IDF curves, future IDF curves from
the four stations were constructed for five time scales and 11 RCM ensemble members using a
distribution-based scaling (DBS) [30,31] approach to remove the bias of the RCM. A statistical
downscaling method that combined nonparametric prediction models and the method of fragments
framework (NPRED-MoF) [15] was used to disaggregate future daily rainfall to hourly or sub-hourly
scales. The construction procedure of the IDF curves for each RCM ensemble member and each station
is presented in Figure 3. First, we applied the bias correction for RCM precipitation and temperature
based on the DBS approach. The input dataset was the historical observed and RCM rainfall and
temperature, and the output dataset was bias-removed RCM rainfall and temperature. Second, we
disaggregated the future rainfall from a daily resolution to five temporal resolution durations based
on the NPRED-MoF method. The input dataset was the bias-removed RCM rainfall and temperature,
radar data, and historical observed rainfall and temperature, and the output dataset was the future
rainfall data of the five hourly and sub-hourly resolutions. Finally, the annual maximum rainfall for 24
durations of 1–24 h were extracted and fit to the GEV distribution to identify the maxima using the
MLE method. The rainfall intensities for different return periods (2, 5, 10, 25, 50, and 100 years) were
then calculated, and the five types of IDF curves based on the rainfall intensity from six return periods
and 24 durations could be plotted.

Figure 3. Procedure used to construct the future IDF curves.

In this study, the bias-correction procedure for the RCM precipitation and temperature
predominantly depended on the DBS approach described by Yang et al. [30] and Olsson et al. [31].
This method adjusts the distribution of RCM data to make it consistent with the distributions of the
observation data based on cumulative distribution functions (CDFs) and then determines the new
RCM data distribution parameters estimated by the maximum likelihood.

A temperature based on a Gaussian distribution [30] is more consistent with the parameters of
the mean (µ) and standard deviation (σ). Therefore, the DBS approach to correct biases in temperature
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depends on a Gaussian distribution. The DBS procedure for temperature was implemented using a
15-day moving window to obtain parameters [30] without separating the wet days [31].

A gamma distribution has been found to be effective in determining the distributions of
precipitation events using the shape (α) and scale (β) parameters [32,33]. We used a double-gamma
distribution which divided the observed and RCM data into two parts based on the 95th percentile of
the CDF to remove biases in the RCM precipitation data, to better capture extreme precipitation events
and calculate the parameters based on a monthly segment [31].

We used a NPRED-MoF framework statistical downscaling method, as in Fadhel et al. [15], for
the disaggregation process. The NPRED model was applied to predict the maximum storm burst
fractions at the same duration as the downscaled future daily rainfall to be disaggregated using daily
rainfall and temperature predictors. The experiments to predict storm burst fractions were based
on open-source NPRED software for R [34], which uses partial information correlation (PIC) logic
to detect predictors and partial weights (PW) to predict the response [34,35]. The NPRED tool was
used without separating the data into seasonal segments for more precise predictions, as suggested by
Fadhel et al. [15].

On the basis of results predicted by the NPRED model, the MoF framework developed by
Mehrotra et al. [36] and Westra et al. [37] was adopted to disaggregate future daily rainfall into hourly
or sub-hourly fragments or sequences. This framework resamples the sub-daily rainfall fragments
from the historical rainfall series by determining the historical days with atmospheric conditions
“similar” to future climates. Further details can be found in Mehrotra et al. [36] and Westra et al. [37].

We disaggregated future daily rainfall into five hourly and sub-hourly fragments using the same
the disaggregation steps for each fragment. The disaggregation procedure, based on the NPRED tool
and MoF framework for each duration, consisted of two principal steps for each fragment. The first
step was to predict the future storm burst fraction based on the NPRED tool and to calculate the
historical fractions found when the maximum storm burst rainfall was divided by the total rainfall of
each day based on radar data with a 5 min resolution. The second was to construct a model for two
predictors (historical temperature and rainfall) using the historical fractions as the response variables;
the constructed model was then applied to the future climate to determine future fractions using
future temperature and rainfall as predictors. An additional step included obtaining the full hourly or
sub-hourly temporal pattern of the future climate based on results from the first main step and the
MoF framework. For each future day, we used the MoF framework with a 15-day moving window [38]
to find days with an atmospheric state “similar” to the daily rainfall resolution day in the future.
We tthen applied the rainfall pattern of one of the identified days to the future day [37].

4. Results and Discussion

4.1. IDF Curves for Future Climate

We applied the DBS approach to correct biases and adopted the NPRED-MoF method to
temporally downscale the RCM. To explore the uncertainties present in the IDF curves due to the
RCM downscaling ratios used, we disaggregated the future modeled rainfall data into five hourly or
sub-hourly durations. A series of future IDF curves was estimated for the examined weather stations
based on the five time scales to determine how these temporal resolutions impacted future climate
IDF curves.

Figure 4 displays the annual maximum rainfall series for the period 2040–2096 at the Heathrow
station for 1, 3, 6, 12, and 24 h; the results were based on temporal resolutions of 5, 10, 15, 30, and
60 min for the first RCM ensemble member (Q0). The overall distributions were similar to those of
the five time scales, but the local differences were significant, implying that the IDF curves may have
been dissimilar.

Moreover, we obtained the future rainfall distribution for 24 durations of 1–24 h by fitting the
modeled extreme rainfall data to a GEV distribution. The future IDF curves could then be developed by
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estimating the empirical quantile associated with the six chosen return periods and dividing it by the
given durations. The future climate IDF curves obtained for the first ensemble member from Heathrow,
Wattisham, Shawbury, and Hurn (top to bottom) are displayed in Figure 5. Each subplot, the six return
periods, and the 24 rainfall durations were based on one specific time scale. Unsurprisingly, there
were clear differences in the IDF curves corresponding to the five temporal resolutions, especially for
the shorter durations, at each station. Interestingly, rainfall appeared to be more intense at the 5-min
temporal resolution than at the other resolutions for short durations.

Figure 4. Future annual maximum rainfall series of different durations (1, 3, 6, 12, and 24 h) based on
different RCM downscaling ratios (5, 10, 15, 30, and 60 min) for Heathrow station and the first RCM
ensemble member (Q0).
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Figure 5. Future IDF curves for (from top to bottom) Heathrow, Wattisham, Shawbury, and Hurn
stations, for return periods of 2, 5, 10, 25, 50, and 100 years, obtained from GEV models based on five
RCM downscaling ratios for future rainfall maxima.

4.2. Uncertainty of IDF Curves Due to Downscaling Ratios

The uncertainties of the future IDF curves resulting from downscaling RCM ratios were
characterized as box plots of the IDF curves based on the five temporal resolutions and the first
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RCM ensemble member for the six return periods (2, 5, 10, 25, 50, and 100 years) for Heathrow
(Figure 6) and Wattisham (Figure 7) stations. These plots show the differences only for 12 durations
(1–12 h), because the differences between the other durations were too small to observe in box plots.
Notably, the differences in the IDF curves in Figures 6 and 7 were considerably higher for shorter
durations and seemed to follow a downward trend as the durations lengthened. Shawbury and Hurn
stations showed similar trends.

For further quantitative analysis, the mean, standard deviation (SD), and coefficient of variation
(C.V.) of the rainfall intensity of the five time scales are presented in Tables 3 and 4. The mean and
SD for Heathrow and Wattisham stations decreased as the duration for each return period increased,
and increased with each increasing return period for most of the durations. The C.V. appeared to
follow the same trend, with several exceptions (e.g., the C.V. at 24 h was greater than that at 12 h for
Wattisham station).

The C.V. distributions for the same durations, return periods, and stations were plotted (Figure 8)
to determine the relationship between the C.V. and the durations of different return periods. The C.V.
decreased exponentially with increasing durations for each return period and increased as with each
increasing return period for each duration. Both stations exhibited turning points, after which the
C.V. did not decrease with increasing duration (at 9 h for Heathrow station and at 7 h for Wattisham
station), and the C.V. was below 5% in most cases after those points. These results imply that the
influence of the downscaling ratios on the uncertainties of the curves are significant below a certain
duration (generally between 5 and 10 h) at each station. In other words, the uncertainty associated
with scale can be ignored when the duration is higher than the turning point. Moreover, the increasing
trend as a return period lengthens is more conspicuous for shorter durations (1 or 2 h).

Figure 6. Differences in the IDF curves of future rainfall resulting from five downscaling ratios for
Heathrow station. Each subplot represents a specific return period and for 12 rainfall durations.
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Figure 7. Differences in the IDF curves of future rainfall resulting from five downscaling ratios for
Wattisham station. Each subplot represents a specific return period and for 12 rainfall durations.

Table 3. The mean, standard deviation (SD), and coefficient of variation (C.V.) of rainfall intensity for
five time scales, three return periods, and five durations for the data from Heathrow station.

RP (Years) Statistics 1 h 3 h 6 h 12 h 24 h

Mean (mm/h) 18.50 10.33 6.29 3.55 2.12
2 SD (mm/h) 2.83 0.97 0.30 0.06 0.04

C.V. (%) 15.31 9.40 4.69 1.81 1.83

Mean 31.83 17.36 10.08 5.57 3.11
10 SD 6.60 1.52 0.42 0.11 0.05

C.V. 20.73 8.78 4.20 1.95 1.55

Mean 48.26 25.09 13.87 7.50 3.90
50 SD 14.68 2.63 1.14 0.31 0.11

C.V. 30.42 10.50 8.20 4.14 2.92

Table 4. The mean, standard deviation (SD), and coefficient of variation (C.V.) of rainfall intensity for
five time scales, three return periods, and five durations for the data from Wattisham station.

RP (Years) Statistics 1 h 3 h 6 h 12 h 24 h

Mean (mm/h) 14.92 8.59 5.30 3.06 1.75
2 SD (mm/h) 2.42 0.52 0.13 0.03 0.02

C.V. (%) 16.24 6.11 2.37 0.92 1.31

Mean 27.80 15.77 9.60 5.33 2.96
10 SD 5.36 0.86 0.23 0.06 0.04

C.V. 19.30 5.43 2.44 1.11 1.37

Mean 47.24 25.91 15.62 8.25 4.51
50 SD 12.28 1.63 0.34 0.11 0.18

C.V. 26.00 6.27 2.20 1.35 3.94
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Figure 8. Coefficient of variation (C.V.) distributions of the rainfall intensity of the five types of IDF
curves based on five downscaling ratios for six return periods and 24 durations for Heathrow and
Wattisham stations. The dots in red ellipses are turning points.

To further explain the relationships between the uncertainties and the historical climate, rainfall
duration, and return period, Figures 9 and 10 show the rainfall intensity of the historical and future
climate predicted with five downscaling scales for four durations (1, 6, 12, and 24 h) for Heathrow and
Wattisham stations. The intensities of future storms intensity appeared to be greater than historical
storms in most cases and were more pronounced for longer durations. Surprisingly, the IDF curves
resulting from the 1 h station data showed that the intensity of the historical storms was even greater
than several future storms. Comparing the four plots, the uncertainty appeared to be more significant
for shorter durations and longer return periods, as noted above, showing a clear descending trend.
For instance, at Heathrow, the future frequencies of rainfall at intensity occurred once every 50 years in
the historical climate but exhibited an impossibly large range for the 1 h duration (see the vertical red
and black lines in the first subplot of Figure 9). However, this range decreased to a more reasonable 37
years for the 6 h run, 12 years for the 12 h run, and 1 year for the 24 h run (see the vertical red and
black lines of the remaining subplots in Figure 9). Wattisham station showed similar trends (Figure 10).
These results imply that the future IDF curves obtained from one specific downscaling time scale are
highly unreliable for short durations and long return periods.

Figure 9. Rainfall intensity of the historical and future climate based on five types of downscaling
results for 1, 6, 12, and 24 h, for different return periods at Heathrow station.
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Figure 10. Rainfall intensity of the historical and future climate based on five types of downscaling
results for 1, 6, 12, and 24 h for different return periods at Wattisham station.

It should be noted that there is no guarantee that the NPRED-MoF downscaling method will
completely eliminate uncertainty. Rather, this comparative experiment was designed to explore the
impact of the NPRED-MoF downscaling method on the uncertainty of IDF curves.

The C.V. distributions of the rainfall intensity, with the downscaling procedure implemented
five times, for six return periods and 24 durations are presented in Figure 11. Each subplot is based
on one of the fixed downscaling scales. The C.V. values for shorter durations were larger than those
for the longer durations and were below 10% for most values; however, the downward trends were
not pronounced. Regardless, the uncertainty increased as the return period lengthened. Comparing
the first plot in Figure 8 with each plot in Figure 11, the C.V. in the latter was much smaller than
that of the former for shorter durations, suggesting that uncertainties due to downscaling ratios are
much greater than those due to the downscaling method for these durations. However, the values
in Figure 11 were not invariably smaller than those in the first subplot in Figure 8 as the duration
lengthened, implying that it might not be possible to clearly identify the source of this uncertainty for
longer durations. Nevertheless, most of these C.V. values were below 5%, which is sufficiently low to
neglect the corresponding uncertainty. Therefore, the durations for which the uncertainty cannot be
neglected are mainly those affected by the downscaling ratio.
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Figure 11. Coefficient of variation (C.V.) distributions of the rainfall intensity of the downscaling
procedure implemented five times for six return periods and 24 durations for Heathrow station; each
plot is based on one fixed downscaling scale.

4.3. IDF Curves for Different RCM Ensemble Members

We obtained the IDF curves for all 11 RCM ensemble members to rule out differences in the
data stemming from the use of only one particular ensemble member. Figure 12 shows the IDF
curves for the historical (red dotted line) and future (11 solid lines) climates for five return periods for
Heathrow station. The IDF curves show an obvious increase in both intensity and frequency for future
storms compared to the historical data from the subplots in Figure 12. The future IDF curves were
more compact for shorter return periods for each time scale and appeared to have a parallel linear
relationship that was more pronounced for the shorter return periods for each scale. The other stations
also had similar patterns.

Tables 5 and 6 show the mean and C.V. of rainfall intensity for Heathrow station for the 11
ensemble members for three durations (1, 6, and 24 h) and three return periods (2, 10, and 100 years),
listed in descending order of the total rainfall intensity. In most cases, the C.V. values were greater
than 15% for the 1 h durations, indicative of notable uncertainty of the IDF curves for all 11 RCM
ensemble members for shorter durations. Although most C.V. values were below 5% for the 6 h and
24 h durations for the 1 year and 10 years return periods, the C.V. increased to 16.49% and 11.26% for
the 100 years return period for the 6 h and 12 h durations, respectively. For all RCM ensemble members
in Table 6, the C.V. values were consistently greater for the 1 h duration than the 6 h and 12 h durations,
and the C.V. values increased according to the lengthening return periods in a similar manner. These
results demonstrate that the patterns in scale-driven uncertainty examined in Section 4.2 hold for all
RCM ensemble members.
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Figure 12. IDF curves for historical (red dotted line) and future (solid lines) climate data for historical
rainfall data from Heathrow station and modelled rainfall results from five downscaling ratios of
11 RCM ensemble members. Each solid line represents a specific returning period and 24 rainfall
durations and is based on a specific downscaling radio and RCM ensemble.
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Table 5 further confirms the nearly parallel linear relationships between the 11 RCM ensemble
members. The maximum or minimum mean values of the storm intensity for each return period
appear in the same row in Table 5, but, interestingly, the maximum or minimum C.V. values appear in
different rows in Table 6. Furthermore, most of the maximum or minimum mean values and the C.V.
values belong to different RCM ensemble members for each return period and duration, suggesting
that there was no linear or other apparent relationship between the C.V. values and the mean values of
different RCM ensemble members. This shows that the scale-driven uncertainty of the IDF curves is
irrelevant to the mean size of the storm intensity of different RCM ensemble members for particular
durations and return periods.

Table 5. Mean rainfall intensity (mm/h) based on the downscaling results using the five time scales of
11 RCM ensemble members for three return periods and three durations for Heathrow station.

RCM
2 Years 10 Years 100 Years

1 h 6 h 24 h 1 h 6 h 24 h 1 h 6 h 24 h

Q9 19.00 6.50 2.12 44.56 13.62 4.23 148.75 37.94 10.26
Q11 23.58 7.73 2.51 50.53 15.03 4.76 128.37 32.51 10.11
Q16 21.34 7.21 2.40 46.40 14.03 4.42 123.08 30.32 8.64
Q13 20.98 6.97 2.35 41.65 12.96 4.06 100.89 27.84 7.82
Q3 18.49 6.36 2.08 36.46 11.32 3.57 102.53 22.45 6.88
Qk 18.30 6.30 2.08 37.28 11.31 3.59 98.27 22.38 7.08
Q4 18.85 6.60 2.17 37.51 11.32 3.56 97.53 21.08 6.14
Q8 19.43 6.56 2.20 38.43 11.57 3.75 88.77 22.00 6.72
Q6 23.95 7.82 2.57 42.12 12.79 4.07 75.59 20.53 6.37

Q14 19.75 6.63 2.21 34.36 11.05 3.46 66.76 19.51 5.46
Q0 18.50 6.29 2.12 31.83 10.08 3.11 57.10 15.64 4.22

Table 6. C.V. (%) of rainfall intensity based on the downscaling results using five time scales of 11
ensemble members for three return periods and three durations for Heathrow station.

RCM
2 Years 10 Years 100 Years

1 h 6 h 24 h 1 h 6 h 24 h 1 h 6 h 24 h

Q9 19.57 2.88 1.79 19.62 3.30 1.22 22.62 8.53 6.61
Q11 19.47 4.43 1.61 21.55 2.53 2.66 26.12 12.38 5.72
Q16 19.65 2.34 1.39 22.61 4.27 0.96 26.25 10.08 1.48
Q13 18.12 3.32 1.38 18.48 2.65 0.81 19.97 3.26 3.72
Q3 14.27 2.36 1.08 25.08 3.86 1.39 76.74 9.25 3.60
Qk 19.94 3.09 1.23 19.87 4.23 1.62 24.44 8.42 5.82
Q4 16.82 4.03 1.44 11.44 3.38 2.18 18.60 16.49 6.43
Q8 15.17 3.86 2.69 15.07 3.59 1.69 18.54 12.06 7.78
Q6 18.00 3.24 1.38 19.67 2.60 3.76 25.33 9.02 11.26

Q14 15.88 1.97 0.50 18.50 2.45 0.90 28.97 7.36 2.11
Q0 15.31 4.69 1.83 20.73 4.20 1.55 35.27 10.97 3.70

5. Conclusions

In this study, we explored the uncertainty in future IDF curves caused by downscaling RCM data
and quantified the uncertainty using a series of future climate IDF curves obtained by downscaling the
temporal resolution of data from four stations in the UK and 11 RCM ensemble members. This was
performed using DBS bias-correction technology and NPRED-MoF statistical downscaling methods.

The differences in the IDF curves stemming from the five-step downscaling process indicated
that the scales had a significant impact on the uncertainty of the IDF curves and that these were too
great to be neglected, especially for shorter durations and longer return periods. For instance, the
SD and C.V. of rainfall intensity at different time scales reached as high as 14.68 mm/h and 30.42%,
respectively, based on records from Heathrow station when the duration was 1 h and the return period
was 50 years. The results can be summarized as follows: (1) the scale-induced uncertainty in future
IDF curves decreased significantly as the duration of each return period increased despite the presence
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of turning points (between 5 and 10 h), after which the uncertainty fluctuated below a consistent value
(a C.V. of less than 5%, in most cases); (2) the uncertainty increased as the return period lengthened
for each duration and it was more pronounced for shorter (1 or 2 h) durations; and (3) the patterns or
trends of scale-driven uncertainties in IDF curves were similar across the 11 RCM ensemble members,
and the former showed no obvious correlations between the mean storm intensity for different RCM
ensemble members for each duration and return period.

These results indicate that the uncertainty in IDF curves stemming from downscaling ratios
is of critical significance, and this study presents a method to better understand this uncertainty.
Considering that uncertainties in IDF curves could be propagated or enlarged through their use
in hydrometeorological applications, the results demonstrate that IDF curves based on a one-step
downscaling process are unreliable. This could result in doubts over the security and reliability of the
design of water facilities, such as urban drainage networks or dams, if they are based on future IDF
curves that do not consider multiple scales. This suggests that IDF curves should be developed based
on multiplying various time scales and averaging the results; however, more theoretical support is
required. Human security and health, which is dependent on such basic infrastructure, could be in
danger if put at risk if the infrastructure were designed based on IDF curves with high uncertainty
values. Therefore, it is necessary to invent a downscaling method that considers the uncertainties
caused by temporal downscaling in source data used in modeling.

This study determined, quantified, and analyzed the scale-driven uncertainty of IDF curves.
However, it neither sought the mechanism driving this uncertainty nor found a way to solve
it. What will the scale-induced uncertainty be in future IDF curves if we adopt methods that
utilize multiple-process downscaling? More significantly, how does the scale-driven uncertainty
propagate in hydrometeorological applications? Thus, future studies should identify factors driving
the uncertainties and design a framework to reduce them or to invent a downscaling method that
considers the uncertainty stemming from downscaling data of different time scales. Further studies
could characterize this uncertainty by combining multiple downscaling methods. The rules by which
uncertainty propagates in hydrometeorological applications will also be explored in future research.
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