Seasonal Indoor Air Quality of Homes in Colorado Supplemental Information

Table S1. Summary statistics of particulate matter mass concentrations (24-hour time-integrated samples for PM25, 24-hour averages for PM10) and PM25 indoor/outdoor
ratios by season.

Metric	Season	N Samples	Mean	St. Dev.	Median	IQR	Min	Max	25th Per.	75th Per.
	Winter	30	12.1	11.2	7.8	9.6	1.5	48.4	5.2	14.7
	Spring	30	18.9	31.1	9.7	5.6	3.0	156.2	6.6	12.2
Indoor PM ₁₀	Summer	28	18.3	11.2	16.7	8.3	3.5	56.4	12.0	20.3
	Fall	26	12.3	8.5	10.5	7.7	3.9	39.0	6.2	13.8
	All Data	114	15.4	18.3	11.4	11.1	1.5	156.2	6.5	17.6
	Winter	29	6.1	5.7	3.9	5.1	0.6	19.7	2.1	7.2
	Spring	30	8.1	11.2	4.7	3.4	0.6	53.3	3.5	7.0
Indoor PM _{2.5}	Summer	28	10.6	7.4	8.3	9.1	0.6	30.0	5.9	15.0
	Fall	28	7.6	6.4	5.8	5.9	2.0	29.9	3.3	9.2
	All Data	115	8.1	8.1	5.8	6.6	0.6	53.3	3.4	9.9
	Winter	29	7.5	5.4	5.7	5.6	0.5	22.7	3.8	9.4
	Spring	30	5.3	3.4	4.9	2.2	1.7	20.3	3.7	5.9
Outdoor PM _{2.5}	Summer	28	9.2	4.6	7.7	4.9	4.8	23.7	6.0	11.0
	Fall	28	5.1	3.1	4.7	4.7	0.7	14.8	2.7	7.4
	All Data	115	6.8	4.5	5.6	4.1	0.5	23.7	4.0	8.1
	Winter	29	1.2	1.3	0.7	1.0	0.03	6.0	0.4	1.3
	Spring	30	2.0	3.7	1.1	0.8	0.2	18.9	0.7	1.4
PM _{2.5} In/Out	Summer	28	1.2	0.7	1.0	0.6	0.1	2.7	0.8	1.4
Katio	Fall	28	2.2	2.5	1.2	1.5	0.3	11.4	0.9	2.4
	All Data	115	1.6	2.4	1.0	1.0	0.03	18.9	0.6	1.6

	Indoor PM2.5 Outdoor PM2.5											
_	Mean	St. Dev.	Median	Min	Max	Mean	St. Dev.	Median	Min	Max		
А	14.4	13.2	8.2	4.1	42.2	5.6	3.6	5.2	1.2	12.1		
В	9.0	4.1	7.8	4.7	16.7	11.2	6.5	8.6	4.7	23.7		
С	5.8	3.6	5.4	2.1	11.1	7.4	5.2	5.6	2.5	17.3		
D	7.9	6.6	6.5	0.6	19.7	8.1	6.1	6.2	4.0	20.3		
Е	6.1	1.9	6.1	3.5	8.8	9.7	4.5	8.6	5.1	17.6		
F	6.9	2.2	6.8	4.3	11.1	4.9	2.1	4.7	2.7	9.5		
G	8.2	12.1	2.0	0.6	30.0	7.4	5.2	5.5	2.3	16.7		
Н	4.0	1.9	3.2	1.5	6.2	3.0	1.6	2.9	0.7	5.4		
J	2.9	1.9	2.7	0.6	5.8	10.1	6.0	8.6	4.6	22.7		
Κ	9.3	6.3	8.8	0.6	17.8	4.1	2.5	4.7	0.5	8.5		
М	7.3	5.2	5.3	2.3	15.6	5.0	3.3	3.8	0.6	11.8		
Ν	9.0	10.2	3.9	2.8	29.9	5.5	2.0	5.4	2.6	8.1		
Р	6.6	7.5	3.9	1.0	23.4	5.0	2.5	4.6	2.1	9.5		
Q	6.6	2.1	6.5	4.2	11.2	7.3	1.4	7.2	5.6	10.2		
R	18.7	15.7	17.1	2.9	53.3	6.8	4.0	6.4	2.2	14.9		
		Inc	door PM10			PM25 I/O Ratio						
	Mean	St. Dev.	Median	Min	Max	Mean	St. Dev.	Median	Min	Max		
А	29.8	29.7	18.2	4.7	95.8	4.6	6.5	1.6	0.7	18.9		
В	13.8	7.5	11.4	8.4	31.1	0.9	0.4	0.9	0.4	1.7		
С	10.7	6.8	9.1	2.5	20.4	0.9	0.3	0.9	0.4	1.3		
D	18.4	9.2	15.9	9.8	32.2	1.1	0.9	1.1	0.1	2.8		
Е	13.4	7.6	10.1	7.0	27.6	0.7	0.3	0.7	0.3	1.0		
F	13.4	4.3	13.9	6.5	19.1	1.5	0.7	1.3	0.9	2.7		
G	7.5	5.4	5.7	2.1	18.0	0.8	0.7	0.6	0.1	1.8		
Η	9.5	4.2	8.2	5.0	18.1	1.7	1.2	1.2	0.5	4.2		
J	6.7	4.5	3.9	3.0	13.5	0.4	0.3	0.3	0.0	0.7		
Κ	14.9	10.7	13.6	2.4	36.0	2.0	0.7	2.2	1.1	3.3		
Μ	12.5	9.7	9.0	1.5	30.3	1.9	1.7	1.3	0.6	6.0		
Ν	14.6	13.6	8.4	4.0	39.0	2.6	4.1	0.6	0.5	11.4		
Р	9.7	6.6	5.9	4.4	22.3	1.3	0.8	1.1	0.1	2.5		
Q	13.7	4.1	13.4	8.8	21.8	0.9	0.3	0.9	0.6	1.7		
R	46.9	51.6	29.9	6.3	156.2	3.8	3.8	2.6	0.3	11.3		

Table S2. Summary statistics of particulate matter mass concentrations (24-hour time-integratedsamples for $PM_{2.5}$, 24-hour averages for PM_{10}) and $PM_{2.5}$ indoor/outdoor ratios by home.

<i>p-</i> v	values for l	Kruskal-Wa	allis Test On	e-Way ANOVA by	y Ranks	
	PM ₁₀ In	PM2.5 In	PM2.5 Out	PM2.5 I/O Ratio	qPCR In	qPCR Out
All Seasons	0.003	0.014	0.0001	0.12	0.29	0.33
	p-values f	for Nonpar	ametric Mult	iple Comparison T	'ests	
	PM ₁₀ In	PM2.5 In	PM2.5 Out	PM2.5 I/O Ratio	qPCR In	qPCR Out
Overall	0.009	0.02	3.2E-07	0.10	0.39	0.10
Spring - Fall	0.94	0.68	0.99	0.69	0.87	0.99
Summer - Fall	0.04	0.33	0.0008	0.71	0.76	0.85
Winter - Fall	0.74	0.52	0.41	0.10	0.82	0.81
Spring - Summer	0.009	0.02	3.2E-07	0.99	0.38	0.86
Winter - Spring	0.93	0.96	0.24	0.41	0.49	0.99
Winter - Summer	0.01	0.04	0.40	0.58	0.93	0.10

Table S3. Hypothesis test results for comparing seasonal differences (significant p-values less than 0.05 are highlighted in green bold text).

Detailed Cluster Analysis:

There were five clusters for indoor PM_{2.5}, with homes A and R clustering individually due to elevated concentrations throughout the year from elevated outdoor PM_{2.5} or high PM emissions during cooking (see Figures 2, 4, 6 and S21). Clusters 2 and 3 had time series that peaked in the summer., but Cluster 3 PM_{2.5} levels were much lower during winter and fall compared to Cluster 2. Cluster 4 (D, M, N) homes had indoor PM_{2.5} that peaked during the winter and fall sampling periods.

Four clusters were determined for indoor PM₁₀ concentrations and were similar to the clusters for indoor PM_{2.5} indicating that most of the PM₁₀ was PM_{2.5}. Home R clustered by itself once again, with high concentrations and peaking during the third home visit due to a cooking event. Cluster 2 (homes B, D, M, N) contained homes that had increased levels during winter and fall. Cluster 3 for indoor PM₁₀ (C, E, F, G, H, J, P, Q) peaked in summer. Homes C, E, F, G, P from Cluster 3 also clustered according to home size (large) and had similar house characteristics.

Three clusters were determined for outdoor PM_{2.5} concentrations. Cluster 1 contained ten homes (A, F, H, K, M, N, P, R, C, G) located nearest to Boulder city with concentrations that peaked during the summer (samples 5 and 6, Figure S3). Homes in clusters 2 (B, E, J, Q) and 3 (D) experienced higher average outdoor PM_{2.5} concentrations (especially winter and summer) than those in cluster 1. All homes in clusters 2 and 3 except home J were located north of Boulder in the cities of Longmont, Lyons, and Fort Collins. Median outdoor PM_{2.5} concentrations plotted in Figure 1 show a similar spatial variability. These results suggest that spatial variability in outdoor PM_{2.5} concentrations along the Front Range cities of Colorado must be considered in this analysis, as homes in cities north of Boulder were exposed to different (usually higher) outdoor PM_{2.5} compared to most homes in Boulder city. Cluster 2 and 3 for both the indoor and outdoor PM_{2.5} have homes B, D, E and Q, which are located in Longmont, Lyons, and Fort Collins, showing that the outdoor PM_{2.5} influenced the indoor PM_{2.5} more strongly than other homes and indoor levels were similarly elevated during the summer.

Four clusters were found for the indoor and outdoor qPCR data, with home Q clustering individually due to extreme high and low mean values (Figure S7). Indoor and outdoor qPCR clusters had overlapping homes showing the influence of outdoor qPCR on indoor values. The clusters had similarities with the outdoor PM_{2.5} clusters (but not indoor PM_{2.5}) showing more dependence on location of the home. Homes A, F, P, G, J, K were all located within Boulder and Niwot (Cluster 1 for outdoor PM_{2.5}; Cluster 1 and 3 for indoor qPCR; Cluster 1 and 4 for outdoor qPCR)

Data set	Variables	Cluster	Homes	Cluster Description
	Volume # Roome	1	A, D, N, Q	Small homes w/ basement, fewer operable windows, built in 1960-1973, lived in 1-10 years
	# Floors Basement Type	2	B, C, E, F, R	Large homes w/ finished basement (B unfinished), many operable windows, mostly built in 1995-2006
Home Size	# Operable Windows	3	G, P	Largest homes, partially finished basement, lived in 11-20 years
	Time in Residence	4	Н, М	Small rural homes, no basement, few operable windows, lived in > 20 years
	Neighborhood	5	J, K	Medium size homes, many operable windows, finished basement, lived in > 20 years
		1	A, E, N	Adults 35-44, kids < 8 years old
Inhabitants	# Male # Female Inhabitant	2	B, R	Adults 35-64, kids 9-16 years old, w/ multiple other pets
Inhabitants	Age(s)	3	C, D, F	Adults 45-54, kids <8-21 years old
	# Dogs # Cats	4	G, Н, К, Р	Two adults (1 male, 1 female) 55->65 years old
	# Other Pets	5	J, M, Q	Older adults (55->65 years old) and young adults (22-34 years old)
		1	A, D, F	Gas stove and furnace, wood fireplace, VPS 5-6, high ACH ₅₀ (9-16)
	Stove Type	2	В, С, Е, N, Р	Gas stove (not B), gas furnace, forced air heating, central AC, low ACH50 (4-6)
HVAC	Furnace Type Fireplace Type Heating Type	3	G, J, K	Gas stove, wood fireplace, forced air heating, central AC w/ electrostatic filter, moderate ACH50 (7-9)
HVAC System	AC Type Electrostatic Filter	4	Н, М	Wood furnace, wood fireplace, fireplace heating, no AC, VPS of 5, moderate ACH50 (7-10)
	VPS ACH50	5	Q	Electric stove, gas furnace, no fireplace, radiator heating, wind AC, high ACH50 (16)
		6	R	Gas stove, no furnace, radiant heating, evaporative AC, low ACH ⁵⁰ (4)

Table S4. Results for clustering analysis in home and inhabitant characteristics.

Metric	Cluster	Homes	Mean	St. Dev.	Min	Max
	1	А	14.4	13.2	4.1	42.2
	2	B,E,F,Q,K	7.4	3.6	0.6	17.8
Indoor P1VI2.5 $(u \alpha/m^3)$	3	C,G,H,J,P	5.5	6.7	0.6	30.0
(µg/m ³)	4	D,M,N	8.3	7.2	0.6	29.9
	5	R	18.7	15.7	2.9	53.3
Out loss DM	1	A,F,H,K,M,N,P,R,C,G	5.5	3.5	0.5	17.3
Outdoor PM2.5 $(\mu \alpha/m^3)$	2	B,E,J,Q	9.6	5.0	4.6	23.7
(μg/m³)	3	D	8.1	6.1	4.0	20.3
	1	А	4.6	6.5	0.7	18.9
	2	B,C,E,G,H,J,P,Q	0.9	0.7	0.0	4.2
PM _{2.5} I/O Ratio	3	D,F,N	1.8	2.4	0.1	11.4
	4	K,M	2.0	1.4	0.6	6.0
	5	R	3.8	3.8	0.3	11.3
	1	A,K	22.9	23.6	2.4	95.8
Indoor PM ₁₀	2	B,D,M,N	14.7	10.0	1.5	39.0
(µg/m³)	3	C,E,F,G,H,J,P,Q	10.6	5.8	2.1	27.6
	4	R	46.9	51.6	6.3	156.2
	1	A,F,H,N,P,R	372	387	6.20	1610
Indoor qPCR	2	B,D	599	539	20.8	1520
(gen eq/m ³)	3	C,E,G,J,K,M	239	242	2.70	1010
	4	Q	1260	1490	56.4	4130
	1	A,C,F,P	749	995	430	4080
Outdoor qPCR	2	B,D,M	992	1810	8.61	8100
(gen eq/m ³)	3	Ε	231	282	32.4	754
	4	G,H,J,K,N,Q,R	562	930	1.23	5530

 Table S5. Clustering results and summary statistics for particulate matter data sets.

Figure S1. Average activity-hours relative to total reported activity-hours by home.

Figure S2. Time series of indoor PM_{2.5} clusters. Numbers 1-8 on x axis indicate the home sampling number. Each home was visited eight times, two times per season with sample 1 starting in December. Roughly samples 1-2 are winter, 3-4 are spring, 5-6 are summer, and 7-8 are fall.

Figure S3. Time series of outdoor PM_{2.5} clusters. Numbers 1-8 on x axis indicate the home sampling number. Each home was visited eight times, two times per season with sample 1 starting in December. Roughly samples 1-2 are winter, 3-4 are spring, 5-6 are summer, and 7-8 are fall.

Cluster 1 (A, F, H, K, M, N, P, R, C, G)

Figure S4. Time series of PM_{2.5} I/O ratio clusters. Numbers 1-8 on x axis indicate the home sampling number. Each home was visited eight times, two times per season with sample 1 starting in December. Roughly samples 1-2 are winter, 3-4 are spring, 5-6 are summer, and 7-8 are fall.

Figure S5. Time series of indoor PM₁₀ clusters. Numbers 1-8 on x axis indicate the home sampling number. Each home was visited eight times, two times per season with sample 1 starting in December. Roughly samples 1-2 are winter, 3-4 are spring, 5-6 are summer, and 7-8 are fall.

Figure S6. Time series of indoor qPCR clusters. Numbers 1-8 on x axis indicate the home sampling number. Each home was visited eight times, two times per season with sample 1 starting in December. Roughly samples 1-2 are winter, 3-4 are spring, 5-6 are summer, and 7-8 are fall.

Figure S7. Time series of outdoor qPCR clusters. Numbers 1-8 on x axis indicate the home sampling number. Each home was visited eight times, two times per season with sample 1 starting in December. Roughly samples 1-2 are winter, 3-4 are spring, 5-6 are summer, and 7-8 are fall.

Figure S8. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home A.

Figure S9. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home B.

Figure S10. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home C.

Figure S11. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home D.

Figure S12. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home F.

Figure S13. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home G.

Figure S14. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home H.

Figure S15. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home J.

Figure S16. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home K.

Figure S17. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home M.

Figure S18. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home N.

Figure S19. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home P.

Figure S20. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home Q.

Figure S21. (a) Indoor PM₁₀ diurnal profiles, (b) activity journal on half-hour intervals, and (c) summed activity-hours per day, indoor PM₁₀, and outdoor PM_{2.5} concentrations for Home R.