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Abstract: Estimating temperature extremes (TEs) and associated uncertainties under the non-stationary
(NS) assumption is a key research question in several domains, including the nuclear safety field.
Methods for estimating TEs and associated confidence intervals (CIs) have often been used in the
literature but in a stationary context, separately and without detailed comparison. The extreme
value theory is often used to assess risks in a context of climate change. It provides an accurate
indication of distributions describing the frequency of occurrence of TEs. However, in an NS context,
the notion of the return period is not easily interpretable. For instance, to predict a high return
level (RL) in a future year, time-varying distributions must be used and compared. This study
examines the performance of a new concept to predict RLs in an NS context and compares three
methods for constructing the associated CIs (delta, profile likelihood, and parametric bootstrap).
The present work takes up the concept of integrated return periods that define the T-year RL as
the level for which the expected number of events in a T-year period is one and proposes a new
method based on conditional predictions that is useful for predicting high RLs of extreme events in
the near future (the 100-year RL in the year 2030, for instance). The daily maximum temperature
(DMT) observed at the Orange Station in France was used as a case study. Several trend models were
compared and a new likelihood-based method to detect breaks in TEs is proposed. The analyses were
conducted assuming the time-varying Generalized Extreme Value (GEV) distribution. The concepts
have been implemented in a software package (Non-Stationary Generalized Extreme Value (NSGEV)).
The application demonstrates that the RL estimates for NS situations can be quite different from
those corresponding to stationary conditions. Overall, the results suggest that the NS analysis can be
helpful in making a more appropriate assessment of the risk for periodic safety reviews during the
life of a nuclear power plant (NPP).

Keywords: extreme temperature; non-stationarity; break date; return period; conditional prediction;
integrated prediction; confidence intervals; NSGEV

1. Introduction

Nuclear energy is used to derive over 80% of the electricity in France. Nuclear power plants
(NPPs) are not exempt from natural and climatic hazards (flooding, extreme temperatures and heat
waves, earthquakes, etc.). The direct, indirect, and cumulative effects of floods, temperature extremes
(TEs), and heatwaves impede the safe functioning of NPPs. Nuclear power is a low greenhouse gas
emitter but, paradoxically, global warming is making the technology more vulnerable in terms of
providing electricity. NPPs in France were constructed to withstand hot summers. In addition, operators
are continually investigating prospective internal or external aggressions due to hot temperatures.
Nevertheless, climate change and its impact on TEs remain an important issue for the Institute
for Radiological Protection and Nuclear Safety (IRSN). During the last two decades, France and other
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European countries experienced three violent heatwaves (2003, 2006, and 2015) that gave rise to
very high temperatures in summer. Urbanization and industrialization, the effect of natural climatic
variability, and increased greenhouse gasses in the atmosphere have been suggested as the leading
causes of the increase in duration, magnitude, and frequency of TEs and heatwaves in the context of
the current climate evolution. Despite the fact that the nuclear facilities were designed to withstand these
TEs with a low probability of failure, the current evolution of the climate (global warming) is considered
in a too simplistic way by the existing frequency analysis models based on the extreme values theory.

In the current practice using probabilistic methods to estimate design variables, extreme
events are generally assumed to be stationary (i.e., in an unchanging climate in a statistical sense)
(e.g., [1,2]). The idea that some mechanisms in hydrological systems are time-invariant and the fact that
hydrological predictions are based on assumptions that should include stationarity have been argued
in the literature (e.g., [3–5]). We must keep in mind that these studies emphasize that any hydrological
model, including deterministic and nonstationary approaches, is affected by uncertainty and, therefore,
should include a random component that is stationary. From these specific studies, however, it is
noted that the developments and applications of non-stationary (NS) models in hydrologic frequency
analyses in a changing climate and environments can be frustrated when the additional uncertainty
related to trend models, for example, is accounted for along with the sampling uncertainty [6].

Nevertheless, many studies in the last few decades have shown that climatic and meteorological
records exhibit some type of non-stationarity such as trends and shifts [7–9]. Several approaches have
been proposed in the literature to tackle non-stationarity in hydrometeorological and climatological
extremes. The frequency analysis of TEs with time-varying distribution functions (or moments such
as the mean and the variance) is one of the approaches that have been proposed in the literature to
characterize TEs in an NS context (e.g., [10–12]).

To meet and satisfy safety requirements, estimate return levels with an appropriate confidence
level becomes a major operational concern. Definitions of the return period in an NS context,
its statistical significance, as well as its interpretation, have to be addressed properly and with extreme
care when used for environmental, health, and safety concerns. However, a frequently occurring
‘gap’ is the widespread use of the time-varying frequency models to estimate high return levels
(without a projection into the future) while assuming the classic return level concept used in stationary
environments: the return level ZT for T years is the level for which the probability of exceedance
every year is equal to 1/T. Nevertheless, the hypothesis allowing the use of this classic definition of
the return period T no longer makes sense in an NS case [10,13–22]. Some early studies on the topic
have been described by Wigley [22,23] who presented, in a simple way, how non-stationarity may be
considered in the classic concept of risk. Katz et al. [10] proposed the “effective return levels” concept
to present non-stationarity in terms of time-varying quantiles while the occurrence probability of an
extreme event remains constant. Alternatively, the Design Life Level concept was introduced by Rootzén
and Katz [24] to estimate the probability of exceeding a fixed threshold during the design life of a project.

However, even before this, in a paper published in 1941 [25], Emil Gumbel, a pioneer in the field
of statistics of extremes, had not only addressed the invalidity of this assumption but also thought
about climate evolution that was identified half a century later. He cautioned that:

“In order to apply any theory, we have to suppose that the data are homogeneous, i.e., that no systematical
change of climate and no important change in the basin have occurred within the observation period
and that no such changes will take place in the period for which extrapolations are made.”

Thus, early on, the use of the extreme values theory was limited by the homogeneity of data
and stationarity of both the studied phenomenon (i.e., TEs) and the environment (i.e., an important
evolution of urbanization), an issue that will receive attention in the present paper.

Unsurprisingly, some creative ideas have been proposed by researchers for communicating
risk and helping to address such an important issue. The most important contributions propose
two different definitions of the return period under non-stationarity. The first defines the T-year return
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level (RL) as the level for which the expected waiting time until the exceedance is T years and proposes
the concept of “the expected waiting time before failure” as an equivalent definition of the return
period under stationary conditions [18]. More recently, the notion of return period was extended to
the NS setting by Parey et al. [19,26]; it defines the T-year RL as the level for which the expected
number of events in a T-year period is one. These two definitions suggested by Olsen et al. [18] and
Parey et al. [19] for communicating risk were reviewed, compared, and illustrated by Cooley [15] with
an application to annual peak flow measurements for the Red River of the North, USA. Obeysekera
and Park [17] also used non-stationarity concepts assuming the Generalized Extreme Value (GEV)
distribution for estimating sea-level extreme events. The time-varying design level (expressed in
return period of extreme events) of coastal facility protection was used. Another concept (replacing
the average return period by one) was proposed more recently by Read and Vogel [20]. The authors
introduced the reliability (or “risk of failure”) as a new concept to communicate the risk of experiencing
an exceedance event within a planning horizon. They defined the risk of failure over a planning period
as the likelihood of experiencing at least one event exceeding the design event over a given project life of
n years. This approach in a way originated from those proposed by Olsen et al. [18] and Parey et al. [19].
Read and Vogel [20] strongly believe that the probability of failure over an infrastructure’s lifetime
(or its associated reliability) is the most important piece of information an engineer can communicate,
and rightly so given the huge importance of this information for the public and planners.

A related issue concerns the detection and estimation of break dates in a time series. Indeed,
it is commonly known that climate and human activity always has a direct influence on some
hydrometeorological processes. Large-scale climatic and oceanic phenomena such as El Niño and the
North Atlantic Oscillation (NAO), as well as all kinds of large-scale urbanization and industry projects,
may have a direct or indirect impact on some climatic parameters such as ocean and air temperature.
Indeed, in addition to the current climatic evolution due to the emission of greenhouse gases into
the atmosphere, these particular phenomena are likely to suddenly modify TEs [27]. Therefore, in a
context of non-stationarity, identifying abrupt changes in the time series (and locating the times of
significant changes) becomes an important step in modeling temporal trends and taking them into
account in statistical inference (frequency analysis and associated uncertainties). Various methods
have been proposed in the literature for change-point analysis. Non-parametric techniques were
introduced for this problem (e.g., [28,29]). Pettitt [28] obtained exact and approximate results for
testing the null hypothesis of no change. The study of Servat et al. [29] was based on a set of methods
both for interpolation and for cartographic representation, as well as on statistical methods for the
detection of breaks in the precipitation time series in Africa. Yu et al. [30] then proposed a general
fuzzy piecewise regression analysis with automatic change-point detection. More recently, Xiong and
Guo [31] adopted the Bayesian approach to detect a single change in the mean level of both the annual
minimum flow series and the annual mean discharge series of the Yangtze River (in China) at the
Yichang Hydrological Station. The Bayesian method has the advantage of making inferences on the
posterior distribution with respect to change-point location.

Some R-packages have been developed for the analyses of extremes in an NS context exist (e.g.,
extRemes, GEVcdn, NEVA). The extRemes package [32] is based on the concept of effective return
levels and was introduced by Katz et al. [10]. The GEVcdn package [33] supplies a framework for
a conditional density estimation network. The package for Non-Stationary Extreme Value Analysis
(NEVA) was developed by Cheng et al. [13] to estimate climate extremes using Bayesian inference.
The NEVA software provides three approaches for estimating RLs in the NS context: (1) RL (for each
return period) with a constant “design exceedance probability” during the lifetime considered for
the design; (2) time-varying exceedance probability with constant thresholds; and (3) effective return
levels as introduced by Katz et al. [10]. However, these packages do not provide any generalization of
the concepts of NS return periods as addressed by Olsen et al. [18] and Parey et al. [18,19].

In this study, a framework for TE analysis under NS conditions is introduced. Based on the
concepts proposed by Olsen et al. [18] and Parey et al. [18,19,26], two notions of NS return period have
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been implemented in a software package called Non-Stationary Generalized Extreme Value (NSGEV).
Under the NS assumption, NSGEV provides two different kinds of predictions for estimating return
levels in a future year: (a) conditional prediction (CP) in which the RL is conditional to a fixed date (i.e.,
the future year 2030, for instance); and (b) integrated prediction (IP) in which the RL is integrated over
a future period (i.e., the concept introduced by Parey et al. [19,26]). A unique feature of NSGEV is that it
provides CIs that are calculated with the three most widely used methods: delta, profile likelihood, and
bootstrap. Furthermore, unlike existing tools, calculation of the CIs by profile likelihood is automated
in NSGEV. Further noteworthy features of the NSGEV package are that it provides and plots the density
functions at any future date, provides the number of exceedances of any extreme temperature (the
higher value in observations or the 100-year RL, for instance), and uses the likelihood-based method to
detect breaks in climatic and hydrometeorological time series. These features make NSGEV a practical
tool that is particularly useful for carrying out expert assessments to characterize climatological and
hydrometeorological hazards and analyze extremes in both stationary and NS contexts.

Overall, our goal is to build on the definitions and developments proposed in the literature
and revive the debate as to how engineers can effectively communicate the risks associated with
climatological and hydrometeorological hazards especially over medium- and short-term planning
horizons. This goal is in line with the recent literature that challenges the stationarity assumption
and clearly demonstrates the importance of conducting extreme-value analyses in a non-stationary
context. In order to achieve this goal, a simple framework to estimate RLs under stationary and NS
assumptions is introduced with an application to make it accessible to a broad audience in the field of
NS extreme-value analysis and make it easily interpretable by engineers.

The paper is organized as follows: The theoretical basis for these approaches will be addressed in
Section 2. The methodology of estimating the trends and break dates detection and estimation shall
form the subject of the third section of this paper. Section 4 presents the NSGEV R-package, takes
up the concept of integrated return periods introduced by Parey et al. [19,26], and proposes a new
one based on conditional predictions. In Sections 5 and 6, the concepts are applied using the daily
maximum temperatures (DMTs) observed at the Orange Station in France as a case study. Finally,
we conclude in Section 7 with recommendations concerning suitable statements of the unconditional
return periods in non-stationary settings.

2. Extreme Values in a Non-Stationary Environment—Theory

Extreme Value Theory (EVT) is an appropriate framework for analyzing the risks associated with
climate extremes and their return levels [10,34]. It is assumed here that the reader is familiar with
statistical extreme value analysis using this theory and those who are not are referred to Coles [34].
In this section, we give a very brief background primarily to identify the notation used here. In this
section, we give, nevertheless, the theoretical elements necessary for generally understanding the EVT
and the concepts and definitions that will be proposed in this paper.

One of the three limiting distributions—Gumbel, Fréchet, or Weibull—is often fitted to
environmental time series of extreme values such as annual maxima [35]. These three distributions
come from the same family, the generalized extreme value (GEV) distribution. The GEV distribution has
been applied in a large number of studies to estimate and analyze extremes [11,35–37]. The frequency
model using this family of distributions is often referred to as the block maxima approach (e.g., [34]).
A similar theory holds for excesses over a high threshold. The peaks-over-threshold (POT) approach in
which the excesses are analyzed with the Generalized Pareto (GP) distribution is another widely used
frequency model based on the EVT (e.g., [34]). The GEV distribution depends on three parameters:
location (µ), scale (σ), and shape (ξ) in a cumulative distribution function expressed as:

F(x, µ, σ, ξ) = exp

{
−
[

1 + ξ

(
x− µ

σ

)]− 1
ξ

}
(1)
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The location parameter specifies the center of the distribution, the scale parameter gives an
indication of the size of deviations around the location, and the shape parameter governs the tail
behavior of the GEV distribution. For NS processes and environments, it is often necessary to allow the
underlying distribution function to be time dependent [14,21,32,38] by allowing its parameters (µ, σ,
ξ) to depend on time or other covariates. This is commonly referred to as the time-varying frequency
model, which is used as an alternative approach.

3. The Time-Varying Distribution and Methodology for Non-Stationarity

We propose three methodological issues in the present section. First, we use the time-varying
GEV distribution to estimate TEs under the non-stationarity assumption. In this first step, trend
identification and estimation are also performed. Second, in a context of non-stationarity, it is essential
to investigate whether there are sudden changes in the time series and to locate the times of significant
changes (e.g., [29]), if any. It is then useful to model the time series with multiple linear trends and
propose a method for break date analysis. Third, we estimate the uncertainty by examining CIs for
the time-varying GEV parameters and other quantities of interest such as the desired NS-RLs that are
usually required for nuclear safety (100-year RL, for instance).

3.1. Time-Varying Distribution

The location and scale parameters are often time-varying (expressed as a function of time t) in the
NS-GEV distribution (e.g., [39,40]). Other covariates can also be used [34] (only time is used herein).
As is usually done, the location and scale parameters are assumed to be polynomial functions of time
to account for non-stationarity (Equation 4) while keeping the shape parameter constant. Indeed,
even for the stationary case, reliable estimates of the shape parameter cannot be obtained easily and
that is why it is advisable to assume it as a constant (e.g., [11,34]), unless there is a convincing reason
to let it be time-varying. Another reason for keeping the shape parameter constant is to reliably
model its temporal variability that requires long observation periods (often not available for practical
applications). It should be noted that the method developed in the ensuing sections are not constrained
by the assumption of the constant shape parameter. The cumulative NS-GEV distribution function is
given by the following equation ([34]):

F(x ; µ(t), σ(t), ξ) = exp

{
−
[

1 + ξ

(
x− µ(t)

σ(t)

)]− 1
ξ

}
(2)

Many methods for estimating the distribution parameters are available. The most popular
include the maximum likelihood (e.g., [34]), probability weighted moments (e.g., [41]), L-moments
(e.g., [42]), and Bayesian methods (e.g., [43]). Without carrying out a comparative study of these
methods, we merely describe briefly the maximum likelihood method used in the present work. It is
commonly known that this approach may give unrealistic estimates for the shape parameter when
relatively short samples are used (e.g., [44]). Nevertheless, it remains that for applications on extreme
temperatures, enough data are typically available to expect that the maximum likelihood method
would be stable. However, more interestingly, this method is applied herein because it allows one
to easily incorporate time (or any other covariates) into the parameter estimates. The maximum
likelihood method is more straightforward than most of the alternative methods for obtaining error
bounds for parameter estimates.

3.2. Estimation of Non-Stationarity and Time-Varying Distribution Parameters

To use the best time-varying GEV distribution, criteria for selecting the best time-varying model
among the GEV models that allow non-stationary scale and location parameters are compared.
The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are always
used to detect non-stationarity and to select an adequate distribution. In addition, the likelihood ratio
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test (or the deviance criterion) can be used to compare the fit of two nested models: the stationary
case (with likelihood L{null}) is represented by the null model whereas the alternative is the NS case
(L{alternative}). The log-likelihood ratio statistic can be expressed as follows [13,34]:

D = −2 ln
[

L{null}
L{alternative}

]
. (3)

To analyze low frequency NS TEs, it is useful to detect and estimate the temporal trends. Regression
structures allowing quadratic dependence on time can be considered for µ and σ parameters:{

µ(t) = µ0 + µ1t + µ2t2

σ(t) = exp
(
σ0 + σ1t + σ2t2) . (4)

In climate and hydrometeorology literature, linear or log-linear trends are usually preferred when
selecting trends in the occurrence of extremes [45]. In this study, only non-stationarity with respect to
location and scale parameters is discussed. The simplest case with a linear regression for the location
parameter µ(t) = µ0 + µ1t, while keeping the scale and shape parameters constant, has often been
considered in the literature (e.g., [14]). Three general trend models are tested:

• M1: only the trend after the break date is considered;
• M2: both trends, before and after the break date, are considered;
• M3: there is no break date: a single trend over the entire dataset.

A trend model is better than another if it is more significant (at 90% and 95% levels).
For convenience, only linear models are used for the temporal evolution of DMTs. Trend models are
compared using the Akaike and Bayesian information criteria (AIC and BIC). The likelihood ratio test
is used as well. For each model Mi(i = 1, 2, 3), three cases are considered:

• Mi(1, 0): corresponds to an NS linear model for µ(t) and a stationary one for σ(t);
• Mi(1, 1): corresponds to an NS linear model for both µ(t) and σ(t);
• Mi(0, 0): corresponds to a stationary model for both µ(t) and σ(t).

Following the same logic, a model M(1, 2) corresponds to an NS linear model for µ(t) and an
NS quadratic model for log σ(t). On the other hand, it is commonly known today that the estimation
of the shape parameter ξ may sometimes cause difficulty, as observed by Coles and Dixon [46] who
proposed the use of a penalized likelihood function to avoid this problem. Similarly, Martins and
Stedinger [47] proposed restricting the estimate of ξ to fall within a restricted range. However, we did
not encounter any difficulty in the estimation of ξ in the present work.

3.3. Break Dates

Without claiming a breakpoint, if there were any, the use of a frequency model would be impaired
by the use of a single trend representative of all data. Indeed, the use of a single trend, where a trend
break exists, would introduce a significant bias in the results. On the other hand, considering the
breakpoint and taking into account only the post-break data would significantly reduce the size of the
sample and this would be an equally poor solution.

As mentioned in the introductory section, many approaches have been proposed and applied
in the literature for change-point analysis [28–31]. In this study, a new likelihood-based approach
was adopted to detect change-points in the temporal evolution of annual maximum temperatures.
Unlike existing methods and tests for break-point detection (except for non-parametric tests such
as the Pettitt one [28,29]), which generally assume that observations are normally distributed (such
as the standard normal homogeneity test (SNHT) introduced by Alexandersson (1986) [48] and the
Buishand range test [49]), the likelihood-based method has the advantage of making inferences on
extreme value distributions (i.e., GEV, GP). In addition, it allows the use of multiple linear trends and
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exploits all available data considering the post-break slope, as well as the one prior to the occurrence
of each proposed breakpoint. Still, even if this strategy uses the suitable breakpoint of a specific series,
it has its limitations. Indeed, it is not uncommon for the slopes on either side of the breaking point
to be of opposite signs, i.e., a negative trend before the break and a positive one after. A single and
generalized trend model (one trend model for all the data) is adopted in this case (the one after the
break, of course). A single trend, as will be shown later in this paper with the case study, should be
used if no break date has been identified.

Two types of models can be used. In the first model with one trend, there is only one trend
after the break date (and no trend before). In the second model, there can be two different trends,
a trend before and a trend after the break date. As mentioned earlier, the break date is determined
using the principle of maximum likelihood. Indeed, m models (with a different break for each) are
tested where m is the number of years of data available. In the developed procedure, each year of the
data period is assumed to be a potential candidate for a break year. Looking through all the years of
the period of interest, a log-likelihood profile is computed and plotted. Finally, the maximum of the
likelihood profile, corresponding to the most appropriate break date, is extracted. It is to be noted that
the developed method that optimizes the breakpoint with the likelihood function by evaluating the
most likely break dates is not yet implemented in the NSGEV package.

3.4. Uncertainty Associated with Non-Stationary Extreme Events

Generally, when examining TEs, we are interested in asking the question: How often do we expect
a nuclear power plant to experience an extreme temperature? Additionally, if that happens, how high
will the temperature be? To answer these questions, we need to calculate the return level for a given
return period. The 1/p return level ẑp (computed from the GEV distribution) is the 1 − p quantile and
it is given by:

ẑp =

{
µ̂− σ̂

ξ̂

[
1− yp

−ξ̂
]

ξ̂ 6= 0

µ̂− σ̂ log yp ξ̂ = 0
(5)

where yp = − log(1− p). A degree of uncertainty in the estimates of a return level is then closely
related to that of the model parameters. It is a common belief today that a good estimation of
uncertainty in extreme levels can be as important as the estimate of the level itself (e.g., [34]).
It is then noteworthy that a frequency model predicts well the future return values only if it
produces RL estimates that fit inside a CI. Three methods for computing CIs—delta, profile likelihood,
and bootstrap—are used here in stationary and NS contexts. Appendix A presents a description of these
methods that are quite well documented in the literature. Standard errors (and their corresponding
confidence intervals) of the GEV distribution parameters and of return levels of interest were estimated
and examined for each method. Despite the fact that the variance and confidence intervals based on the
maximum likelihood estimators and delta method are asymptotic, the scientific community no longer
has any doubt that parametric confidence intervals based on a normal distribution approximation
cannot be expected to be accurate for extremes; that is, their actual coverage probabilities will not be
close to the nominal values [50]. Uncertainty in predictions also stems from model selection. The CIs
are based on the assumption that the correct model has been selected and take no account of the
alternatives that could be considered. Probabilistic approaches exist and are used in many contexts to
overcome this objection but are not considered here. To make the best possible use of the expertise, we
compare the three methods to best characterize the uncertainties. This comparison, which sometimes
leads us to make conservative choices, gives us an indication of the conditions under which one
method or another is more appropriate. However, in some cases, the estimation of extreme quantiles
can inherently be so uncertain that the discrepancy between different types of confidence intervals is
not of major relevance. Furthermore, in the nuclear safety field in France, the 70% confidence interval
is considered “reasonable” for most reference situations (as the upper bound of the confidence interval
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is often involved in the estimation of the return level of interest). It is an expert choice used by French
nuclear operators.

4. The NS Return Period—NSGEV Package Features

As explained in the introductory section of the present paper, the definition of the RL (i.e., the
T-years RL is the level for which the probability of exceedance is 1/T each year) no longer holds in an
NS case. Indeed, depending on the identified temporal trend, the level at which the expected number
of its exceedances in the next T years will be one must be defined. In the context of non-stationarity,
the RL value varies over time and it is in this perspective that the NSGEV package has been developed.
Existing packages (e.g., extRemes, GEVcdn or NEVA) estimating extreme values in an NS context
consider time as any other explanatory variable. There is, therefore, no “time-varying” model and
this is the object of the NSGEV package. It is developed to estimate and to extrapolate (beyond the
observation period) to the desired return level of extreme events and to evaluate the risk associated
with the NS phenomena. Time, then, becomes an important variable in the return level equation
(model becomes conditioned by time). The initial date and the number of years considered to make
the prediction are the two key parameters of the RL equation in an NS context. Therefore, the return
level ZT for T years starting from an initial date t0 (i.e., 2017) will be defined.

Two notions of the NS return period have been implemented in the NSGEV (two kinds of
predictions are allowed):

1. Return period conditional to a fixed date: relative to a future block (i.e., 2030). It is conditional to
the explanatory variable, which is the date of this block. In the introductory section, this is called
the conditional prediction (CP).

2. Return period integrated over a future period: as proposed by Parey et al. [19], the calculated
RL corresponds to an expected number of exceedances equal to one over this period. The user
must select the first year of the projection and then calculate the predictions for different periods
starting from this year. This is what we called the integrated predictions (IP).

One key advantage of the first concept is that, unlike the IP, we do not need to assume that the
current trend will remain unchanged until far horizons. Indeed, this is an attractive feature in the
analysis and prediction of TEs, especially for those who do not venture into planning and projecting
far into the future (i.e., medium and long-term) when dealing with a temperature-related project.
Furthermore, for the needs of expertise and periodic evaluations of the safety demonstration of NPPs
that operators can put forward, we need to predict high RLs (the 100-year RL, for instance) in the near
future (10–30 years, for instance) instead of RLs corresponding to the short-term horizons. That is
why the unconditional definition of a return period, as introduced by Parey et al. [19,26], may not be
fully relevant for describing the recurrence of extreme temperature events (100-year RLs, for instance)
in the near future. Alternatively, the conditional definition, introduced herein, provides high RLs
but for reasonable horizons and without making any assumption about the persistence of trends.
The two definitions are implemented in NSGEV with the three methods of calculation of the CI: delta,
profile likelihood, and bootstrap. Furthermore, unlike existing tools, the calculation of the CIs by the
likelihood profile is automated in NSGEV.

5. Case Study: The Orange Station in France

The TE frequency analysis was performed at the Orange Station, which is located in Southern
France. The 1952–2016 DMTs were provided by the French National Meteorological Service
(Météo-France). One of the most important features of the Orange Station is the fact that the region
in which this station is located has experienced important TEs and heatwave events during the last
two decades (e.g., European heatwave of the summer of 2003, the heatwave of the summer of 2006 in
Western Europe, and the heatwave of the summer of 2015 in France). Figure 1 displays the geographic
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location of the Orange Station. The Orange DMT series is considered by Météo-France as homogeneous.
It is considered to be one of the best and longest daily data available at Météo-France [19].

Figure 1. Case study (Orange Station): location map.

As part of a climate watch and a periodic nuclear safety review, all reference extreme temperatures
(in all the meteorological stations representative of NPPs in France) are subject to revision. The developed
methodology was applied to no fewer than 10 sites, which allowed us to assess the general validity
of the methodology. The model was applied in all its stages except in two situations where opposite
trends (negative before the breaking points and a positive trend after) were obtained. Only the trend
after the breakpoint was considered for these two cases. Aside from the validity of the proposed
methodology, the main recommendation of the exercise (in its regional context) was to conduct a more
in-depth study to regionalize the trend models.

6. Results and Discussion

We report herein the results of the conditional and integrated prediction methods applied to the
Orange Station. As with any sensitive facility, high return levels (RLs) (the 100-year hot temperature,
for instance) in a future year are needed for the safety of NPPs. Furthermore, for the needs of expertise
and periodic evaluation of the safety demonstration of NPPs, we need to predict these high RLs
with the associated upper bounds of the CIs in a near future (10–30 years, for instance). Despite
this, we have taken the liberty to present integrated predictions covering the period up to 2118
(a 100-year NS return period). These results are presented in the form of probability plots and tables
summarizing the estimates of the desired RLs and associated CIs calculated using three methods:
delta, profile likelihood, and bootstrap. In the probability plots, the time-varying GEV distribution
function is represented by the solid red line in the figures while the hatched area represents the 70% CIs.
The CPs will first be performed considering three arbitrary dates and then presented. The integrated
predictions will be presented afterward. Other features of the NSGEV package, as well as additional
results, will likewise be presented. However, even before that, we need to identify and estimate the
optimal trend characterizing the TEs at the Orange Station.

6.1. Optimal Trend

For convenience, only linear models are used for the temporal evolution of DMTs. As mentioned
above, trend models are compared using the AIC and BIC. The results of the trend estimations are
summarized in Table 1. The rows in this table correspond to the location parameter µ and the columns
to the scale parameter σ. The results of the (AIC; BIC) criteria for model Mi(1, 1) are presented in line
1 columns 1, 3, and 5; for model Mi(1, 0) in line 1 columns 2, 4, and 6; and for model Mi(0, 0) in line 2
columns 2, 4, and 6.
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Table 1. Trend model comparison with the Akaike information criterion (AIC) and Bayesian
information criterion (BIC). Numbers 1 and 0 are the polynomial degrees used in trend models
(0 for a stationary model and 1 for a linear model).

After the Break Date M1 Before and after the Break Date M2 With No Break Date M3

1 0 1 0 1 0

1 (252.2; 263.1) (251.0; 259.7) (246.7; 261.9) (244.6; 255.5) (245.1; 256.0) (243.1; 251.8)
0 * (267.5; 256.0) * (267.5; 256.0) * (267.5; 256.0)

* Linear trend on the scale parameter is allowed only if the location parameter is non-stationary (NS).

The analysis of the results shows that the AIC and BIC give an advantage to the M3 model with
an NS linear trend on the location parameter. Furthermore, the outputs of the likelihood ratio test
show that the trend model M3 with an NS linear evolution of the location parameter and with no break
date (line 1 and column 6 of Table 1) is more significant (at 95% levels). The comparison based on the
likelihood ratio statistic give an advantage to the M3 trend model with a p-value equal to 49.33% when
compared to the most competitive non-stationary model (M2) with linear trends on location parameter
before and after the break date.

The latter result is coherent with those of the NSGEV likelihood-based algorithm to identify
breakpoints. Indeed, the plot (not presented herein) of the likelihood as a function of time (candidate
break dates) does not present any global extremum likely to correspond to a maximum of likelihood
(whose projection on the X-axis gives a potential break date). It should be noted that these results
are also consistent with those obtained by Laurent and Parey [51] for the Orange Station. However,
this is not entirely consistent with the date of the onset of climate change (the 1970s) commonly shared
in the literature and from which trends in extreme temperatures become significant. Figure 2 shows
the time evolution of the annual maximum temperatures over the period 1952–2016. The NS linear
evolution of the expected value (without any break date) is represented by the straight red line in the
figure. Since the density of the annual maximum temperatures is close to that of a GEV distribution of
which the parameters were estimated by the maximum-likelihood method, the expectation is given by
µ + γσ where γ = 0.577 is the Euler–Mascheroni constant.

Figure 2. Orange Station: Annual maximum temperatures (over the period from 1952 to 2016) and the
linear evolution of the expectation µ(t) + 0.577σ (represented by the straight line). (Left) The model
M1(1, 0) with a linear trend after the break date; (Middle) the model M2(1, 0) with a linear trend before
and after the break date; (Right) the model M3(1, 0) with a linear trend without a break date.

6.2. Conditional and Integrated Predictions

A convenient tool for estimating either conditional or integrated predictions is the “predict”
function in the package NSGEV. The CP was performed for three dates (2017, 2030, and 2050) and the
results are summarized in Table 2 and shown in Figure 3. It can be seen that under the non-stationarity
assumption, the 100-year return level reaches about 44.0 ◦C by the year 2050. The results of the CP for
the year 2050 are shown in the right panel of Figure 3. In this figure, the CI was calculated with the
three methods (delta, profile likelihood, and bootstrap) considering a trend for the period 1952–2016.
Looking out to the year 2050, the highest upper bound of the CI around the 100-year return level was
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obtained by the profile likelihood method and it is equal to 44.9 ◦C (44.6 ◦C with the delta method
and 44.8 ◦C with the bootstrap method). For comparison purposes, we also analyzed the same DMT
series (for the same period) under the stationarity assumption for which we focused our attention on
the 100-year RL and associated CIs. This yields an estimate of 41.1 ◦C for the 100-year return level
and 41.9 ◦C for the upper bound of the CI calculated with the bootstrap method. The intent of this
analysis is only to illustrate how the RL estimates for non-stationary situations can be quite different
and significantly larger than those corresponding to stationary conditions. As it can also be noticed
in Figure 3, the CIs (calculated with the three methods) are relatively narrow and the relative width
(∆CIs/RLs) of these intervals does not exceed 6%. They are likewise very similar and differences in
the upper bounds are almost negligible (does not exceed 0.3 ◦C) for all of the dates.

Figure 3. Conditional predictions at the Orange Station for three dates: 2017, 2030, and 2050.
(Top) Confidence intervals calculated with the delta method; (Middle) confidence intervals calculated
with the profile likelihood method; (Bottom) confidence intervals calculated with the bootstrap method.
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Table 2. Results of the conditional predictions (CPs) for the years 2017, 2030, and 2050.

100-Year RLs (◦C) 70% CIs (◦C)

Delta Profile Likelihood Bootstrap

2017 42.1 41.6–42.6 41.5–42.9 40.9–42.8
2030 42.8 42.3–43.4 42.1–43.7 41.5–43.6
2050 43.9 43.1–44.6 43.1–44.9 42.4–44.8

When the predictions are integrated over a period with a start block date being chosen (say
t0 = 2018), the IPs corresponding to a return period of T years was calculated using the T years from
t0 to t0 + (T − 1). Table 3 and Figure 4 show the results of the integrated predictions from 2018.
For example, the temperature, exceeded on average once during the period 2018–2048 (30 years from
2018), is approximately 42.0 ◦C. The associated upper bound does not exceed 42.5 ◦C. As quadratic,
or even linear, trends for the distribution parameters will eventually result in unrealistic predictions at
a certain point from the time horizon of the sample, it is inappropriate to extrapolate the integrated
predictions so far into the future and it is not reasonable to estimate the return levels on long time
horizons (100 years, for instance). Estimates after a short time horizon of about 20 to 30 years are then
considered as unreliable. As it is shown in Table 3 and Figure 4, estimates after a time horizon of
30 years are indicated as unreliable. Rather, our need and aim are to perform predictions of high RLs
(with the associated upper bounds of the CIs) in 10–30 years, for instance. Despite this, we have taken
the liberty of presenting integrated predictions covering a period to 2118 (a 100-year NS return period).
The highest upper bound of the 70% CI around the 100-year return level was obtained by the delta
method and it is equal to 47.3 ◦C.

Figure 4. Integrated predictions from 2018 at the Orange Station for three dates: 2017, 2030, and 2050.
Confidence intervals (CIs) calculated with the (Left) delta, (Middle) profile likelihood, and (Right)
bootstrap methods.

Table 3. Results of the integrated predictions (IPs) from 2018.

T (years) Corresponding Future Years T-Year RLs (◦C) 70% CIs (◦C)

Delta Profile Likelihood Bootstrap

5 2023 39.3 39.1–39.4 38.9–39.7 38.8–39.7
10 2028 40.2 40.0–40.5 39.8–40.7 39.7–40.7
20 2038 41.3 41.0–41.6 40.7–41.9 40.6–41.9
30 2048 42.0 41.6–42.4 41.4–42.7 41.1–42.7

unreliable

40 2058 42.6 42.1–43.1 41.9–43.4 41.6–43.4
50 2068 43.2 42.6–43.8 42.4–44.0 42.1–44.0
70 2088 44.3 43.4–45.1 43.4–45.3 43.0–45.3

100 2118 45.9 44.5–47.3 44.7–47.1 44.3–47.1

As shown in Figure 4, CIs calculated with the bootstrap and profile likelihood methods are
very similar for the entire distribution (left tail, body and right tail), especially for the upper bounds.
They are slightly different from those obtained with the delta method, especially for the high return
periods. The upper bounds given by these two methods are slightly lower than those provided by the
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delta method but the difference is only 0.2 ◦C. It is also interesting to note that whatever the method of
their calculation, the relative widths of the CIs seem rather small.

The uncertainty is also shown in Table 3 presenting the 5-year to 100-year RLs and comparing the
results of the methods of calculating CIs. These results underline the visual impression of Figure 4
and give the exact values of the return levels and the bounds of the CIs. The values indicate that the
differences in CIs are small and almost negligible between the bootstrap and the profile likelihood
methods. The worst-case uncertainty scenario suggests a relative width of the CI in the range of 5–6%.
This holds for all the methods of calculating CIs and all the return periods of interest (30, 50, and 100
years). It is important to understand that the very small relative width of the CIs, with the fact that
these CIs (calculated by different methods) are very similar, is solely a statistical effect caused by the
robustness of the frequency model, which is based on the concept of the integrated predictions from
a given year and over a period of time. That is to say, if the IPs are estimated with sufficiently high
precision, then the time-varying frequency model introduced in this paper will produce narrow CIs
regardless of the method of their calculation.

6.3. Further Results

The developed package is particularly useful for carrying out an expert evaluation. The number of
exceedances of any extreme temperature (the 100-years RL, for instance) observed on many simulated
samples (using the parameters estimated from the initial sample) can be calculated with NSGEV.
One-thousand sample images of the initial sample were generated over the period 2018 to 2118
(arbitrary choice). The 90%, 95%, and 99% extreme quantiles were calculated for each sample and are
plotted in Figure 5 as black, red, and green lines, respectively. The average quantiles for each sample
are also plotted (the bottom thick line). The number of times the T◦ (45.9 ◦C, which is the integrated
prediction during the period 2018–2118) is exceeded was then calculated. This level is exceeded in 60%
of the simulated samples. The highest upper bound of the 70% CI around the 100-year return level
(47.3 ◦C) is also exceeded but in only 15% of the simulations.

Figure 5. (Left) Simulated samples (using the parameters estimated from the observations) with
90%, 95%, and 99% quantiles; (Right) distribution of the number of exceedances over the integrated
prediction during the period 2018–2118.

A further noteworthy feature of the NSGEV package is that it provides and plots the density
functions at any future date. For illustration, the density functions for the dates 1 January 2017, 2040,
2070, and 2100 were calculated and plotted. These densities are shown in Figure 6. It can be seen,
for example, that it was extremely difficult to observe the temperature of 42.6 ◦C in 2017, whereas from
2040 this temperature becomes very accessible (the green shaded area in Figure 6). It is noteworthy
that the temperature of 42.6 ◦C was the highest temperatsure recorded (observed in the summer of
2003) at Orange Station.
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Figure 6. Density functions.

7. Conclusions and Perspectives

In the present paper, we have provided detailed reasoning for the need to extend the use of
the traditional definition of return level assuming stationarity (i.e., the return level ZT for T years
is the level for which the probability of exceedance every year is equal to 1/T) with a new return
level concept over planning horizons in a NS context as a metric for the design of structures and for
communicating the risks associated with climate hazards.

Several ideas and approaches have been proposed in the literature to tackle non-stationarity in
hydrometeorological and climatological extremes. The present work supports these ideas, takes up
the concept of integrated return periods that defines the T-year RL as the level for which the expected
number of events in a T-year period is one (introduced by Parey et al. [19]), and proposes a new
method based on conditional predictions that are useful for predicting high RLs of extreme events in
the near future (the 100-year RL in the year 2030, for instance). In the present work, the concepts of
conditional and integrated NS return periods have been implemented in a software package called
Non-stationary Generalized Extreme Value (NSGEV).

Another consideration in this paper was applying and illustrating these approaches on the
example of DMTs at Orange Station, Southern France, over the period 1952–2016. The time-varying
GEV distribution was used and CIs for the time-dependent parameters and RLs using three methods
(delta, profile likelihood, and parametric bootstrap) were examined. Overall, the results suggest that
the non-stationary analysis can be helpful in making a more appropriate assessment of the risk during
periodic safety reviews on the NPPs life. The application demonstrates that the RL estimates for NS
situations can be quite different from those corresponding to stationary conditions.

If the RLs performed using the conditional and integrated predictions have a sufficiently high
precision, then the concept introduced will produce relatively narrow and very similar CIs, whatever
the method of their calculation. However, unlike the IP concept, the conditional prediction does not
use the assumption of current-trend persistence until far horizons. It provides high RLs for short-term
horizons. This attractive feature makes it more interesting from a practical point of view.

However, to accomplish this, trends of the GEV distribution parameters are identified and
estimated. In NSGEV, regression structures allowing quadratic dependence on time are allowed
and can be compared to select the best time-varying model. To account for non-stationarity in this
paper, it was found that a linear trend of the location parameter without a break date is the most
appropriate for annual maximum temperatures observed at the Orange Station (the absence of a break
date is specific to the Orange Station). The whole series has led to a better impact absorption of the
2003, 2006, and 2015 high temperatures and the trend has become more realistic in terms of its use in
future projections.

An in-depth study could help to thoroughly improve the NSGEV package and apply the
developed concept at other sites of interest. The concept of conditional predictions and methodology
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developed here and the integrated return level definition should find additional applications for
the assessment of risk associated with other hazards in other climate and geoscience fields (e.g.,
coastal hazards).
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Appendix A. Delta, Profile Likelihood, and Bootstrap Methods for Computing
Confidence Intervals

Appendix A.1. The Delta Method

The delta method is a classic technique in statistics for computing confidence intervals for
functions of maximum likelihood estimates. The variance of return level estimates was calculated
using the delta method and an asymptotic approximation to the normal distribution as follows:

var
(
ẑp
)
= ∇zp

t. V . ∇zp (A1)

where ∇zp is the vector of first derivatives of zp and V is the variance–covariance matrix of the
estimated parameters (µ, σ, ξ).

∇zp =
〈

∂zp
∂µ , ∂zp

∂σ , ∂zp
∂ξ

〉
=
〈
1, −ξ−1.

(
1− yp

−ξ
)
, σ.ξ−2.

(
1− yp

−ξ
)
− σ.ξ−1.yp

−ξ . log
(
yp
)〉

(A2)

The matrix V was used to calculate standard errors and confidence intervals associated with the
distribution parameters.

Appendix A.2. The Profile Likelihood Method

The principle of this method is as follows: it consists of selecting one of the parameters (the zp

here) and considering the others as nuisance parameters. The maximum likelihood (the derivatives
are calculated with respect to the other parameters) is then calculated for a set of return level values
and a curve is obtained and plotted. The horizontal line located below the maximum of this curve
at a distance from χ2(1; 0.7) (the 70% percentile of the χ2 with 1 degree of freedom) intersects the
likelihood curve at two points, which are the limits of the desired confidence interval.

Appendix A.3. The Bootstrap Method

CI construction by the bootstrap methods has been examined for a GEV-based frequency model
first by Kysely [52] in the stationary case and subsequently by Panagoulia et al. (2014) [40] in the NS
case. Bootstrapping models with a regression structure is never easy. Indeed, three general approaches
are proposed in the literature (e.g., [40]):

• parametric bootstrap;
• case resampling bootstrap (also called random-t resampling);
• residual resampling bootstrap (also called fixed-t resampling).

Only the parametric bootstrap method was used in the present paper under the NS-GEV frequency
model. Instead of resampling from the original data or from the transformed residuals, the parametric
approach (to obtaining a bootstrap distribution for each statistic of interest) by sampling directly
from the fitted distribution is then used. More specifically, n observations are simulated under the
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time-varying GEV model with the parameters obtained from the fit to the original data. In a simulated
bootstrap sample of size n, each observation is generated from the GEV(µ(ti), σ(ti), ξ) distribution for
each time step ti (i = 1, 2, . . . , n).

Appendix B. The Code of the Analysis Presented in Section 6

# Code application NSGEV on the Orange Station/for my paper in atmosphere
library(NSGEV)
library(ggplot2)
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Data
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
station <- “Orange”
data <- read.table(paste0(“TXMax_”, station, “.txt”), sep=“\t”, header=TRUE)
data <- data.frame(Year=as.integer(format(as.Date(data[,1]), “%Y”)), TXMax=data[,2])
data$Date = as.Date(paste0(data[,1], “-01-01”))
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Trend model
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# non-stationary Models (with and with no break dates)
# - - - - non-stationary on location and stationary on scale
## break date in 1981 (stationary then non-stationary linear)
M1 <- TVGEV(data = data, response = “TXMax”, date = “Date”,

design = breaksX(date=Date,breaks=“1981-01-01”,degree=1),
loc = ~t1_1981); round(AIC(M1),2); round(BIC(M1),2)

## break date in 1981 (non-stationary linear with change in slope)
M2 <- TVGEV(data = data, response=“TXMax”, date=“Date”,

design=breaksX(date=Date,breaks=“1981-01-01”,degree=1), loc=~t1+t1_1981);
round(AIC(M2),2); round(BIC(M2),2)
## Without any break date
M3 <- TVGEV(data=data, response=“TXMax”, date=“Date”,

design = polynomX(Date,degree=1), loc=~t1);
round(AIC(M3),2); round(BIC(M3),2)
#- - - - non-stationary on location and non-stationary on scale
## break date in 1981 (stationary then non-stationary linear)
M1 <- TVGEV(data = data, response = “TXMax”, date = “Date”,

design=breaksX(date=Date,breaks=“1981-01-01”,degree=1),
loc=~t1_1981, scale=~t1_1981);

round(AIC(M1),2); round(BIC(M1),2)
## break date in 1981 (non-stationary linear with change in slope)
M2 <- TVGEV(data = data, response = “TXMax”, date = “Date”,

design = breaksX(date=Date, breaks=“1981-01-01”,degree=1),
loc = ~t1+t1_1981, scale=~t1+t1_1981);

round(AIC(M2),2); round(BIC(M2),2)
## without any break date
M3 <- TVGEV(data=data, response=“TXMax”, date=“Date”,

design = polynomX(Date, degree=1),loc=~t1, scale=~t1);
round(AIC(M3),2); round(BIC(M3),2)
#- - - - Stationary Models for location and scale
M0 <- TVGEV(data=data, response=“TXMax”, date=“Date”);
round(AIC(M0),2); round(BIC(M3),2)
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#- - plot max daily t◦ with trends - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# plot data and trend model M3
plot(data = data, TXMax ~Date, col = “black”, type = “b”)
lines(data$Date, M3$theta[ , “loc”] + 0.57 * M3$theta[ , “scale”], col = “red”)
legend(“topleft”,inset = c(0.02, 0.02), legend=c(“Annual Maxima”,”Expectation”),

xpd=NA, col=c(“black”, “red”), lty=1, cex=0.8,
title=“DMT with a linear trend on the location parameter”,
horiz=TRUE, text.font=4, bg=‘lightblue’)

#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Conditional Predictions with methods of computing CIs
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# with the trend model M3 (NS-linear location parameter))
ICmethod <- “delta”; ICmethod <- “proflik”; ICmethod <- “boot”
res1 <- predict(M3, newdate = c(“2017-01-01”,”2030-01-01”,”2050-01-01”),

level=c(0.70,0.95), confintMethod = ICmethod, period=c(20,50,100))
p <- predict(M3, newdate = c(“2017-01-01”,”2030-01-01”,”2050-01-01”),

confintMethod=ICmethod,level=0.70)
t <- plot(p)
t + ggtitle(paste(“Conditional predictions;”,ICmethod,”/trend M3(1,0)”)) + ylim(38,50)
# For one year only
res1 <- predict(M3, newdate=“2050-01-01”, level=c(0.70, 0.95),

confintMethod=ICmethod, period=c(20,50,100))
p <- predict(M3, newdate = “2050-01-01”,confintMethod = ICmethod); plot(p)
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Integrated Predictions
#- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IP_M3 <- predictUncond(M3, newdateFrom=“2018-01-01”, confintMethod=ICmethod, level=0.70)
plot(IP_M3)
plot(IP_M3) + ggtitle(paste(“Integrated predictions from 2018 /”,ICmethod,

“/ trend model M3(1,0)”))+ theme(legend.position = ‘none’) + ylim(38,48)
#- -fit a TVGEV model. Only the location parameter is TV - - - - - - - - - - - - - - - - - - - - -
t1 <- system.time(
res1 <- TVGEV(data, response = “TXMax”, date = “Date”,

design = breaksX(date=Date, breaks=“1955-01-01”, degree=1),loc = ~t1+t1_1955))
M3 <- TVGEV(data=data, response=“TXMax”, date=“Date”, design=polynomX(Date,degree=1),
loc=~t1);
#- - simulate 1000 paths on the target period 2018–2117 - - - - - - - - - - - - - - - - - - - - - - -
nd <- seq(from=as.Date(“2018-01-01”), length.out= 100, by=“year”)
sim <- simulate(M3, nsim=1000, newdate=nd)
plot(sim); lines(quantile(M3, date = nd))
lines(mean(M3, date = nd), col = “SpringGreen3”, lwd = 2)
#- - for each path, how many exceedances over 45.9◦C ? - - - - - - - - - - - - - - - - - - - - - -
exceed <- apply(sim, 2, function(x) sum(x > 47.3)); plot(exceed, type = “h”)
barplot(table(exceed),main = “Distribution of the number of exceedances over 45.9◦C”)
#- - probability density - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
d <- density(M3,date = c(“2017-01-01”,”2040-01-01”,”2070-01-01”,”2100-01-01”))
t <- plot(d, fill = TRUE)
t + facet_grid(. ~c(“2017-01-01”, “2040-01-01”, “2070-01-01”, “2100-01-01”))
#- - Estimate a break date - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
yearBreaks <- c(1955:2015)
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res <- list()
for (ib in seq_along(yearBreaks)) {

d <- sprintf(“%4d-01-01”, yearBreaks[[ib]])
floc <- as.formula(sprintf(“~t1 + t1_%4d”, yearBreaks[[ib]]))
res[[d]] <- TVGEV(data = data, response = “TXMax”, date = “Date”,

design = breaksX(date = Date, breaks = d, degree = 1),loc = floc)
}
#- - END - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

References

1. Mearns, L.O.; Katz, R.W.; Schneider, S.H. Extreme high-temperature events: Changes in their probabilities
with changes in mean temperature. J. Clim. Appl. Meteorol. 1984, 23, 1601–1613. [CrossRef]

2. Tank, A.M.G.K.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate in Support of
Informed Decisions for Adaptation; World Meteorological Organization: Geneva, Switzerland, 2009; p. 56.

3. Koutsoyiannis, D.; Montanari, A. Negligent killing of scientific concepts: The stationarity case. Hydrol. Sci. J.
2015, 60, 1174–1183. [CrossRef]

4. Montanari, A.; Koutsoyiannis, D. Modeling and mitigating natural hazards: Stationarity is immortal!
Water Resour. Res. 2014, 50, 9748–9756. [CrossRef]

5. Serinaldi, F. Dismissing return periods! Stoch. Environ. Res. Risk Assess. 2015, 29, 1179–1189. [CrossRef]
6. Serinaldi, F.; Kilsby, C.G. Stationarity is undead: Uncertainty dominates the distribution of extremes.

Adv. Water Resour. 2015, 77, 17–36. [CrossRef]
7. Tank, A.M.G.K.; Können, G.P. Trends in indices of daily temperature and precipitation extremes in Europe,

1946–1999. J. Clim. 2003, 16, 3665–3680. [CrossRef]
8. Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in floods and low flows in the United States: Impact of spatial

correlation. J. Hydrol. 2000, 240, 90–105. [CrossRef]
9. Yan, Z.; Jones, P.D.; Davies, T.D.; Moberg, A.; Bergström, H.; Camuffo, D.; Cocheo, C.; Maugeri, M.;

Demarée, G.R.; Verhoeve, T.; et al. Trends of Extreme Temperatures in Europe and China Based on Daily
Observations. Clim. Chang. 2002, 53, 355–392. [CrossRef]

10. Katz, R.W.; Parlang, M.B.; Naveau, P. Statistics of extremes in hydrology. Adv. Water Resour. 2002, 25,
1287–1304. [CrossRef]

11. Katz, R.W. Statistical Methods for Nonstationary Extremes; Springer: Dordrecht, The Netherlands, 2013;
Volume 65.

12. Strupczewski, W.G.; Singh, V.P.; Mitosek, H.T. Nonstationary approach to at-site flood frequency modeling.
III. Flood frequency analysis of Polish rivers. J. Hydrol. 2001, 248, 152–167. [CrossRef]

13. Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary Extreme Value Analysis in a Changing
Climate. Clim. Chang. 2014, 127, 353–369. [CrossRef]

14. Cooley, D. Extreme value analysis and the study of climate change, a commentary on Wigley 1988.
Clim. Chang. 2009, 97, 77–83. [CrossRef]

15. Cooley, D. Chapter 4, Extremes in a changing climate: Detection, analysis and uncertainty. In Return Periods
and Return Levels under Climate Change; AghaKouchak, A., Easterling, D., Hsu, K., Eds.; Springer: New York,
NY, USA, 2013; Volume 65.

16. Du, T.; Xiong, L.; Xu, C.Y.; Christopher, J.G.; Shenglian, G.; Pan, L. Return period and risk analysis of
nonstationary low-flow series under climate change. J. Hydrol. 2015, 527, 234–250. [CrossRef]

17. Obeysekera, J.; Park, J. Scenario-Based Projection of Extreme Sea Levels. J. Coast. Res. 2013, 29, 1–7. [CrossRef]
18. Olsen, J.R.; Lambert, J.H.; Haimes, Y.Y. Risk of extreme events under nonstationary conditions. Risk Anal.

1998, 18, 497–510. [CrossRef]
19. Parey, S.; Malek, F.; Laurent, C. Trends and climate evolution: Statistical approach for very high temperatures

in France. Clim. Chang. 2007, 81, 331–352. [CrossRef]
20. Read, L.K.; Vogel, R.M. Reliability, return periods, and risk under nonstationarity. Water Resour. Res. 2015,

51, 6381–6398. [CrossRef]
21. Salas, J.D.; Obeysekera, J. Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic

Extreme Events. J. Hydrol. Eng. 2014, 19, 554–568. [CrossRef]

http://dx.doi.org/10.1175/1520-0450(1984)023&lt;1601:EHTECI&gt;2.0.CO;2
http://dx.doi.org/10.1080/02626667.2014.959959
http://dx.doi.org/10.1002/2014WR016092
http://dx.doi.org/10.1007/s00477-014-0916-1
http://dx.doi.org/10.1016/j.advwatres.2014.12.013
http://dx.doi.org/10.1175/1520-0442(2003)016&lt;3665:TIIODT&gt;2.0.CO;2
http://dx.doi.org/10.1016/S0022-1694(00)00336-X
http://dx.doi.org/10.1023/A:1014939413284
http://dx.doi.org/10.1016/S0309-1708(02)00056-8
http://dx.doi.org/10.1016/S0022-1694(01)00399-7
http://dx.doi.org/10.1007/s10584-014-1254-5
http://dx.doi.org/10.1007/s10584-009-9627-x
http://dx.doi.org/10.1016/j.jhydrol.2015.04.041
http://dx.doi.org/10.2112/JCOASTRES-D-12-00127.1
http://dx.doi.org/10.1111/j.1539-6924.1998.tb00364.x
http://dx.doi.org/10.1007/s10584-006-9116-4
http://dx.doi.org/10.1002/2015WR017089
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000820


Atmosphere 2018, 9, 129 19 of 20

22. Wigley, T.M.L. The effect of changing climate on the frequency of absolute extreme events. Clim. Chang.
2009, 97, 67–76. [CrossRef]

23. Wigley, T.M.L. The effect of changing climate on the frequency of absolute extreme events. Clim. Monit 1988,
17, 44–55, Reprinted in Clim. Chang. 2009, 97, 67–76. [CrossRef]

24. Rootzen, H.; Katz, R.W. Design life level: Quantifying risk in a changing climate. Water Resour. Res. 2013, 49,
5964–5972. [CrossRef]

25. Gumbel, E.J. The return period of flood flows. Ann. Math. Stat. 1941, 12, 163–190. [CrossRef]
26. Parey, S.; Hoang, T.T.H.; Dacunha-Castelle, D. Different ways to compute temperature return levels in the

climate change context. Environmetrics 2010, 21, 698–718. [CrossRef]
27. Bisai, D.; Chatterjee, S.; Khan, A.; Barman, N.K. Statistical Analysis of Trend and Change Point in Surface Air

Temperature Time Series for Midnapore Weather Observatory, West Bengal, India. Hydrol. Curr. Res. 2014, 5.
[CrossRef]

28. Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135.
[CrossRef]

29. Servat, E.; Paturel, J.E.; Lubès, H.; Kouamé, B.; Ouedraogoa, M.; Maason, J.M. Climatic variability in humid
Africa along the Gulf of Guinea. Part I: Detailed analysis of the phenomenon in Côte d’Ivoire. J. Hydrol. 1997,
191, 1–15. [CrossRef]

30. Yu, J.R.; Tzeng, G.H.; Li, H.L. General fuzzy piecewise regression analysis with automatic change-point
detection. Fuzzy Sets Syst. 2001, 119, 247–257. [CrossRef]

31. Xiong, L.; Guo, S. Trend test and change-point detection for the annual discharge series of the Yangtze River
at the Yichang hydrological station. Hydrol. Sci. J. 2004, 49, 99–112. [CrossRef]

32. Gilleland, E.; Katz, R.W. New software to analyze how extremes change over time. EOS 2011, 92, 13–14.
[CrossRef]

33. Cannon, A.J. GEVcdn: An R package for nonstationary extreme value analysis by generalized extreme value
conditional density estimation network. Comput. Geosci. 2011, 37, 1532–1533. [CrossRef]

34. Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: New York, NY, USA, 2001.
35. Gumbel, E.J. Statistics of Extremes; Dover Publications: Mineola, NY, USA, 1958.
36. Hamdi, Y.; Bardet, L.; Duluc, C.-M.; Rebour, V. Use of historical information in extreme-surge frequency

estimation: The case of marine flooding on the La Rochelle site in France. Nat. Hazards Earth Syst. Sci. 2015,
15, 1515–1531. [CrossRef]

37. Zhang, X.; Harvey, K.D.; Hogg, W.D.; Yuzyk, T.R. Trends in Canadian streamflow. Water Resour. Res. 2001,
37, 987–998. [CrossRef]

38. Salas, J.D.; Obeysekera, J. Return Period and Risk for Nonstationary Hydrologic Extreme Events.
In Proceedings of the World Environmental and Water Resources Congress, Cincinnati, OH, USA,
19–23 May 2013; pp. 1213–1223.

39. Adlouni, S.E.; Ouarda, T.B.M.J.; Zhang, X.; Roy, R.; Bobé, B. Generalized maximum likelihood estimators for
the nonstationary generalized extreme value distribution. Water Resour. Res. 2007, 43. [CrossRef]

40. Panagoulia, D.; Economou, P.; Caroni, C. Stationary and nonstationary generalized extreme value modelling
of extreme precipitation over a mountainous area under climate change. Environmetrics 2014, 25, 29–43.
[CrossRef]

41. Hosking, J.R.M.; Wallis, J.R.; Wood, E.F. Estimation of the generalized extreme-value distribution by the
method of probability-weighted moments. Technometrics 1985, 27, 251–261. [CrossRef]

42. Hosking, J.R.M. L-moments: Analysis and Estimation of Distributions Using Linear Combinations of Order
Statistics. J. R. Stat. Soc. Ser. B 1990, 52, 105–124.

43. Stephenson, A.G.; Tawn, J.A. Bayesian inference for extremes: Accounting for the three extremal types.
Extremes 2004, 7, 291–307. [CrossRef]

44. Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge
University Press: Cambridge, UK, 1997.

45. Beguería, S.; Angulo-Martínez, M.; Vicente-Serrano, S.M.; Lopez-Morenob, J.I.; El-Kenawyb, A. Assessing
trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold
analysis: A case study in northeast Spain from 1930 to 2006. Int. J. Climatol. 2011, 31, 2102–2114. [CrossRef]

46. Coles, S.G.; Dixon, M.J. Likelihood-based inference for extreme value models. Extremes 1999, 2, 5–23.
[CrossRef]

http://dx.doi.org/10.1007/s10584-009-9654-7
http://dx.doi.org/10.1007/s10584-009-9654-7
http://dx.doi.org/10.1002/wrcr.20425
http://dx.doi.org/10.1214/aoms/1177731747
http://dx.doi.org/10.1002/env.1060
http://dx.doi.org/10.4172/2157-7587.1000169
http://dx.doi.org/10.2307/2346729
http://dx.doi.org/10.1016/S0022-1694(96)03068-5
http://dx.doi.org/10.1016/S0165-0114(98)00384-4
http://dx.doi.org/10.1623/hysj.49.1.99.53998
http://dx.doi.org/10.1029/2011EO020001
http://dx.doi.org/10.1016/j.cageo.2011.03.005
http://dx.doi.org/10.5194/nhess-15-1515-2015
http://dx.doi.org/10.1029/2000WR900357
http://dx.doi.org/10.1029/2005WR004545
http://dx.doi.org/10.1002/env.2252
http://dx.doi.org/10.1080/00401706.1985.10488049
http://dx.doi.org/10.1007/s10687-004-3479-6
http://dx.doi.org/10.1002/joc.2218
http://dx.doi.org/10.1023/A:1009905222644


Atmosphere 2018, 9, 129 20 of 20

47. Martins, E.S.; Stedinger, J.R. Generalized maximum-likelihood generalized extreme-value quantile estimators
for hydrologic data. Water Resour. Res. 2000, 36, 737–744. [CrossRef]

48. Alexandersson, H. A homogeneity test applied to precipitation data. J. Clim. 1986, 6, 661–675. [CrossRef]
49. Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27.

[CrossRef]
50. Caroni, C.; Panagoulia, D. Non-stationary modelling of extreme temperatures in a mountainous area of

Greece. REVSTAT 2016, 14, 217–228.
51. Laurent, C.; Parey, S. Estimation of 100-year-return-period temperatures in France in a non-stationary climate:

Results from observations and IPCC scenarios. Glob. Planet. Chang. 2007, 57, 177–188. [CrossRef]
52. Kysely, J. A cautionary note on the use of nonparametric bootstrap for estimating uncertainties in

extreme-value models. J. Appl. Meteorol. Climatol. 2008, 47, 3236–3251. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/1999WR900330
http://dx.doi.org/10.1002/joc.3370060607
http://dx.doi.org/10.1016/0022-1694(82)90066-X
http://dx.doi.org/10.1016/j.gloplacha.2006.11.008
http://dx.doi.org/10.1175/2008JAMC1763.1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Extreme Values in a Non-Stationary Environment—Theory 
	The Time-Varying Distribution and Methodology for Non-Stationarity 
	Time-Varying Distribution 
	Estimation of Non-Stationarity and Time-Varying Distribution Parameters 
	Break Dates 
	Uncertainty Associated with Non-Stationary Extreme Events 

	The NS Return Period—NSGEV Package Features 
	Case Study: The Orange Station in France 
	Results and Discussion 
	Optimal Trend 
	Conditional and Integrated Predictions 
	Further Results 

	Conclusions and Perspectives 
	Delta, Profile Likelihood, and Bootstrap Methods for Computing Confidence Intervals 
	The Delta Method 
	The Profile Likelihood Method 
	The Bootstrap Method 

	The Code of the Analysis Presented in Section 6 
	References

